编码器内部PNP NPN详解说明书 有图示
- 格式:doc
- 大小:146.00 KB
- 文档页数:6
日立编码器接线说明
1.正确接线至关重要,如图1为NPN输出增量型E6B2- CWZ6C 的接线原理,图2.为NPN输出增量型E6B2-CWZ6C的实际接线,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0. 00,白色线接输入0.01,橙色线接输入0. 04,PLC的COM接电源正极。
2.工作原理:四个正弦信号通过中心轴光电编码器组合成A,B,C和D。
该编码器具有环形的贯穿线和深色的陷波线,并且光电发送器和接收器读取它们之间的相位差。
正弦波为90度(每个周期360度)。
通过将C和D信号叠加在A和B相上,可以增强稳定的信号。
由于相位a和相位b之间存在90度的差异,编码器的参考位将相位a之前的b之前的相位与相位b之前的b相位以及编码器的正向和反向旋转进行比较。
可以通过区别获得。
编码器代码盘的材料是玻璃,金属和塑料。
Glass Code光盘是沉积在玻璃上的精细切割线,具有出色的热稳定性和精度。
金属帘线盘直接穿过切割线并且不脆,但是金属具有一定的厚度,这限制了精度,比单手指玻璃具有更高的热稳
定性,而塑料线板是经济的。
是的,成本很低,但准确性,热稳定性和寿命却很差。
分辨率:编码器为每细分5至10000行提供通过或暗线数量(通常称为分辨率(也称为分辨率))或行数的每转360度分辨率。
收藏超详细的编码器图解编码器图解01认识编码器(编码器在机器人控制中的应用)02编码器的测量对象03编码器测量直线位移的方式(1)编码器装在丝杠末端通过测量滚珠丝杠的角位移q,间接获得工作台的直线位移x,构成位置半闭环伺服系统。
(2)丝杠螺距设:螺距t=4mm,丝杠在4s时间里转动了10圈,求:丝杠的平均转速n(r/min)及螺母移动了多少毫米?螺母移动的平均速度v又为多少?(3)编码器和伺服电动机同轴安装(4)编码器和伺服电动机同轴安装(5)编码器和伺服电动机同轴安装(6)编码器两种安装方式比较编码器装在丝杠末端与前端(和伺服电动机同轴)在位置控制精度上有什么区别?04绝对式测量(ABS)(1)信号性质输出n位二进制编码,每一个编码对应唯一的角度。
(2)接触式绝对码盘(3)绝对式光电码盘05 增量式测量(INC)(1)信号性质(2)增量式光电编码器的结构(3)辨向光敏元件所产生的信号A、B彼此相差90°相位,用于辨向。
当码盘正转时,A信号超前B信号0°;当码盘反转时,B信号超前A信号90°。
(4)辨向信号(5)倍频(细分)在现有编码器的条件下,通过细分技术能提高编码器的分辨力。
细分前,编码器的分辨力只有一个分辨角的大小。
采用4细分技术后,计数脉冲的频率提高了4倍,相当于将原编码器的分辨力提高了3倍,测量分辨角是原来的1/4,提高了测量精度。
(6)零标志(一转脉冲)在码盘里圈,还有一条狭缝C,每转能产生一个脉冲,该脉冲信号又称“一转信号”或零标志脉冲,作为测量的起始基准。
(7)零标志在回参考点中的作用(8)回参考点减速开关(9)回参考点示意图06编码器在数字测速中的应用(1)模拟测速和数字测速的比较(2)M法测速(适合于高转速场合)有一增量式光电编码器,其参数为1024p/r,在5s时间内测得65536个脉冲,则转速(r/min)为:n = 60 × 65536 /(1024 × 5)=768 r/min编码器每转产生N 个脉冲,在T 时间段内有m1 个脉冲产生,则转速(r/min)为:n = 60m1 /(NT)(3)T法测速(适合于低转速场合)有一增量式光电编码器,其参数为1024p/r,测得两个相邻脉冲之间的脉冲数为3000,时钟频率fc为1MHz ,则转速(r/min)为:n = 60fc /(Nm2 )=60×106/(1024×3000)=19.53 r/min 编码器每转产生N 个脉冲,用已知频率fc作为时钟,填充到编码器输出的两个相邻脉冲之间的脉冲数为m2,则转速(r/min)为:n = 60fc / (Nm2)07编码器在主轴控制中的应用(1)主轴编码器(2)主轴编码器用于C 轴控制(3)主轴编码器用于螺纹车削车削螺纹时,为保证每次切削的起刀点不变,防止“乱牙”,主轴编码器通过对起刀点到退刀点之间的脉冲进行计数来达到车削螺纹的目的。
1.编码器内部原理:2.编码器信号波形3.NPN与PNP型NPN:negative positive negative PNP: positive negative positivePositive:正极的,积极的negative:负极的,消极的NPN型的输出的信号是0V的,PNP型的输出的信号是24V的。
4.格雷码与二进制码二进制从十进制的7转换成8时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。
例7:0111→8:1000格雷码(Gray):它是一种绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。
格雷码属于可靠性编码,是一种错误最小化的编码方式。
格雷码在相邻位间转换时,只有一位产生变化。
它大大地减少了由一个状态到下一个状态时逻辑的混淆。
