通信信号处理讲义第一章2013
- 格式:ppt
- 大小:1.36 MB
- 文档页数:74
通信原理讲义第一章绪论1.1 通信系统的组成1.1.1 通信一般系统模型点对点通信模型:反映了通信系统的共性。
1.1.2 模拟通信与数字通信●消息可以分成两类ﻩﻩ离散消息:消息的状态是可数的或离散型的(如符号、文字等),也称为数字消息。
连续消息:状态连续变化的消息(如语音、图像),也称为模拟消息。
●消息与电信号之间必须建立单一的对应关系。
通常,消息被载荷在电信号的某以参量上。
ﻩﻩ数字信号:电信号的参量携带离散消息,该参量离散取值。
模拟信号:电信号的参量携带连续消息,参量连续取值。
●相应的通信系统分成两类ﻩ数字通信系统ﻩﻩ模拟通信系统●模拟信号与数字信号之间可以相互转换在信息源中使用模-数(数-模)转换器,接受端使用数-模(模-数)转换器。
●数字通信比模拟通信更能适应对通信技术越来越高的要求(1)数字传输的抗干扰能力强,中继时可以消除噪声的积累;(2)传输差错可以控制;(3)便于使用现代数字信号处理技术对信息进行处理;(4) 易于加密处理;(5) 可以综合传递各种消息,增强系统功能。
● 模拟通信系统模型(点对点)基带信号:携带信息,但具有频率很低的频谱分量,不适宜传输的原始电信号。
已调信号:基带信号经过调之后转换成其频带适合信道传输的信号,也称频带信号。
调制器:将基带信号转变为频带信号的设备。
解调器:将频带信号转变为基带信号的设备。
模拟通信强调变换的线性特性,既已调参量与基带信号成比例。
● 数字通信系统模型(点对点) 强调已调参量与基带信号之间的一一对应。
数字通信需要解决的问题:(2) 编码与解码:通过差错控制编码消除噪声或干扰造成的差错; (3) 加密和解密:对基带信号进行人为“搅乱”;(4) 同步:发送和接收节拍一致,包括:位同步(码元同步)和群同步、帧同步、句同步或码组同步。
数字通信模型:同步环节的位置不固定,图中没有出现。
消息消息数字基带传输模型:● 数字通信的缺点 比模拟通信占据更宽的频带。
本课程先修课程信号与系统,数字信号处理,概率论,通信信号处理随机过程,通信原理,等。
1本课程讲什么?针对无线通信的物理层,学习相关的通信信号处理通信信号处理技术。
1)调制理论和调制检测技术;2)性能提升技术;3)MIMO 技术;4)空时信号处理技术;5)多载波通信等。
2通信信号处理参考书目:1.刘祖军,田斌,易克初译.《通信信号处理》,电子工业出版社.2. 其他学术论文。
3第一章无线主题1.1 无线标准综述1.2带通信号/系统的表示45GWhat will5G be?n时间维n空间维n频率维5语音通信发射机的原理框图图1.1 典型的发送功能框图n时间维n空间维n频率维6图1.6 时隙结构图1.7 MSK信号星座图表1.2 一些GSM 系统参数的简介每个用户的数据速率是33.85 kbps 。
GSM 系统采用GMSK 调制方式,GMSK 调制方式具有一些好处,处包括恒包络、频谱效率高和优异的误比特率(BER)性能。
7n图1.9 逻辑信道的划分逻辑信道分为业务信道(TCH)和控制信道(CCH)。
n TCH在上行链路和下行链路中承载话音或者数据信息样本。
n CCH将承载控制信息,即信令或者同步样本。
8IS-95/CDMA2000IS-95CDMA系统的高层技术细节包括•1.5-MHz的信道间距•在全球定位系统(GPS)的支持下实现基站的时间同步•具有用于相干检测的公共导频信道(码分复用的)•码片速率=1.2288 Mcps•调制方式=QPSK/OQPSK•20ms的帧长•变速率语音编码(9600,4800,2400和1200 bps)91.2.5 IEEE 802.11 无线局域网WLAN模式:1)ad hoc模式,即所有的设备允许相互通信并像接入点一样工作,2)基础架构(infrastructure)模式,即以单个WLAN设备作为接入点,其它的设备与该接入点相连。
IEEE802.11b此系统设备在2.4G频带上互相通信。
通信信号处理的基础知识与技术通信信号处理是指对信号进行采样、量化、编码、调制、解调、调制解调等一系列操作的过程,它是现代通信系统中不可或缺的一部分。
本文将介绍通信信号处理的基础知识与技术,包括信号的基本属性、信号采样与量化、编码与调制等内容。
一、信号的基本属性信号是指一种包含有关消息或信息的电、光、声等形式的波动。
信号可以是连续的,也可以是离散的。
连续信号是指在时间和幅度上都是连续变化的信号,如声音信号、光信号等;离散信号是指在时间或幅度上是离散变化的信号,如数字信号等。
信号可以表示为函数的形式,如x(t)表示连续时间信号,x[n]表示离散时间信号。
信号的幅度可以是实数或复数,其取值范围可以是有限的或无限的。
二、信号采样与量化信号采样是指将连续时间信号转换为离散时间信号的过程。
采样频率决定了信号在时间轴上的离散程度,采样频率越高,信号离散程度越高,还原信号的准确性越高。
信号量化是指将连续幅度信号转换为离散幅度信号的过程。
