2012年山东省理科数学高考试题、答案(含详细解析)
- 格式:pdf
- 大小:336.76 KB
- 文档页数:10
2012年山东省高考数学试题(附答案和解释)(理科Word版)2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项: 1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V= Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)•P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为 A 3+5i B 3-5i C -3+5i D -3-5i 解析: .答案选A。
另解:设,则根据复数相等可知,解得,于是。
2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为 A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:。
答案选C。
3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件解析:p:“函数f(x)= ax在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R 上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
2012年普通高等学校招生全国统一考试(山东卷)理科数学一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4}3 设a >0 a ≠1 ,则“函数f(x)= a x 在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=θ,则sin θ=(A )35(B )45(C (D )34(8)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x<-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。
则f (1)+f (2)+f (3)+…+f (2012)= (A )335(B )338(C )1678(D )2012 (9)函数的图像大致为(10)已知椭圆C:的离心率为,双曲线x²-y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为(A)232 (B)252 (C)472 (D)484(12)设函数f(x)=,g(x)=ax2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时, x1+x2>0, y1+y2<0C.当a>0时,x1+x2<0, y1+y2<0D. 当a>0时,x1+x2>0, y1+y2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2012年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数x 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 2. 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 3. 设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,...,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B )9 (C )10 (D )155. 已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2-(B )3[,1]2-- (C )[1,6]- (D )3[6,]2- 6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为 (A )2 (B )3 (C )4 (D )57. 若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35 (B )45 (C (D )348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =。
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟,考试结束,务必将试卷和答题卡一并上交. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式: 锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高. 如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B ).第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A.3+5i B.3-5i C.-3+5i D.-3-5i 【答案】A 【解析】i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A. 另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+,根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=. 【点评】本题考查了复数的除法运算,考查了对学生计算能力,属于基础题.明年可能结合复数概念或者几何意义考查.2.已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则U A B ð为 A.{1,2,4} B.{2,3,4} C .{0,2,4} D.{0,2,3,4} 【答案】C【解析】由题意可知,{}{}0,4,0,2,4U U A A B == 故而痧,故而选择答案C.【点评】本题考查了集合的概念和集合的运算,考查了考生的运算能力;子集与真子集也是常常考查内容,估计明年会结合子集考查.3.