例:0000、0001、0010、0011、0100、0101、0110、0111、1000、1001、1010……但是计算机只能识别2进制码,因此在读取格雷码后还要将格雷码转换成二进制码。
5.格雷码转换二进制码二进制码->格雷码(编码):从最右边一位起,依次将每一位与左边一位异或(XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是0);格雷码-〉二进制码(解码):从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变).1 1 0 1 (格雷码)| / / /| XOR XOR XOR| / | / | / |V V V V1 0 0 1 (2进制码)例:1101→1001、0101→0110*************************程序算法*************************1)将待转换的格雷码右移1位,并与原数异或。
此步可将最左2位转换完毕。
2)将结果再次右移1位,并与原数异或。
详细图文解析编码器正确的接线方法
编码器正确的接线方法:
(1)正确接线至关重要,如图1 为NPN 输出增量型E6B2-CWZ6C 的接线原理,图2 为NPN 输出增量型E6B2-CWZ6C 的实际接线,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源正极。
(2)下图为PNP 输出增量型E6B2-CWZ6B 的实际接线图,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源负极。
(3)图1 为绝对值型编码器的线与PLC 输入的点的对应图,图2 为NPN 输出绝对值型E6C3-AG5C 的实际接线图,红色线接电源正极,黑色线接电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接输入0.08,PLC 的COM 接电源正极。
(4)下图为PNP 输出绝对值型E6C3-AG5B 的实际接线图,红色线接。
详细图文解析编码器正确的接线方法
编码器正确的接线方法:
(1)正确接线至关重要,如图1 为NPN 输出增量型E6B2-CWZ6C 的接线原理,图2 为NPN 输出增量型E6B2-CWZ6C 的实际接线,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源正极。
(2)下图为PNP 输出增量型E6B2-CWZ6B 的实际接线图,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源负极。
(3)图1 为绝对值型编码器的线与PLC 输入的点的对应图,图2 为NPN 输出绝对值型E6C3-AG5C 的实际接线图,红色线接电源正极,黑色线接电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接输入0.08,PLC 的COM 接电源正极。
(4)下图为PNP 输出绝对值型E6C3-AG5B 的实际接线图,红色线接
电源正极,黑色线接电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接输入0.08,PLC 的COM 接电源负极。
(5)图1 为线驱动编码器的接线原理,图2 为实际接线图,黑色线接A0+,黑红镶边线A0-,白色线接B0+,白红镶边线接B0-, 橙色线接Z0+,橙红镶边线接Z0-,褐色线接电源+5V,蓝色线接电源0V,切勿接线错误。
。
plc和传感器的配合做出如下分析:首先plc分为漏型和源型,漏型逻辑:当信号输入端子流出电流时,信号变为ON,为漏型逻辑;本例子中的X1就是流出的,所以为漏型!如图1-1所示:源型逻辑:当信号输入端子流入电流时,信号变为ON,为源型逻辑。
1、PNP类PNP是指当有信号触发时,信号输出线out和电源线VCC连接,相当于输出高电平的电源线。
对于PNP-NO型,在没有信号触发时,输出线是悬空的,就是VCC电源线和out线断开。
有信号触发时,发出与VCC电源线相同的电压,也就是out线和电源线VCC连接,输出高电平VCC。
对于PNP-NC型,在没有信号触发时,发出与VCC电源线相同的电压,也就是out线和电源线VCC连接,输出高电平VCC。
当有信号触发后,输出线是悬空的,就是VCC电源线和out线断开。
对于PNP-NC+NO型,其实就是多出一个输出线OUT,根据需要取舍。
2、NPN类NPN是指当有信号触发时,信号输出线out和0v线连接,相当于输出低电平,ov。
对于NPN-NO型,在没有信号触发时,输出线是悬空的,就是0v线和out线断开。
有信号触发时,发出与OV相同的电压,也就是out线和0V 线连接,输出输出低电平OV。
对于NPN-NC型,在没有信号触发时,发出与0V线相同的电压,也就是out线和0V线连接,输出低电平0V。
当有信号触发后,输出线是悬空的,就是0V线和out线断开。
对于NPN-NC+NO型,和PNP-NC+NO型类似,多出一个输出线OUT,及两条信号反相的输出线,根据需要取舍。
