基于多小波变换的图像融合算法
- 格式:pdf
- 大小:854.09 KB
- 文档页数:4
基于GHM多小波变换的非织造布多焦面图像融合陈阳;辛斌杰;邓娜【摘要】针对光学显微镜在单一焦平面下拍摄的织物图像部分区域纤维会模糊的问题,提出基于GHM多小波变换的非织造布多焦面图像融合算法.利用自行搭建的非织造布显微成像系统采集不同焦平面下的织物图像序列,对初始图像序列进行临界采样预滤波处理,使用2种融合方法逐一处理图像的高低频,初始织物融合图像经多小波融合及逆变换后获得,之后按上述方法将初始融合图像与后续单焦面图像融合,叠加循环至融合后所有纤维区域均能清晰显示为止结束收敛.实验结果表明,该融合方法能将不同焦平面下拍摄的图像序列进行数字化图像融合,达到单幅图像内全视野区域的纤维网清晰聚焦融合的效果,为之后的计算机图像处理及测量提供便利.【期刊名称】《纺织学报》【年(卷),期】2019(040)006【总页数】8页(P125-132)【关键词】临界采样预滤波;GHM多小波;多焦面融合;非织造布图像;显微成像【作者】陈阳;辛斌杰;邓娜【作者单位】上海工程技术大学电子电气工程学院,上海 201620;上海工程技术大学服装学院,上海 201620;上海工程技术大学电子电气工程学院,上海 201620【正文语种】中文【中图分类】TP311.1非织造布是由纤维随机或定向排列而成,生产以纺黏法为主。
非织造布的性能与纤维网的孔隙构造紧密相关,而纤维的厚度、宽度、取向度以及纤维网的形成方式等都与其构造有关,因此能够得到这些结构参数进而找到性能间的联系,对生产及用途都具有十分重要的指导意义。
目前主要使用间接法对非织造布孔隙结构进行解析,而其存在的问题集中在费时费力且不能考虑到孔结构的复杂性。
计算机数字图像处理技术的发展为研究非织造布结构和性能提供了有效工具。
图像质量对纤维的形态测量与结构解析至关重要。
非织造布的厚度太大使得一般光学显微镜的景深不足以将所有纤维清晰地显现在一幅图像中。
基于这种不完全聚焦图像的测量,纤维结构将是不准确的,甚至会对后续处理有一定的误导性[1]。
多模态图像融合算法的研究与实现在现实生活中,我们经常会遇到需要处理多模态图像的应用场景,例如医学影像、安防监控等。
然而,不同模态的图像往往具有不同的特征和表达方式,如何将它们有效地融合起来,使得最终的结果更加全面、准确,成为了一个研究热点。
本文将介绍多模态图像融合的基本原理、常见算法及其实现。
一、多模态图像融合的基本原理多模态图像融合是指利用多种图像数据源,采用合适的算法将它们融合为一幅图像,以达到更好的图像质量和信息完整性的处理方法。
具体来说,多模态图像融合的基本原理是:通过将不同来源的图像的信息融合到一起,来得到一个更全面、更准确、更易于观察和分析的图像。
这是因为,不同来源的图像往往有其自身的优点和局限性,融合起来可以互补其缺陷,提高图像的质量和准确度,使得我们能够更全面地了解事物。
二、多模态图像融合的常见算法1. 基于加权平均的融合算法基于加权平均的融合算法是较为基础的融合算法之一。
其基本原理是将来自不同模态的像素值按照不同的权重进行加权平均,得到最终的融合图像。
其中,不同模态图像的权重可以自行设置或根据实际应用场景进行优化。
该算法实现简单,但对图像的质量和准确性要求较高。
2. 基于小波变换的融合算法小波变换是一种用于图像处理和分析的重要方法。
基于小波变换的多模态图像融合算法首先将不同模态的图像分别进行小波变换,然后在小波域中进行加权融合,最后再进行逆小波变换得到最终的融合图像。
该算法适用于不同模态图像分辨率和特征尺度差异较大的情况,可以提高图像的清晰度和细节。
3. 基于深度学习的融合算法深度学习是一种能够自动学习特征表示的机器学习方法。
基于深度学习的多模态图像融合算法首先将不同模态的图像进行卷积神经网络训练,学习不同模态图像之间的语义关系,然后通过网络输出得到最终的融合图像。
该算法不仅能够提高融合图像的质量和准确性,还能够自动学习特征表示,实现端到端的图像融合任务。
三、多模态图像融合的实现多模态图像融合的实现,常采用图像处理工具包和编程语言来实现。