设a >0 a ≠1 ,则“函数f(x)= a x在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由题意可知,()012-0()f x R a a g x R <<>在上单调递减,故而,所以,故在上单调递增,反之,由于()g x R 在上单调递增,可知202,0,02a a a a ->⇒<><< 又可知,,当1a =时,()1f x =,函数()f x 并不单调递减,故而“函数f(x)= a 3在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的 充分不必要条件,答案选A.【点评】本题考查了函数的性质和充要条件的判断,体现了学生的推论能力.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.简易逻辑是高考中必考内容,明年可能结合命题考察. 4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15 【答案】C【解析】采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C.【点评】本题考查了抽样方法,注意到系统抽样原则的应用,是对学生推理能力的考查.分层抽样也是重要考点,明年可能考分层抽样.【答案】A【解析】由所给的不等式组可知所表示的可行域如图所示,而目标函数可以看做3y x z =-,截距最小时z 值最大,当截距最大时z 值最小,根据条件242220x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩,故当目目标函数过()2,0时,取到z 的最大,ma x 6z =,由1412243x y x x y y ⎧-=-=⎧⎪⇒⎨⎨+=⎩⎪=⎩,当目标函数经过1,32⎛⎫⎪⎝⎭时,z 取到最小值,min 32z =-,故而答案为A.【点评】本题考查了线性规划问题,是典型的线性规划求最值问题,体现了数形结合法思想的应用.在线性约束条件下,线性约束条件所表示的区域一般是一个多边形区域或者一个以直线为边界的无限区域,如果目标函数是线性的,则可以根据目标函数的几何意义确定目标函数取得最大值和最小值的位置,如本题中的目标函数3z x y =-变换后即3y x z =- z ,则目标函数z 的几何意义即直线3y x z =-在y 轴上的截距相反数,截距最大(小)时的位置就是目标函数取得最小(大)值的位置,在一些含有参数的线性规划问题中这个思想显得更为重要.线性规划是高考必考内容,估计明年还会考到.(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A )2(B )3(C )4(D )5 【答案】B【解析】312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3.答案应选B.【点评】本题考察了程序框图的应用,根据程序框图推算结果.程序框图也是常考内容,明年还会结合这些知识考察.(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2θ,则sin θ=(A )35 (B )45 (C(D )34 【答案】D【解析】由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D.另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2=8θ可得 434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ, 而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D.【点评】本题考察了二倍角公式和同角基本关系的应用,考察了学生的运算能力;三角恒等变换往往结合三角函数图象与性质考察,故而明年可能出现三角函数图象与性质考点.8.定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x.则f (1)+f (2)+f (3)+…+f (2012)= (A )335 (B )338 (C )1678 (D )2012 【答案】B【解析】根据条件(6)f x f x +=()可知函数是周期为6的周期函数,由因为当-3≤x <-1时,f (x )=2(2)x -+,当-1≤x <3时,f (x )=x 可知,22(1)1,(2)2,(3)(3)(32)1,(4)(2)(22)0,f f f f f f ===-=--+=-=-=--+=(5)(1)1,(6)(0)0f f f f =-=-==,故而(1)+(2)(3)(4)(5)=f f f f f f ++++(6)1,故而f (1)+f (2)+f (3)+…+f (2012)=3351(1)(2)338f f ⨯++=【点评】本题考查了函数的周期性的应用,属于函数的性质的考查,这种性质的考察是常见的形式,故而明年会继续考察,可能结合初等函数出现. (9)函数的图像大致为【答案】D【解析】函数x x x x f --=226cos )(,)(226cos )(x f xx f xx -=-=--为奇函数, 当0→x ,且0>x 时+∞→)(x f ;当0→x ,且0<x 时-∞→)(x f ; 当+∞→x ,+∞→--xx22,0)(→x f ;当-∞→x ,-∞→--x x 22,0)(→x f .答案应选D.【点评】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想,函数图象是考点中重要内容,估计明年还会继续考察. (10)已知椭圆C :的离心率为,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c 的方程为【答案】D【解析】双曲线x ²-y ²=1的渐近线方程为x y ±=,代入可得164,222222==+=x S b a b a x ,则)(42222b a b a +=,又由23=e 可得b a 2=,则245b b =,于是20,522==a b .椭圆方程为152022=+y x ,答案应选D. 【点评】本题考察了双曲线与椭圆的基本性质,属于运算能力的考察,求圆锥曲线方程的基本方法之一就是待定系数法,就是根据已知条件得到圆锥曲线方程中系数的方程或者方程组,通过解方程或者方程组求得系数值.(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)484 【答案】C【解析】由题意可知,抽取的三张卡可以分为两类,一类为不含红色的卡,一类是含一张红色的卡片,第一类的抽取法的种数为331243208C C -=,第二类抽取法的种数为12412264C C ⋅=,故而总的种数为208264472+=【点评】本题考察排列组合知识,属于推论能力的考察.