plc是漏型的则选择npn型的光电传感器,接近开关也类似,因为漏型的plc输入低电平有效,则plc的com接上24-电源,假如你用的是npn on即常开型,当传感器接收到信号时,X1接受到一个低电平信号,因为X1上此时是高电平24+则根据高电势流向低电势,信号时这样的,plc内部输出高电平24+经过X1外部端子,然后流入npn on型传感器的信号端,此时由于传感器内部是ov和信号端接通了,则回到了0v端,也即回到了com端(ov和com是在一起短接的)!此时X1输入端才算导通!入门总结!当y0端没有输出时,用万用表测量y0的com之间不通,断路,当用程序接通y0时,则,用万用表测量yo和com时接通了,所以,输出端就是一排开关,输出com是开关的一端,y是开关的另一端,程序控制开关的通断!而输入端也是开关量,关于X的开关量如图:。
1,优点:体积适中,直接测量直线位移,绝对数字编码,理论量程没有限制;无接触无磨损,抗恶劣环境,可水下1000米使用;接口形式丰富,量测方式多样;价格尚能接受。
2,缺点:分辨度1mn不高;测量直线和角度要使用不同品种;不适于在精小处实施位移检测(大于260毫米)。
19.※我是个新手,想请问,一个圆盘,分50个点,要实现定位控制,转速很慢,是要用到绝对型编码器吗?怎么找原点呢?50个位置定位是360度均匀等分吗?绝对编码器的编码都是2的幕次方,没有360度均匀50 等分的,要近似,看精度要求有多高,选多高线数的编码器,如果精度要求不是太高的话,用8位256线的就可以了。
编码器的每个位置都有唯一编码,编码为零的就可以作为零点,也可以任意位置定义为零,其他位置与其比较计算。
如果可以用参考点的话,也可以用增量式的,因速度慢,应该选3000线或以上的,每圈一个零位。
20.※请简单介绍:RS-232、RS-422与RS-485标准及应用?RS-232、RS-422与RS-485都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的。
目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。
RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。
RS-232采取不平衡传输方式,即所谓单端通讯。
RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B。
通常情况下,发送驱动器A、B之间的正电平在+2〜+6V,是一个逻辑状态,负电平在-2〜6V,是另一个逻辑状态。
另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422 中这是可用可不用的。
“使能”端是用于控制发送驱动器与传输线的切断与连接。
当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“ 0”的第三态。
编码器正确的接线
(1)正确接线至关重要,如图1 为NPN 输出增量型E6B2-CWZ6C 的接线原理,图2 为NPN 输出增量型
E6B2-CWZ6C 的实际接线,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源正极。
(2)下图为PNP 输出增量型E6B2-CWZ6B 的实际接线图,棕色线接电源正极,蓝色线接电源负极,黑色线接输入0.00,白色线接输入0.01,橙色线接输入0.04,PLC 的COM 接电源负极。
(3)图1 为绝对值型编码器的线与PLC 输入的点的对应图,图2 为NPN 输出绝对值型E6C3-AG5C 的实际接线图,红色线接电源正极,黑色线接电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接输入0.08,PLC 的COM 接电源正极。
(4)下图为PNP 输出绝对值型E6C3-AG5B 的实际接线图,红色线接电源正极,黑色线接电源负极,褐色线接输入0.00,橙色线接输入0.01,黄色线接输入0.02,绿色线接输入0.03,蓝色线接输入0.04,紫色线接输入0.05,灰色线接输入0.06,白色线接输入0.07,粉色线接输入0.08,PLC 的COM 接电源负极。
(5)图1 为线驱动编码器的接线原理,图2 为实际接线图,黑色线接A0+,黑红镶边线A0-,白色线接B0+,白红镶边线接B0-, 橙色线接Z0+,橙红镶边线接Z0-,褐色线接电源+5V,蓝色线接电源0V,切勿接线错误。
编码器输出信号类型
一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。
经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中应用比较广泛。
增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。
1集电极开路输出
集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。
根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。
在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。
图2-1 NPN集电极开路输出
图2-2 PNP集电极开路输出
