操作系统安全机制
- 格式:ppt
- 大小:110.50 KB
- 文档页数:55
安全操作系统中的功能隔离机制在当今科技技术发展日新月异的时代背景下,各类信息系统的安全性面临着前所未有的严峻挑战。
针对系统安全性中出现的各类非法入侵、拒绝服务、信息泄露以及其他安全问题,需要专家们集思广益,设计出一套比较完善的安全系统,加以保护。
功能隔离机制是安全操作系统中应用最为广泛的一种安全保护机制。
本文将就功能隔离机制的基本原理以及功能隔离机制在安全操作系统中的具体应用作一深入探讨,以期对此机制有更深入的认识,为安全操作系统的开发提供技术支持。
一、功能隔离机制的基本原理功能隔离机制是安全操作系统中重要的安全保护机制之一,主要用于分离不同操作系统资源,防止一个操作系统被恶意的攻击程序所损坏,从而损害其他资源的完整性和安全性。
功能隔离机制的基本原理即把操作系统的不同部分进行分离,以保护不同部分间不发生非法交互,从而保证系统的正常运行。
一般情况下,功能隔离机制采用信息隔离的方式,如文件存储隔离机制、代码隔离机制,这些隔离机制都是基于安全操作系统中的沙箱机制,即将系统中不同的安全级别之间的资源和功能分隔开来,从而保护系统的安全性。
二、功能隔离机制的具体应用1、隔离机制的具体实现功能隔离机制的具体实现方式一般可以分为硬件隔离机制、软件隔离机制两种。
其中硬件隔离的机制一般采用物理隔离的方式,如将不同的服务器分别放在不同的服务器室内,通过密码锁和其他安全设施对服务器资源进行保护,以保证服务器资源的安全;而软件隔离机制则是基于操作系统中的沙箱机制,基于沙箱机制可以实现用户账户管理、进程分离和内存安全防护等等,从而保证系统的安全性。
2、隔离机制在安全操作系统中的具体应用功能隔离机制对安全操作系统的安全性有着重要的意义,在安全操作系统中,采用功能隔离机制可以提高系统的安全性,防止被恶意程序所破坏。
例如,采用多用户模式,可以将不同账户之间的资源进行隔离,从而防止不同账户之间的资源被恶意程序所侵害;另外,还可以采用进程隔离机制,将不同的进程之间进行分离,从而防止某种恶意的进程对其他进程的影响,增强系统的稳定性和安全性;此外,还可以采用内存隔离机制,将不同进程之间的内存空间进行分离,从而有效防止某个进程对其他进程的内存访问,进而有效的确保系统的安全性。
第一章:绪论1 操作系统是最基本的系统软件,是计算机用户和计算机硬件之间的接口程序模块,是计算机系统的核心控制软件,其功能简单描述就是控制和管理计算机系统内部各种资源,有效组织各种程序高效运行,从而为用户提供良好的、可扩展的系统操作环境,达到使用方便、资源分配合理、安全可靠的目的。
2 操作系统地安全是计算机网络信息系统安全的基础。
3 信息系统安全定义为:确保以电磁信号为主要形式的,在计算机网络化(开放互联)系统中进行自动通信、处理和利用的信息内容,在各个物理位置、逻辑区域、存储和传输介质中,处于动态和静态过程中的机密性(保密性)、完整性、可用性、可审查性和抗抵赖性,与人、网络、环境有关的技术安全、结构安全和管理安全的总和。
4 操作系统面临的安全威胁可分为保密性威胁、完整性威胁和可用性威胁。
5 信息的保密性:指信息的隐藏,目的是对非授权的用户不可见。
保密性也指保护数据的存在性,存在性有时比数据本身更能暴露信息。
6 操作系统受到的保密性威胁:嗅探,木马和后门。
7 嗅探就是对信息的非法拦截,它是某一种形式的信息泄露.网卡构造了硬件的“过滤器“通过识别MAC地址过滤掉和自己无关的信息,嗅探程序只需关闭这个过滤器,将网卡设置为“混杂模式“就可以进行嗅探。
8 在正常的情况下,一个网络接口应该只响应这样的两种数据帧:1.与自己硬件地址相匹配的数据帧。
2.发向所有机器的广播数据帧。
9 网卡一般有四种接收模式:广播方式,组播方式,直接方式,混杂模式。
10 嗅探器可能造成的危害:•嗅探器能够捕获口令;•能够捕获专用的或者机密的信息;•可以用来危害网络邻居的安全,或者用来获取更高级别的访问权限;•分析网络结构,进行网络渗透。