排列组合、二项式定理属于高考考点,估计明年可能结合二项式定理考察. (12)设函数f (x )=,g (x )=ax 2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A (x 1,y 1),B(x 2,y 2),则下列判断正确的是 A.当a<0时,x 1+x 2<0,y 1+y 2>0 B. 当a<0时, x 1+x 2>0, y 1+y 2<0 C.当a>0时,x 1+x 2<0, y 1+y 2<0 D. 当a>0时,x 1+x 2>0, y 1+y 2>0 【答案】B【解析】令bx ax x+=21,则)0(123≠+=x bx ax ,设23)(bx ax x F +=,bx ax x F 23)(2+='.令023)(2=+='bx ax x F ,则abx 32-=,要使y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点只需1)32()32()32(23=-+-=-abb a b a a b F ,整理得23274a b =,于是可取3,2=±=b a 来研究,当3,2==b a 时,13223=+x x ,解得21,121=-=x x ,此时2,121=-=y y ,此时0,02121>+<+y y x x ;当3,2=-=b a 时,13223=+-x x ,解得21,121-==x x ,此时2,121-==y y ,此时0,02121<+>+y y x x .答案应选B.另解:令)()(x g x f =可得b ax x +=21. 设b ax y x y +=''=',12,不妨设21x x <,结合图形可知, 当0>a 时如右图,此时21x x >,即021>>-x x ,此时021<+x x ,112211y x x y -=->=,即021>+y y ;同理可由图形经过推理可得当0<a 时0,02121<+>+y y x x .答案应选B.【点评】题考察了函数与方程知识,反比例函数与二次函数图象的应用是数形结合法思想的应用, 函数的零点、方程的根,都可以转化为函数图象与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在定理、函数的性质等进行相关的计算,把数与形紧密结合起来, 函数零点问题是函数与方程思想的考法,估计明年可能结合基本初等函数考察.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. (13)若不等式的解集为,则实数k=__________.【答案】2【解析】4224226kx kx kx -≤⇔-≤-≤⇔≤≤,根据解集为{}13x x ≤≤,故而0k >,这是26x k k ≤≤故而2613k k==且得2k =另解:由题意可知3,1==x x 是24=-kx 的两根,则⎩⎨⎧=-=-24324k k ,解得2=k . 【点评】本题考察了绝对值不等式的解法,属于对学生计算能力考察,绝对值不等式性质也是常考知识,估计明年可能考查. 解析:由可得242≤-≤-kx ,即62≤≤kx ,而31≤≤x ,所以2=k .(14)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________.【答案】16【解析】由题意可知,11111111113326D EDF F D ED D ED V V DC S --==⨯⨯∆=⨯⨯⨯⨯= 【点评】本题考察多面体与体积公式的应用,同时考察了学生的空间想象能力;明年有可能结合三视图考查. (15)设a >0.若曲线与直线x =a ,y=0所围成封闭图形的面积为a ,则a=______.【答案】94【解析】33220229334a S x a a a ====⇒=⎰【点评】考察了微积分的应用,属于计算能力的考察.这是理科的特色,估计明年还会考查. (16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为______________.【答案】()2sin 2,1cos2--【解析】根据题意可知圆滚动了2单位个弧长,点P 旋转了212=弧度,此时点P 的坐标为 )2cos 1,2sin 2(,2cos 1)22sin(1,2sin 2)22cos(2--=-=-+=-=--=y x P P ππ另解1:根据题意可知滚动自圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且C D223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2c o s 1)223s i n (12s i n 2)223c o s (2ππy x ,即)2c o s 1,2s i n 2(--=OP .【点评】本题考察了三角函数与向量知识的灵活应用,属于知识点交汇处的题目.解决好本题的关键是充分利用图象语言,属于典型的数形结合法思想的应用,数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野;结合新情境考查明年还会继续.三、解答题:本大题共6小题,共74分. (17)(本小题满分12分) 已知向量m=(sinx ,1),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y=f (x )的图象像左平移12π个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g (x )的图象.求g (x )在上的值域.【解析】(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A x f , 则6=A ;(Ⅱ)函数y=f (x )的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数g (x )在上的值域为]6,3[-.另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x ,于是367sin 6)245(,62sin6)24(,333sin6)0(-======πππππg g g , 故6)(3≤≤-x g ,即函数g (x )在上的值域为]6,3[-.