对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。
注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。
图2-3 PNP型输出的接线原理
对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。
注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。
图2-4 NPN型输出的接线原理
2.2电压输出型
电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。
一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。
图2-5电压输出型
2.3推挽式输出
推挽式输出方式由两个分别为PNP型和NPN型的三极管组成,如图2-6所示。
当其中一个三极管导通时,另外一个三极管则关断,两个输出晶体管交互进行动作。
这种输出形式具有高输入阻抗和低输出阻抗,因此在低阻抗情况下它也可以提供大范围的电源。
由于输入、输出信号相位相同且频率范围宽,因此它还适用于长距离传输。
推挽式输出电路可以直接与NPN和PNP集电极开路输入的电路连接,即可以接入源型或漏型输入的模块中。
图2-6推挽式输出
2.4线驱动输出
如图2-7所示,线驱动输出接口采用了专用的IC 芯片,输出信号符合RS-422标准,以差分的形式输出,因此线驱动输出信号抗干扰能力更强,可以应用于高速、长距离数据传输的场合,同时还具有响应速度快和抗噪声性能强的特点。
图2-7线驱动输出
说明:除了上面所列的几种编码器输出的接口类型外,现在好多厂家生产的编码器还具有智能通信接口,比如PROFIBUS总线接口。
这种类型的编码器可以直接接入相应的总线网络,通过通信的方式读出实际的计数值或测量值,这里不做说明。
3 高速计数模块与编码器的兼容性
高速计数模块主要用于评估接入模块的各种脉冲信号,用于对编码器输出的脉冲信号进行计数和测量等。
西门子SIMATIC S7的全系列产品都有支持高速计数功能的模块,可以适应于各种不同场合的应用。
根据产品功能的不同,每种产品高速计数功能所支持的输入信号类型也各不相同,在系统设计或产品选型时要特别注意。
下表3-1给出了西门子高速计数产品与编码器的兼容性信息,供选型时参考。
编码器类型:根据应用场合和控制要求确定选用增量型编码器还是绝对性编码器。
输出信号类型:对于增量型编码根据需要确定输出接口类型(源型、漏型)。
信号电压等级:确认信号的电压等级(DC24V、DC5V等)。
最大输出频率:根据应用场合和需求确认最大输出频率及分辨率、位数等参数。
安装方式、外形尺寸:综合考虑安装空间、机械强度、轴的状态、外观规格、机械寿命等要求。
4.2如何判断编码器的好坏
可以通过以下几种方法判断编码器的好坏:
将编码器接入PLC的高速计数模块,通过读取实际脉冲个数或码值来判断编码器输出是否正确。
通过示波器查看编码器输出波形,根据实际的输出波形来判断编码器是否正常。
通过万用表的电压档来测量编码器输出信号电压来判断编码器是否正常,具体操作方法如下:
1)编码器为NPN晶体管输出时,用万用表测量电源正极和信号输出线之间的电压
导通时输出电压接近供电电压
关断时输出电压接近0V
2)编码器为PNP晶体管输出时,用万用表测量测量电源负极和信号输出线之间的电压
导通时输出电压接近供电电压
关断时输出电压接近0V
4.3计数不准确的原因及相应的避免措施
在实际应用中,导致计数或测量不准确的原因很多,其中主要应注意以下几点:
编码器安装的现场环境有抖动,编码器和电机轴之间有松动,没有固定紧。
旋转速度过快,超出编码器的最高响应频率。
编码器的脉冲输出频率大于计数器输入脉冲最高频率。
信号传输过程中受到干扰。
针对以上问题的避免措施:
检查编码器的机械安装,是否打滑、跳齿、齿轮齿隙是否过大等。
计算一下最高脉冲频率,是否接近或超过了极限值。
确保高速计数模块能够接收的最大脉冲频率大于编码器的脉冲输出频率。
检查信号线是否过长,是否使用屏蔽双绞线,按要求做好接地,并采取必要抗干扰措施。
4.4空闲的编码器信号线该如何处理
在实际的应用中,可能会遇到不需要或者模块不支持的信号线,例如:
对于带零位信号的AB正交编码器(A、B、N),模块不支持N相输入或者不需要Z信号。
对于差分输出信号(A、/A,B、/B,N、/N),模块不支持反向信号(/A,/B,/N)的输入。
对于这些信号线,不需要特殊的处理,可以直接放弃不用!
4.5增量信号多重评估能否提高计数频率
对于增量信号,可以组态多重评估模式,包括双重评估和四重评估。
四重评估是指同时对信号A和B的正跳沿和负跳沿进行判断,进而得到计数值,如图4-1所示。
对于四重评估的模式,因为对一个脉冲进行了四倍的处理(四次评估),所以读到的计数值是实际输入脉冲数的四倍,通过对信号的多重评估可以提高测量的分辨率。
图4-1四重评估原理图
通过以上对增量信号多重评估原理的分析可以看出,多重评估只是在原计数脉冲的基础上对计数值作了倍频处理,而实际上对实际输入脉冲频率没有影响,所以也不会提高模块的最大计数频率。
例如,FM350-2的最大计数频率为10kHz,那么即使配置为四重评估的模式,其最大的计数频率还是10kHz。