11 大多数特洛伊木马包括客户端和服务器端两个部分。
不管特洛伊木马的服务器和客户程序如何建立联系,有一点是不变的,攻击者总是利用客户程序向服务器程序发送命令,达到操控用户机器的目的。
12 木马的作用是赤裸裸的偷偷监视别人和盗窃别人密码,数据等,达到偷窥别人隐私和得到经济利益的目的.13 后门:绕过安全性控制而获取对程序或系统访问权的方法。
操作系统安全课程设计一、课程目标知识目标:1. 理解操作系统的基本安全原理,掌握操作系统安全的核心概念。
2. 学习操作系统安全机制,包括身份认证、访问控制、加密和审计等。
3. 了解常见操作系统漏洞及攻击手段,掌握安全防护策略。
技能目标:1. 能够分析操作系统安全配置,提出有效的安全优化建议。
2. 学会运用操作系统安全工具进行安全检查和加固。
3. 掌握基本的安全编程技巧,避免编写带有安全风险的代码。
情感态度价值观目标:1. 培养学生的信息安全意识,认识到操作系统安全的重要性。
2. 激发学生对计算机安全的兴趣,引导他们关注网络安全领域的最新发展。
3. 培养学生的团队协作精神和责任感,使他们能够在实际工作中发挥积极作用。
针对课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够列举并解释操作系统安全的核心概念。
2. 学生能够分析操作系统漏洞,并提出相应的安全防护措施。
3. 学生能够独立完成操作系统安全配置和加固任务,提高系统安全性。
4. 学生能够关注网络安全领域的发展,了解最新的操作系统安全技术和趋势。
5. 学生能够在团队项目中发挥积极作用,共同提高操作系统安全水平。
二、教学内容1. 操作系统安全概述- 了解操作系统的基本概念、发展历程和常见类型。
- 掌握操作系统安全的重要性及安全风险。
2. 操作系统安全机制- 学习身份认证、访问控制、加密和审计等核心安全机制。
- 分析各类安全机制的原理和作用。
3. 常见操作系统漏洞与攻击手段- 列举常见的操作系统漏洞,如缓冲区溢出、权限提升等。
- 了解攻击手段,如病毒、木马、拒绝服务和网络攻击等。
4. 安全防护策略与工具- 学习操作系统安全防护策略,如最小权限原则、安全配置等。
- 了解并运用操作系统安全工具,如防火墙、入侵检测系统等。
5. 安全编程与最佳实践- 掌握安全编程技巧,避免编写带有安全风险的代码。
- 学习操作系统安全最佳实践,提高安全意识和能力。
麒麟操作系统的安全等级是
麒麟操作系统:安全性提升至新高度。
麒麟操作系统的安全等级:
首先,麒麟操作系统是一个十分可靠的操作系统,其安全等级非常高,因此深受广大用户的青睐和喜爱。
麒麟操作系统的安全等级主要按以
下几种方式进行评估和检测:
一、硬件安全
1. 支持多种芯片及其安全:麒麟操作系统支持多种芯片,从容器式存
储芯片,到嵌入式芯片,再到主板式系统,多层次的安全模式保证系
统和用户之间的安全保障及数据安全。
2. 加密技术:麒麟操作系统在安全方面,不仅采用了硬件安全技术,
而且拥有加密技术,包括加密算法、数字签名、数据加密,等不同方
式保障保存在用户计算机上的数据安全。
二、软件安全
1. 安全机制:作为操作系统的安全机制,麒麟操作系统拥有安全认证
机制,可以自动识别目标设备的身份,从而保证访问授权的安全性。
此外,采用16层的安全架构,使用户提供了可靠的安全保护和支付处理。
2. 可靠机制:麒麟操作系统使用可靠机制,在操作系统内部运行时监
控和保护运行中的程序,从而避免误操作和恶意攻击造成的安全困扰。
三、应用安全
1. 网络安全:麒麟操作系统提供了一套基于网络的安全技术,可以防
止未经授权的访问和攻击,保护系统和数据的安全性。
2. 应用安全:麒麟操作系统可以检测病毒和恶意软件,并提供应用程
序安装批准,来为用户的应用安全提供更全面的保障。
总之,麒麟操作系统的安全等级非常高,从硬件、软件到应用层面全