【点评】本题考查向量的坐标运算、三角恒等变换和三角函数图象与性质,是对三角和向量的综合考察,考察了学生的计算能力,属于基础题.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.明年可能结合解三角形来考察. (18)(本小题满分12分)在如图所示的几何体中,四边形ABCDAE ⊥BD ,CB=CD=CF.(Ⅰ)求证:BD ⊥平面AED ;(Ⅱ)求二面角F-BD-C 的余弦值. 【解析】(Ⅰ)在等腰梯形ABCD 中,AB ∥CD 由余弦定理可知202223)180cos(2CD DAB CB CD CB CD BD =∠-⋅⋅-+=,即AD CD BD 33==,在ABD ∆中,∠DAB=60°,AD BD 3=,则ABD ∆为直角三角形,且DB AD ⊥.又AE ⊥BD ,⊂AD 平面AED ,⊂AE 平面AED ,且A AE AD = ,故BD ⊥平面AED ;(Ⅱ)由(Ⅰ)可知CB AC ⊥,设1=CB ,则3==BD CA ,建立如图所示的空间直角坐标系,)0,21,23(),0,1,0(),01,0(-D B F ,向量)1,0,0(=n 为平面BDC 的一个法向量. 设向量),,(z y x m =为平面BDF 的法向量,则⎪⎩⎪⎨⎧=⋅=00FB m m ,即⎪⎩⎪⎨⎧=-=-002323z y y x , 取1=y ,则1,3==z x ,则)1,1,3(=m 为平面BDF 的一个法向量.5551,cos ==>=<n m ,而二面角F-BD-C 的平面角为锐角,则 二面角F-BD-C 的余弦值为55.【点评】本题考查本题考察了线面垂直的位置关系的判断,和利用空间向量来求二面角的余弦问题. 明年可以结合线面平行的知识进行考察,二面角或者线面角的形式考察空间向量的应用.(19)(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX 【解析】(Ⅰ)367323141)31(43122=⋅⋅⋅+⋅=C P ; (Ⅱ)5,4,3,2,1,0=X91323141)2(,121)31(43)1(.361)31(41)0(1222=⋅===⋅===⋅==C X P X P X P , 1)2(3)5(,1)2(1)4(,1213)3(2212=⋅===⋅===⋅==X P X P C X PEX=0×36+1×12+2×9+3×3+4×9+5×3=12312=. 【点评】本题考查了概率、随机变量、分布列和数学期望属于对概率知识的综合考察,考察了学生的计算能力和逻辑推理能力;这种考法在山东卷中相对固定,明年还会继续考察. (20)(本小题满分12分)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m)内的项的个数记为bm ,求数列{b m }的前m 项和S m .【解析】(Ⅰ)由a 3+a 4+a 5=84,a 5=73可得,28,84344==a a 而a 9=73,则9,45549==-=d a a d ,12728341=-=-=d a a ,于是899)1(1-=⨯-+=n n a n ,即89-=n a n .(Ⅱ)对任意m ∈N ﹡,mm n 29899<-<,则899892+<<+mm n ,即989989121+<<+--m m n ,而*N n ∈,由题意可知11299---=m m m b , 于是)999(999110123121--+++-+++=+++=m m m m b b b S8980198019109819809991919199121212212m m m m m m m m -+=+⋅-=---=-----=++++, 即89801912mm m S -+=+. 【点评】本题考查本题考察了数列的求通项与求和的方法,属于数列的典型问题.考查灵活运用基本知识解决问题的能力,运算求解能力和创新思维能力.数列求通项与求和是常见的考法,故而明年会继续围绕这些内容进行考察..(21)(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点Ml :y=kx+14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,的最小值.【解析】(Ⅰ)F 抛物线C :x 2=2py (p >0)的焦点F )2,0(p,设M )0)(2,(0200>x px x ,),(b a Q ,由题意可知4p b =,则点Q 到抛物线C 的准线的距离为==+=+p p p p b 4324234,解得1=p ,于是抛物线C 的方程为y x 22=.(Ⅱ)假设存在点M ,使得直线MQ 与抛物线C 相切于点M ,而)2,(),0,0(),21,0(200x x M O F ,)41,(a Q ,QF OQ MQ ==,161)412()(222020+=-+-a x a x ,030838x x a -=,由y x 22=可得x y =',03020838241x x x x k --==,则20204021418381x x x -=-, 即022040=-+x x ,解得10=x ,点M 的坐标为)21,1(.(Ⅲ)若点MM )1,2(,)41,82(-Q . 由⎪⎩⎪⎨⎧+==4122kx y yx 可得02122=--kx x ,设),(),,(2211y x B y x A ,]4))[(1(2122122x x x x k AB -++=)24)(1(22++=k k圆323161642)21()82(:22=+=-++y x Q ,22182182kk kk D +=+-⋅=)1(823])1(32323[422222k k k k DE ++=+-=, 于是)1(823)24)(1(222222k k k k DE AB +++++=+,令]5,45[12∈=+t k 418124812)24()1(823)24)(1(2222222++-=++-=+++++=+t t t t t t t k k k k DE AB ,设418124)(2++-=t t t t g ,28128)(tt t g --=', 当]5,45[∈t 时,08128)(2>--='t t t g ,即当21,45==k t 时101441458145216254)(min =+⨯+⨯-⨯=t g .故当21=k 时,1014)(min 22=+DE AB .【点评】本题考查求曲线方程的方法以及直线与圆锥曲线的位置关系的应用,属于圆锥曲线问题的综合应用,全面考核综合数学素养.