基于多小波变换的图像融合算法
- 格式:pdf
- 大小:854.09 KB
- 文档页数:4
基于GHM多小波变换的非织造布多焦面图像融合陈阳;辛斌杰;邓娜【摘要】针对光学显微镜在单一焦平面下拍摄的织物图像部分区域纤维会模糊的问题,提出基于GHM多小波变换的非织造布多焦面图像融合算法.利用自行搭建的非织造布显微成像系统采集不同焦平面下的织物图像序列,对初始图像序列进行临界采样预滤波处理,使用2种融合方法逐一处理图像的高低频,初始织物融合图像经多小波融合及逆变换后获得,之后按上述方法将初始融合图像与后续单焦面图像融合,叠加循环至融合后所有纤维区域均能清晰显示为止结束收敛.实验结果表明,该融合方法能将不同焦平面下拍摄的图像序列进行数字化图像融合,达到单幅图像内全视野区域的纤维网清晰聚焦融合的效果,为之后的计算机图像处理及测量提供便利.【期刊名称】《纺织学报》【年(卷),期】2019(040)006【总页数】8页(P125-132)【关键词】临界采样预滤波;GHM多小波;多焦面融合;非织造布图像;显微成像【作者】陈阳;辛斌杰;邓娜【作者单位】上海工程技术大学电子电气工程学院,上海 201620;上海工程技术大学服装学院,上海 201620;上海工程技术大学电子电气工程学院,上海 201620【正文语种】中文【中图分类】TP311.1非织造布是由纤维随机或定向排列而成,生产以纺黏法为主。
非织造布的性能与纤维网的孔隙构造紧密相关,而纤维的厚度、宽度、取向度以及纤维网的形成方式等都与其构造有关,因此能够得到这些结构参数进而找到性能间的联系,对生产及用途都具有十分重要的指导意义。
目前主要使用间接法对非织造布孔隙结构进行解析,而其存在的问题集中在费时费力且不能考虑到孔结构的复杂性。
计算机数字图像处理技术的发展为研究非织造布结构和性能提供了有效工具。
图像质量对纤维的形态测量与结构解析至关重要。
非织造布的厚度太大使得一般光学显微镜的景深不足以将所有纤维清晰地显现在一幅图像中。
基于这种不完全聚焦图像的测量,纤维结构将是不准确的,甚至会对后续处理有一定的误导性[1]。
多模态图像融合算法的研究与实现在现实生活中,我们经常会遇到需要处理多模态图像的应用场景,例如医学影像、安防监控等。
然而,不同模态的图像往往具有不同的特征和表达方式,如何将它们有效地融合起来,使得最终的结果更加全面、准确,成为了一个研究热点。
本文将介绍多模态图像融合的基本原理、常见算法及其实现。
一、多模态图像融合的基本原理多模态图像融合是指利用多种图像数据源,采用合适的算法将它们融合为一幅图像,以达到更好的图像质量和信息完整性的处理方法。
具体来说,多模态图像融合的基本原理是:通过将不同来源的图像的信息融合到一起,来得到一个更全面、更准确、更易于观察和分析的图像。
这是因为,不同来源的图像往往有其自身的优点和局限性,融合起来可以互补其缺陷,提高图像的质量和准确度,使得我们能够更全面地了解事物。
二、多模态图像融合的常见算法1. 基于加权平均的融合算法基于加权平均的融合算法是较为基础的融合算法之一。
其基本原理是将来自不同模态的像素值按照不同的权重进行加权平均,得到最终的融合图像。
其中,不同模态图像的权重可以自行设置或根据实际应用场景进行优化。
该算法实现简单,但对图像的质量和准确性要求较高。
2. 基于小波变换的融合算法小波变换是一种用于图像处理和分析的重要方法。
基于小波变换的多模态图像融合算法首先将不同模态的图像分别进行小波变换,然后在小波域中进行加权融合,最后再进行逆小波变换得到最终的融合图像。
该算法适用于不同模态图像分辨率和特征尺度差异较大的情况,可以提高图像的清晰度和细节。
3. 基于深度学习的融合算法深度学习是一种能够自动学习特征表示的机器学习方法。
基于深度学习的多模态图像融合算法首先将不同模态的图像进行卷积神经网络训练,学习不同模态图像之间的语义关系,然后通过网络输出得到最终的融合图像。
该算法不仅能够提高融合图像的质量和准确性,还能够自动学习特征表示,实现端到端的图像融合任务。
三、多模态图像融合的实现多模态图像融合的实现,常采用图像处理工具包和编程语言来实现。
基于小波变换图像融合算法的研究作者:曹培培周凯杰来源:《电子世界》2013年第13期【摘要】图像融合技术是将获得的两个或两个以上图像进行融合,生成一个新的图像的过程。
本文通过对小波变换理论的分析研究,运用高频融合规则和低频融合规则,对图像进行加权融合,然后将新生成的图像与原图像进行对比。
本文运用MALTAB软件对小波变换的融合算法进行仿真,使得实验结果能够很清晰明了的体现出来,充分展示出图像融合技术的优势所在。
【关键词】图像融合;小波变换;MATLAB1.前言图像融合技术涉及了很多领域,它并不是普通的图像增强。
像素级融合、特征级融合和决策级融合是图像融合的三个阶段。
相对于像素级融合中多分辨率图像融合算法这一非常重要的算法,小波变换法则是多分辨率分析中一种常用的算法。
要想得到更好的图像融合效果,就需要尽可能的减少层间相关性,而基于小波变换的图像融合算法可以很好的做到这一点。
所以小波变换在图像融合算法中起到很关键的作用。
2.基于小波变换图像融合方法的原理与以往基于小波图像的融合方法融合算法和规则不同,在本文中提出基于系数的绝对值取最大和区域的均值方差最大化的新融合算法和融合准则。
例如,两幅图像1和2融合后图像为F。
对这两幅二维图像做N层小波分解,那么将有(3N+1)个不同的频带,(3N+1)个不同的频带中有3N个高频带,还有一个低频带。