面落实安全技术,确保了操作系统及其使用者的信息和数据安全。
操作系统安全隔离机制ptrace
硬件隔离技术:
专用安全硬件模块,提供相对安全的硬件隔离环境,利用硬件实施访问控制。
一般由处理器或与主处理器连接的专用设备提供。
MMU通过虚拟地址,实现进程隔离。
IOMMUs,IO Memory Management Uints,转换设备DMA地址到物理地址,实现隔离设备驱动,限制硬件对虚拟机的直接访问。
DMA,Direct Memory Access,DMA传输将数据从一个地址空间复制到另一个地址空间,比如将外部内存的区块移动到芯片内部更快的内存区。
主流的硬件隔离:在SoC内部或者外部设计一个专门的硬件安全模块。
软件隔离技术:
在软件层构建一个可信的隔离运行环境,从而限制恶意代码的扩散或将可信软件或敏感数据保护在该隔离环境中。
虚拟化技术:
基于瘦特权软件层的隔离技术。
抽象一个虚拟的软件或硬件接口。
来保证其上的软件模块能运行在一个虚拟出来的环境上。
实质是再现了整个物理服务器作为一个虚拟机来运行一个应用,
并由虚拟化监控程序来抽象服务器资源和分配资源给虚拟机(VM)。
但是监控程序执行抽象的开销会造成一定程度的性能损耗。
硬件虚拟化。
OS虚拟化。
应用程序虚拟化。
第四章操作系统安全机制董理君计算机学院信息安全系LOGO基本概念4.1.1 安全功能与安全保证安全功能:操作系统所实现的安全策略和安全机制符合评价准则的哪级功能要求安全保证:通过一定的方法保证操作系统提供的安全功能确实达到了确定的功能要求4.1.2 可信软件与不可信软件可信软件:能安全运行,但是系统安全依赖于对软件的无错操作良性软件:不确保安全运行,但是不会有意违反规则,即使偶然发生错误也不会影响系统的正常运行恶意软件:软件来源不明,认为有可能对系统进行破坏4.1.3 主体与客体最原始的主体是用户最终的客体是数据最终的安全机制就是用户和数据之间的安全关系基本概念4.2.1 操作系统安全机制所关注的问题物理上分离时间上分离逻辑上分离密码上分离4.2.2 操作系统的安全目标标识系统中的用户并进行身份鉴别依据安全策略对用户进行访问控制监督系统运行的安全性保证系统自身的安全性和完整性具体的实施包括硬件安全机制、标识与鉴别、访问控制、最小特权管理、可信通路、隐蔽通道和安全审计等基本概念硬件安全机制目标:保证其自身的可靠性和为系统提供基本安全。
两种基本的安全机制:存储保护和运行保护4.3.1 存储保护目的:有效利用存储空间,防止用户程序对OS的影响,对并发的进程存储区实行相互隔离存储保护是安全操作系统最基本的要求 保护单元越小,则存储保护精度越高存储保护虚地址空间在进程地址空间中,以虚地址进行管理,在实际调度时,映射到物理地址段虚地址空间一般分成两个段:用户段和系统段,实现隔离内存管理的访问控制基于描述符的地址解释机制在地址解释时,系统给进程分配地址描述符,指明该进程以段为基本单位对内存的具体访问控制信息,包括WRX(WRE)三种访问方式4.3.2 运行保护运行域是基于保护环的分层等级式结构,内层环特权高,外层环特权低内层环不被外层环侵入,并能够有效控制和利用外层环将操作系统划分为多层次,相互隔离,安全性高4.3.3 可信硬件可信硬件基于独立CPU和存储器的芯片,能保证其独立性和安全性。
Android操作系统的平安机制Android操作系统的平安机制Android是一个开的挪动平台操作系统,占据中国智能手机80%市场份额,主要用于便携式设备。
作为一个运行于实际应用环境中的终端操作系统,Android操作系统在其体系构造设计和功能模块设计上就将系统的平安性考虑之中。
与此同时,它又改造开发了原有的Linux系统内核和Java虚拟机。
在这种前提下,Android操作系统在利用系统平安机制方面就会与原系统平安机制的设计目的有所不同。
由于Android 平台的开放和脆弱性,开发其上的隐私保护系统显得非常重要,其面临的平安威胁在所有手机操作系统中也是最大的。