明年可能考察直线与椭圆的位置关系考察. 22(本小题满分13分) 已知函数f(x) =xe kx +ln (k 为常数,e=2.71828……是自然对数的底数),曲线y= f(x)在点(1,f(1))处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x 2+x) '()f x ,其中'()f x 为f(x)的导函数,证明:对任意x >0,21)(-+<e x g .【解析】由f(x) = x e k x +ln 可得=')(x f xexk x ln 1--,而0)1(='f ,即01=-e k ,解得1=k ;(Ⅱ)=')(x f xexx ln 11--,令0)(='x f 可得1=x , 当10<<x 时,0ln 11)(>--='x x x f ;当1>x 时,0ln 11)(<--='x xx f .于是)(x f 在区间)1,0(内为增函数;在),1(+∞内为减函数.简证(Ⅲ)xx ex x x x e xx x x x g ln )(1ln 11)()(222+--=--+=, 当1≥x 时, 0,0,0ln ,0122>>+≥≤-x e x x x x ,210)(-+<≤e x g .当10<<x 时,要证22221ln )(1ln 11)()(-+<+--=--+=e ex x x x e xx x x x g xx . 只需证2221()ln (1)x x x x x e e ---+<+,然后构造函数即可证明.【点评】本题考察了导数的几何意义,利用导数求函数的单调区间以及导数在函数与不等式中的应用,体现了等价转换思想应用.函数与导数结合不等式考察在山东卷中相对固定,明年会继续考察.。
数学山东卷(理科)一、选择题1.若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i2.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A .{1,2,4} B .{2,3,4} C .{0,2,4} D .{0,2,3,4}3.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .155.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]6.执行下面的程序框图,如果输入a =4,那么输出的n 的值为( )A .2B .3C .4D .57.若θ∈[π4,π2],sin 2θ=378,则sin θ=( )A.35B.45 C.74 D.348.定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=( )A .335B .338C .1 678D .2 0129.函数y =cos 6x 2x -2-x的图像大致为( )10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=111.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .48412.设函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图像与y =g (x )的图像有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0二、填空题13.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 14.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.15.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP ―→的坐标为________.三、解答题17.已知向量m =(sin x,1),n =(3A cos x ,A2cos 2x )(A >0),函数f (x )=m·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图像向左平移π12个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图像,求g (x )在[0,5π24]上的值域. 18.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ; (2)求二面角F -BD -C 的余弦值.19.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .20.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .21.在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34.(1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点M 的横坐标为2,直线l :y =kx +14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,|AB |2+|DE |2的最小值.22.已知函数f (x )=ln x +ke x(k 为常数,e =2.71828…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.答案 数学山东卷(理科)一、选择题1.解析:z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.故选A.答案:A2.解析:因为∁U A ={0,4},所以(∁U A )∪B ={0,2,4}. 答案:C3.解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.答案:A4.解析:从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n 组抽到的号码为a n =9+30(n -1)=30n -21,由451≤30n -21≤750,得23615≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10人. 答案:C 5.