量化过程中,幅度取样值被映射到一个有限的量化级别中,这个量化级别由设定的量化位数来决定。
信号的采样与量化都会引入误差,因此在信号处理中需要选择适当的采样频率和量化位数,以平衡信号重建的准确性和处理的复杂性。
三、信号编码与调制信号编码是指将信号转换为具有不同表达形式的编码信号的过程,以便在传输或存储中更高效地表达和处理。
常见的信号编码方式有脉冲编码调制(PCM)、差分脉冲编码调制(DPCM)等。
信号调制是指将数字信号转换为模拟信号的过程,以便在传输中以模拟信号的形式传递。
常见的信号调制方式有脉冲幅度调制(PAM)、正交振幅调制(QAM)、频移键控(FSK)等。
编码和调制可以结合使用,以满足不同的通信需求。
通过编码和调制,可以使信号更好地适应传输介质的特性,保证信号的可靠传输和解码,提高通信系统的性能。
四、信号解调与解码信号解调是指将调制信号转换为原始信号的过程,恢复信号的原始幅度、相位和频率等信息。
通信信号处理摘要:在这通信信号处理这门课程中,老师给我们讲解了通信系统中的一些基本知识和一些关键技术,比如多输入多输出(MIMO,multiple-input multiple-output)、正交频分复用(OFDM,orthogonal frequency division multiplexing)以及比特交织编码调制(BICM,bit-interleaved coded modulation)等技术。
这篇文章的主要内容就是对本课程内容的总结以及自己的理解。
一、基本知识1.多径衰落(1)概念在通信系统中,由于通信地面站天线波束较宽,受地物、地貌和海况等诸多因素的影响,使接收机收到经折射、反射和直射等几条路径到达的电磁波,这种现象就是多径效应。
这些不同路径到达的电磁波射线相位不一致且具有时变性,导致接收信号呈衰落状态;这些电磁波射线到达的时延不同,又导致码间干扰。
若多射线强度较大,且时延差不能忽略,则会产生误码,这种误码靠增加发射功率是不能消除的,而由此多径效应产生的衰落叫多径衰落,它也是产生码间干扰的根源。
对于数字通信、雷达最佳检测等都会产生十分严重的影响。
(2)分类主要可以分为两种,频率选择性衰落和频率非选择性衰落(平坦型衰落)。
如果各条路径传输时延差别较大,传输波形的频谱较宽(或数字信号传输速率较高),则信道对传输信号中不同频率分量强度和相位的影响各不相同。
此时,接收点合成信号不仅强度不稳定而且产生波形失真,数字信号在时间上有所展宽,这就可能千万前后码元的波形重叠,出现码间(符号间)干扰。
这种衰落称为频率选择性衰落,有时也简称选择性衰落。
如果各条路径传输时延差别不大,而传输波形的频谱较窄(数字信号传输速率较低),则信道对信号传输频带内各频率分量强度和相位的影响基本相同。
此时,接收点的合成信号只有强度的随机变化,而波形失真很小。
这种衰落称为一致性衰落,或称平坦型衰落。
瑞利信道(包络的一维统计特性服从瑞利分布)就是典型的平坦型衰落信道。
第一章信号及其频谱分析信号及其频谱分析是现代通信领域中非常重要的一部分,它们在信息传输、信号处理、噪声分析等方面起着重要的作用。
本章主要介绍信号的概念、特点以及频谱分析的基本原理和方法。
首先,我们来了解一下信号的概念。
信号是指随时间或空间变化的物理量,它可以是电压、电流、光强等。
信号通常可以分为连续信号和离散信号。
连续信号是指在时间上连续变化的信号,可以用数学函数来描述。
离散信号是在时间上离散变化的信号,可以用数列来描述。
信号的主要特点包括振幅、频率、相位等。
振幅表示信号的大小,频率表示信号的变化速度,相位表示信号的起始相对时间。
接下来,我们来介绍频谱分析的概念和原理。
频谱分析是将信号在频域上进行分析的过程,目的是提取信号的频率特征和幅度特征。
频域分析是将信号从时域转换到频域的过程,其中最常用的方法是傅里叶变换。
傅里叶变换是一种将信号从时域转换到频域的数学工具,它可以将时域上的信号表示为一系列正弦波的叠加。
傅里叶变换的基本思想是将信号分解成多个不同频率的正弦波,并得到它们对应的振幅和相位。
傅里叶变换的结果称为频谱,它表示了信号在频域上的特性。
除了傅里叶变换,还有一种常用的频谱分析方法是功率谱密度估计。
功率谱密度估计是用来估计信号的功率谱的方法,可以通过对信号进行一系列操作,如滤波、窗函数处理等,来获得信号的频谱信息。
频谱分析在通信系统设计、信号处理、噪声分析等方面具有重要的应用。
在通信系统设计中,频谱分析可以帮助我们了解信道的带宽、信号的调制方式等,从而优化系统设计。
在信号处理中,频谱分析可以帮助我们进行滤波、降噪等信号处理操作。
在噪声分析中,频谱分析可以帮助我们分析信号中的噪声成分,从而提高信号的质量。
综上所述,信号及其频谱分析是现代通信领域中非常重要的一部分。
通过对信号的振幅、频率和相位等特征进行分析,可以帮助我们理解信号的特性,并从中提取有用的信息。
频谱分析的方法包括傅里叶变换和功率谱密度估计等,它们在通信系统设计、信号处理、噪声分析等方面具有广泛的应用。