1 Android 平安机制Android的平安机制是在Linux平安机制根底上的开展和创新,是传统的Linux平安机制和Android特有的平安机制的共同开展。
Android平安机制中的主要出发点是,在默认的情况下,应用程序任何可以给用户、系统或者其他应用程序带来负面影响的操作是不可以执行的。
Android是一个支持多任务的系统,其平安机制依托于数字签名和权限,系统中的应用程序之间一般是不可以互相访问的,每一个应用程序都有独立的进程空间。
1.1用户IDAndroid系统是基于Linux内核的,对应用程序文件和系统文件的访问都要遵循Linux的答应机制,并将这种机制用于管理应用程序。
在Android应用程序安装成功后,系统就为其指定了一个唯一的用户名,对应着系统中唯一的UID,每个用户可以属于一个或者多个组。
假如在应用程序执行期间有越轨或超越权限操作的行为时,用户将会得到Android 的警告信息。
1.2应用程序数字签名数字签名是过某种密码运算生成一系列符号及代码组成电子密码进展签名,来代替书写签名或印章。
签名的'主要作用是身份认证、完好性验证和建立信任关系。
Android系统不会安装没有进展签名的应用程序,所有应用程序进展签名认证是必须的,但签名认证是第三方证书认证机构可以不参与的。
操作系统的安全机制主要包括以下几个方面:
1. 身份验证机制:用于确认用户身份,并确保只有经过授权的用户才能访问系统资源。
2. 访问控制机制:用于限制用户对系统的访问权限,确保系统资源只能被授权用户访问和使用。
3. 数据加密机制:用于保护敏感数据不被未经授权的第三方获取和篡改。
4. 安全日志机制:用于记录系统安全事件,以便进行安全审计和故障排除。
5. 防火墙机制:用于限制网络访问,防止未经授权的网络访问和攻击。
6. 漏洞扫描和修补机制:用于定期扫描系统漏洞,并及时修补漏洞,提高系统安全性。
7. 安全策略和规则制定机制:用于制定和实施安全策略和规则,以确保系统整体安全性。
信息安全工程师考点—操作系统安全,希望对在备考信息安全工程师的考生有所帮助。
考点2、操作系统安全【考法分析】本考点主要是对操作系统安全相关内容的考查。
【要点分析】1.操作系统实质是一个资源管理系统,管理计算机系统的各种资源,用户通过它获得对资源的访问权限。
安全操作系统出了要实现普通操作系统的功能外,还要保证它所管理资源的安全性,包括保密性(Secrecy),完整性(Integrity)和可用性(Availability)。
2.安全威胁可以分为如下6类:①不合理的授权机制;②不恰当的代码执行;③不恰当的主体控制;④不安全的进程间通信(IPC);⑤网络协议的安全漏洞;⑥服务的不当配置。
3.按照威胁的行为方式划分,通常有下面4种:①切断;②截取;③篡改;④伪造。
4.按照安全威胁的表现形式来分,操作系统面临的安全威胁有以下5种:①计算机病毒;②逻辑炸弹;③特洛伊木马;④后门;⑤隐蔽通道。
5.安全模型包括状态机模型,信息流模型,无干扰模型,不可推断模型,完整性模型等类型。
①状态机模型:欧诺个状态语言将安全系统描绘成抽象的状态机,用状态变量表示系统的状态,用转换规则描述变量变化的过程。
状态机模型用于描述通用操作系统的所有状态变量几乎是不可能的,通常只能描述安全操作系统中若干个与安全相关的主要状态变量。
②信息流模型:用户描述系统中客体间信息传输的安全需求。
信息流模型不是检查主体对客体的存取,二十试图控制从一个客体到另一个客体的信息传输过程。
③无干扰模型:将系统的安全需求描述成一系列主体间操作互不影响的断言④不可推断模型:这个模型提出了不可推断性的概念,要求低安全级用户不能推断出高安全级用户的行为。
⑤完整性模型:目前公认的两个完整性模型是BIha模型和Clark-Wilson模型。
6.Biba模型通过完整级的概念,控制主体“写”访问操作的客体范围。
Clark-Wilson模型针对完整性问题,对系统进行功能分割和管理。