解析:作出不等式组所表示的区域如图,由z =3x -y 得y =3x -z ,平移直线y =3x ,由图像可知当直线经过点E (2,0)时,直线y =3x -z 的截距最小,此时z 最大为z =3×2-0=6,当直线经过C 点时,直线y =3x -z 的截距最大,此时z 最小,由⎩⎪⎨⎪⎧4x -y =-1,2x +y =4,解得⎩⎪⎨⎪⎧x =12,y =3,此时z =3x -y =32-3=-32,所以z =3x -y 的取值范围是[-32,6].答案:A6.解析:当a =4时,第一次P =0+40=1,Q =3,n =1,第二次P =1+41=5,Q =7,n =2,第三次P =5+42=21,Q =15,n =3,此时P ≤Q 不成立,输出n =3.答案:B7.解析:因为θ∈[π4,π2],所以2θ∈[π2,π],所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.答案:D8.解析:由f (x +6)=f (x )可知,函数f (x )的周期为6,所以f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,所以在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,所以f (1)+f (2)+…+f (2 012)=f (1)+f (2)+335×1=1+2+335=338.答案:B9.解析:函数为奇函数,所以其图像关于原点对称,排除A ;令y =0得cos 6x =0,所以6x =π2+k π(k ∈Z ),x =π12+k6π(k ∈Z ),函数的零点有无穷多个,排除C ;函数在y 轴右侧的第一个零点为(π12,0),又函数y =2x -2-x 为增函数,当0<x <π12时,y =2x -2-x >0,cos 6x >0,所以函数y =cos 6x2x -2-x>0,排除B.答案:D10.解析:因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25 b ,则在第一象限双曲线的渐近线与椭圆C的交点坐标为(25b ,25b ),所以四边形的面积为4×25 b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y 25=1.答案:D11.解析:若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 14×C 14×C 14=64种,若2张同色,则有C 23×C 12×C 24×C 14=144种;若红色卡片有1张,剩余2张不同色,则有C 14×C 23×C 14×C 14=192种,剩余2张同色,则有C 14×C 13×C 24=72种,所以共有64+144+192+72=472种不同的取法.答案:C 12.解析:不妨设a <0,在同一坐标系中分别画出两个函数的图像,如图所示,其中点A (x 1,y 1)关于原点的对称点C 也在函数y =1x 的图像上,坐标为(-x 1,-y 1),而点B 的坐标(x 2,y 2)在图像上也明显的显示出来.由图可知,当a <0时,x 2>-x 1,所以x 1+x 2>0,y 2<-y 1,所以y 1+y 2<0,同理当a >0时,则有x 1+x 2<0,y 1+y 2>0.答案:B 二、填空题13.解析:由|kx -4|≤2可得2≤kx ≤6,所以1≤k 2x ≤3,所以k2=1,故k =2.答案:214.解析:因为E 点在线段AA 1上,所以S △DED 1=12×1×1=12,又因为F 点在线段B 1C上,所以点F 到平面DED 1的距离为1,即h =1,所以VD 1-EDF =VF -DED 1=13×S △DED 1×h=13×12×1=16. 答案:1615.解析:由已知得S =⎠⎛0ax d x =23x 32|a 0=23a 32=a 2,所以a 12=23,所以a =49.答案:4916.解析:因为圆心移动的距离为2,所以劣弧P A =2,即圆心角∠PCA =2,则∠PCB =2-π2,所以PB =sin(2-π2)=-cos 2,CB =cos(2-π2)=sin 2,所以x P =2-CB =2-sin 2,y P =1+PB=1-cos 2,所以OP ―→=(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2) 三、解答题17.解:(1)f (x )=m·n =3A sin x cos x +A2cos 2x=A (32sin 2x +12cos 2x ) =A sin(2x +π6).因为A >0,由题意知A =6. (2)由(1)f (x )=6sin(2x +π6).将函数y =f (x )的图像向左平移π12个单位后得到y =6sin[2(x +π12)+π6]=6sin(2x +π3)的图像;再将得到图像上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin(4x +π3)的图像.因此g (x )=6sin(4x +π3).因为x ∈[0,5π24],所以4x +π3∈[π3,7π6],故g (x )在[0,5π24]上的值域为[-3,6].18.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,所以∠ADC =∠BCD =120°.又CB =CD ,所以∠CDB =30°, 因此∠ADB =90°,AD ⊥BD , 又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED , 所以BD ⊥平面AED .(2)法一:连接AC ,由(1)知AD ⊥BD ,所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系, 不妨设CB =1, 则C (0,0,0),B (0,1,0),D (32,-12,0),F (0,0,1),所以x =3y =3z , 取z =1,则m =(3,1,1).所以二面角F -BD -C 的余弦值为55.法二:取BD 的中点G ,连接CG ,FG ,由于CB =CD ,因此CG ⊥BD , 又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC ⊥BD . 由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG , 故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角. 