以下五点是具体的融合算法和融合规则:(1)对源图像1和源图像2分别做N层小波分解运算;(2)两幅图像1和2融合后图像为F的低频部分,来自源图像1和源图像2N层小波分解后的加权平均值,即:公式中,CN,A、CN,B分别代表融合的源图像1和源图像2用小波分解尺度N上的低频分量,CN,F代表融合后的图像F在分解尺度N上的低频分量。
(3)在最高的小波分解层上,比较源图像1和源图像2的三个方向的高频分量小波系数,并且取绝对值最大的小波系数用作融合后图像F的小波系数.(4)在中间的小波分解层上,提取像素为中心的局部区域(这里取5×5)的均值方差最大的图像1或图像2的小波系数用作融合后图像F所对应的小波系数,它的方差定义为:其中,M、N分别为局部区域的行数和列数(这里为3);xi,j为当前局部区域内的一个像素的灰度值,x为当前局部区域像素灰度值的平均值;(5)确定融合图像F的各小波系数后,进行逆小波变换,即得到融合图像F3.设计思路如图3-1所示,本设计方案的思路十分简单,通俗易懂。
基于Haar小波变换的图像融合方法何宏;林剑【摘要】为了有效的提高多个传感器的图像融合精度,该文提出了基于Haar小波变换的图像融合方法,首先分析了小波变换中不同频率分量对图像融合精度的影响,然后详细探讨了高频分量系数的确定方法。
选取信息熵作为图像融合算法性能的评价指标,通过仿真实验定量分析了高频分量系数对图像融合精度的影响,实验结果表明高频分量系数并非越大越好,应根据融合后的图像信息熵确定高频分量系数。
%In order to effectively improve the image fusion accuracy of multi-sensors,an image fusion method of wavelet transform based on Haar kernel was proposed in this paper.Firstly the image fusion accuracy affected by different frequencies of wavelet transform was analyses.Then the method of determining the high frequency coefficients was discussed in detail.The information entropy was selected to evaluate the performance of the image fusion method,an emulating experiments was implemented to quantitatively analysis the image fusion accuracy affected by high frequencies.The experiment results indicated that the high frequency coefficients should be not too large,it should be determined according to the information entropy of the fused image.【期刊名称】《杭州电子科技大学学报》【年(卷),期】2012(032)002【总页数】4页(P54-57)【关键词】图像融合;小波变换;信息熵【作者】何宏;林剑【作者单位】杭州电子科技大学科技处,浙江杭州310018;杭州电子科技大学科技处,浙江杭州310018【正文语种】中文【中图分类】TP3910 引言图像融合是对同一目标的多个传感器获取的图像进行匹配综合,以克服单一图像的局限性并提高图像的可靠性和清晰度,便于对图像做进一步的分析和处理。
基于小波变换的图像融合算法研究与实现图像融合是将多个图像信息融合为一幅新的图像,以提供更全面、准确和可靠的图像信息。
随着数字图像处理技术的快速发展,图像融合算法在图像处理领域得到了广泛应用。
小波变换作为一种多尺度分析方法,对图像融合具有很好的效果,因此,在本文中我将重点研究并实现基于小波变换的图像融合算法。
首先,介绍一下小波变换的基本原理。
小波变换利用一组基函数在不同尺度上分解信号,并通过分析不同尺度的细节和整体特征来描述信号的特征。
小波变换的核心是选择合适的小波基函数,常用的小波基函数有Haar小波、Daubechies小波、Symlet小波等。
这些小波基函数具有良好的局部化特性,适合用于图像融合任务。
基于小波变换的图像融合算法主要包括以下几个步骤:预处理、分解、融合和重构。
首先,在预处理阶段,对原始图像进行预处理操作,如色彩空间转换、直方图均衡化等。
这些预处理操作旨在消除图像的亮度、对比度等差异,使得图像更加具有可融合性。
接着,在分解阶段,利用小波变换将原始图像分解成多个尺度的低频和高频子图像。
这些子图像包含了图像的不同尺度信息,其中低频子图像表示图像的大致趋势,高频子图像表示图像的细节信息。
然后,在融合阶段,将分解得到的低频和高频子图像进行融合。
对于低频子图像,可以采用像素均值、像素最大值等方法进行融合。
对于高频子图像,可以采用像素加权平均、像素最大值等方法进行融合。
融合操作旨在保留各个子图像的有用信息,同时抑制噪声和冗余信息。
最后,在重构阶段,利用融合得到的低频和高频子图像进行重构,得到最终的融合图像。
重构过程是利用小波逆变换将分解得到的子图像合并成原始图像的过程。
具体而言,可以采用线性加权、阈值加权等方法进行重构。
基于小波变换的图像融合算法有许多优点。
首先,小波变换具有多尺度分析能力,可以提取图像的不同尺度信息。
其次,小波变换对图像的局部特征有很好的表达能力,可以有效揭示图像的细节信息。