操作系统安全实验3实验报告实验三:操作系统安全实验报告一、实验目的1.了解操作系统的安全机制;2.学习使用常见的安全技术和工具。
二、实验环境1. 操作系统:Windows 10;2. 编程语言:Python。
三、实验内容本次实验分为两个实验项目,分别是文件加密和进程权限控制。
1.文件加密文件加密是一种常见的安全技术,通过对目标文件进行加密,可以保护文件的内容不被未授权的用户访问。
本次实验要求编写一个文件加密程序,实现以下功能:(1)接受用户输入的文件路径和密钥;(2)对目标文件使用密钥进行加密,生成加密文件;(3)对加密文件使用相同的密钥进行解密,还原为原始文件。
2.进程权限控制进程权限控制是操作系统的一个重要安全机制,通过限制进程的权限,可以防止恶意程序对系统进行破坏。
本次实验要求编写一个进程权限控制程序,实现以下功能:(1)列出当前系统中所有的进程,并显示其ID和权限;(2)接受用户输入的进程ID和新的权限;(3)修改目标进程的权限为用户指定的权限。
四、实验步骤及结果1.文件加密(1)根据实验要求,编写一个文件加密程序,使用Python语言实现,并命名为encrypt.py。
(2)运行encrypt.py,输入要加密的文件路径和密钥。
(3)程序将对目标文件进行加密,并生成加密文件。
(4)运行encrypt.py,输入要解密的文件路径和密钥。
(5)程序将对加密文件进行解密,并还原为原始文件。
2.进程权限控制(1)根据实验要求,编写一个进程权限控制程序,使用Python语言实现,并命名为process_control.py。
(2)运行process_control.py,程序将列出当前系统中所有的进程,并显示其ID和权限。
(3)输入要修改权限的进程ID和新的权限。
(4)程序将修改目标进程的权限为用户指定的权限。
五、实验总结通过本次实验,我深入了解了操作系统的安全机制,并学习了使用常见的安全技术和工具。
漫谈主流操作系统中可信路径安全机制计算机系统中,用户在一般情况并不直接与内核打交道,中间还有一层应用层作为接口在用户与内核之间相互作用着,但这种设计能够保护内核不会被用户肆意修改窥测,但也随之带来了安全问题,由于应用层并不是能完全信任之的,因此在操作系统安全功能中,往往会提供可信路径这一功能[这也是橘皮书B2 级的安全要求]。
可信路径[trusted path]是怎么样的概念?顾名思义,它就是这么一种功能的实现:避过应用层,在用户与内核之间开辟一条直接的可信任的交互通道。
真的有必要那么麻烦,不得不在进行高风险操作时使用可信路径与内核互动吗?遗憾地告诉你:确实是!有经验的系统管理员普遍都很清楚来自网络的威胁有多么严重。
黑帽子们能使用特洛伊木马[Trojan horse],记录你在登陆及其它敏感操作时的行动,从而窃取你的宝贵口令。
你一定对"ctrl + alt + del"三键序列极有印象,在DOS年代,我们用它快速重启机器,并称之为"热启动",而在WINDOWS 9X时代,我们则用它查看进程,不过也许你没有注意到,在WINDOWS9X 向WINNT过渡后,我们的PC也运行着NT内核的WIN2000/XP时,事实上"ctrl + alt + del"三键的职能已经有了些微改变,微软在它的官方文档中,称"ctrl + alt + del"为SAS[Secure Attention Sequence],并且将之列为安全功能-可信路径的构成部分,而在linux下,也有着类似的按键序列可用。
Linux 环境下的安全留意键——SAK[Secure Attention Key],这个SAK是一组键, 在我们常见的X86平台下,它是"alt+sysrq+k",而在SPARC下,SAK则是"alt+STOP+k", SAK默认不打开,需要用echo "1" > /proc/sys/kernel/sysrq 这条命令激活,当然,你也可以将它写进登录脚本中,这样就不必每次麻烦了。