在等腰三角形BCD 中,由于∠BCD =120°, 因此CG =12CB ,又CB =CF ,所以GF =CG 2+CF 2=5CG ,故cos ∠FGC =55, 因此二面角F -BD -C 的余弦值为55. 19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D +B C D +B C D ,根据事件的独立性和互斥性得 P (A )=P (B C D +B C D +B C D ) =P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D ) =34×(1-23)×(1-23)+(1-34)×23×(1-23)+(1-34)×(1-23)×23 =736. (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得 P (X =0)=P (B C D ) =[1-P (B )][1-P (C )][1-P (D )] =(1-34)×(1-23)×(1-23)=136. P (X =1)=P (B C D )=P (B )P (C )P (D ) =34×(1-23)×(1-23)=112. P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D ) =(1-34)×23×(1-23)+(1-34)×(1-23)×23=19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D ) =34×23×(1-23)+34×(1-23)×23=13, P (X =4)=P (B CD )=(1-34)×23×23=19,P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以EX =0×136+1×112+2×19+3×13+4×19+5×13=4112.20.解:(1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,a 4=28. 设数列{a n }的公差为d , 则5d =a 9-a 4=73-28=45, 故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1.所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *). (2)对m ∈N *,若9m <a n <92m , 则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×(1-81m )1-81-(1-9m )1-9=92m +1-10×9m +180.21.解:(1)依题意知F (0,p 2),圆心Q 在线段OF 的垂直平分线y =p4上,因为抛物线C的准线方程为y =-p 2,所以3p 4=34,即p =1,因此抛物线C 的方程为x 2=2y .(2)假设存在点M (x 0,x 202)(x 0>0)满足条件,抛物线C 在点M 处的切线斜率为y ′|x =x 0=(x 22)′|x =x 0=x 0, 所以直线MQ 的方程为y -x 202=x 0(x -x 0).令y =14得x Q =x 02+14x 0,所以Q (x 02+14x 0,14).又|QM |=|OQ |,故(14x 0-x 02)2+(14-x 202)2=(14x 0+x 02)2+116,因此(14-x 202)2=916,又x 0>0, 所以x 0=2,此时M (2,1).故存在点M (2,1),使得直线MQ 与抛物线C 相切于点M .(3)当x 0=2时,由(2)得Q (528,14), ⊙Q 的半径为r =(528)2+(14)2=368, 所以⊙Q 的方程为(x -528)2+(y -14)2=2732. 由⎩⎨⎧ y =12x 2,y =kx +14,整理得2x 2-4kx -1=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),由于Δ1=16k 2+8>0,x 1+x 2=2k ,x 1x 2=-12, 所以|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)(4k 2+2).由⎩⎨⎧ (x -528)2+(y -14)2=2732,y =kx +14, 整理得(1+k 2)x 2-524x -116=0. 设D ,E 两点的坐标分别为(x 3,y 3),(x 4,y 4),由于Δ2=k 24+278>0, x 3+x 4=524(1+k 2),x 3x 4=-116(1+k 2). 所以|DE |2=(1+k 2)[(x 3+x 4)2-4x 3x 4]=258(1+k 2)+14. 因此|AB |2+|DE |2=(1+k 2)(4k 2+2)+258(1+k 2)+14. 令1+k 2=t ,由于12≤k ≤2,则54≤t ≤5, 所以|AB |2+|DE |2=t (4t -2)+258t +14=4t 2-2t +258t +14, 设g (t )=4t 2-2t +258t +14,t ∈[54,5], 因为g ′(t )=8t -2-258t2, 所以当t ∈[54,5],g ′(t )≥g ′(54)=6,即函数g (t )在t ∈[54,5]是增函数,所以当t =54时,g (t )取到最小值132,因此当k =12时,|AB |2+|DE |2取到最小值132. 22.解:(1)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞). 因此对任意x >0,g (x )<1+e -2等价于1-x -x ln x <e xx +1(1+e -2). 由(2)h (x )=1-x -x ln x ,x ∈(0,+∞), 所以h ′(x )=-ln x -2=-(ln x -ln e -2),x ∈(0,+∞),因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增; 当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减. 所以h (x )的最大值为h (e -2)=1+e -2, 故1-x -x ln x ≤1+e -2. 设φ(x )=e x -(x +1).因为φ′(x )=e x -1=e x -e 0,所以x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增,φ(x )>φ(0)=0,故x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e xx +1>1. 所以1-x -x ln x ≤1+e -2<e xx +1(1+e -2). 因此对任意x >0,g (x )<1+e -2.。
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,务必将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件,A B 互斥,那么()()()P A B P A P B +=+;如果事件,A B 独立,那么()()()P A B P A P B ⋅=⋅.第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 【解析】i ii i i i ii z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
【答案】A(2)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 【答案】C(3)设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R上是增函数”的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【解析】若函数x a x f =)(在R 上为减函数,则有10<<a 。
2012年山东高考数学试题及答案(理科)本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A 3+5iB 3-5iC -3+5iD -3-5i解析:.答案选A。
另解:设,则根据复数相等可知,解得,于是。
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:。
答案选C。
3 设a>0 a≠1 ,则“函数f(x)= a x在R上是减函数”,是“函数g(x)=(2-a) 在R 上是增函数”的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件解析:p:“函数f(x)= a x在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
2012年全国各地高考数学试题普通高等学校招生全国统一考试(山东卷) 理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式: 锥体的体积公式:V=13Sh,其中S 是锥体的底面积,h 是锥体的高。
如果事件A,B 互斥,那么P(A +B)=P(A)+P(B);如果事件A,B 独立,那么P(AB)=P(A)·P(B)。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式: 锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若复数z 满足i i z 711)2(+=-(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i2.已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}3.设1,0≠>a a ,则“函数x a x f =)(在R 上是减函数 ”,是“函数3)2()(x a x g -=在R 上是增函数”的A 充分不必要条件B 必要不充分条件 [来源:学,科,网Z,X,X,K]C 充分必要条件D 既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为96021,,,,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[]4501,的人做问卷A ,编号落入区间[]750451,的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为 (A)7 (B)9 (C)10 (D)155.设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+144222y x y x y x ,则目标函数y x z -=3的取值范围是 A.⎥⎦⎤⎢⎣⎡-6,23 B.⎥⎦⎤⎢⎣⎡--1,23 C. []6,1- D. ⎥⎦⎤⎢⎣⎡-23,66.执行下面的程序图,如果输入4=a ,那么输出的n 的值为(A )2 (B ) 3(C ) 4(D )5 7.若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=(A )35 (B )45 (C)4(D )348.定义在R 上的函数)(x f 满足)()6(x f x f =+,当13-<≤-x 时,2)2()(+-=x x f ,当31<≤-x -1≤x <3时,x x f =)(.则=+++)2012()3()2()1(f f f f + (A )335 (B )338 (C )1678 (D )20129.函数xx xy --=226cos 的图像大致为10.已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,双曲线122=-y x 的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c 的方程为(A)12822=+y x (B)161222=+y x (C)141622=+y x (D)152022=+y x11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为12.设函数)0,,()(,1)(2≠∈+==a Rb a bx ax x g xx f .若)(x f y =的图像与)(x g y =图像有且仅有两个不同的公共点),(11y x A ,),(22y x B ,则下列判断正确的是(A.当0<a 时,021<+x x ,021>+y y (B). 当0<a 时, 021>+x x ,021<+y y (C ).当0>a 时,021<+x x ,021<+y y (D ). 当0>a 时,021>+x x ,021>+y y第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。