Credit Default Swaps Calibration and Option Pricing with the SSRD Stochastic Intensity and
- 格式:pdf
- 大小:281.81 KB
- 文档页数:27
23.2 课后习题详解一、问答题1.解释一般信用违约互换与两点信用违约互换的区别。
Explain the difference between a regular credit default swap and a binary credit default swap.答:两者都是在某一特定的时期内对某一公司违约提供信用保险。
在一般信用违约互换中,收益是名义本金乘以1减去回收率的差;而在两点信用违约互换中,收益是名义本金。
2.某信用违约互换付费为每半年一次,付费溢价为60个基点,本金为3亿美元,交割方式为现金形式,假设违约发生在4年零2个月后,而信用违约互换价格的计算方所估计的最便宜可交割债券在刚刚违约时的价格等于面值的40%,列出此CDS出售方的现金流和支付时间。
A credit default swap requires a premiums of 60 basis points per year paid semiannually. The principal is $300 million and the credit default swap is settled in cash, A default occurs after four years and two months, and the calculation agent estimates that the price of the reference bond is 40% of its fuss value shortly after the default, List the cash flows and their timing for the buyer of the credit default swap.答:出售方在0.5年、l.0年、1.5年、2.0年、2.5年、3.0年、3.5年和4.0年收入900000美元(=300000000×0.0060×0.5)。
CFA一级考试知识点第八部分固定收益证券债券五类主要发行人超国家组织supranational organizations;收回贷款和成员国股金还款主权国家政府sovereign/national governments;税收、印钞还款非主权地方政府non-sovereign/local governments美国各州;地方税收、融资、收费..准政府机构quasi-governments entities房利美、房地美公司金融机构、非金融机构经营现金流还款Maturity到期时间、tenor剩余到期时间小于一年是货币市场证券、大于一年是资本市场证券、没有明确到期时间是永续债券..计算票息需要考虑付息频率;未明确的默认半年一次付息..双币种债券dual-currency bonds支付票息时用A货币;支付本金时用B货币..外汇期权债券currency option bongds给予投资人选择权;可以选择本金或利息币种..本金偿还形式子弹型债券bullet bond;本金在最后支付..也称为plain vanilla bond 香草计划债券摊销性债券amortizing bond;分为完全摊销和部分摊销..偿债基金条款sinking found provision;也是提前收回本金的方式;债券发行方在存续期间定期提前偿还部分本金;例如每年偿还本金初始发行额的6%..票息支付形式固定票息债券fixed-rate coupon bonds;零息债券会折价发行;面值与发行价之差就是利息;零息债券也称为纯贴现债券pure discount bond..梯升债券step – up coupon bonds票息上升递延债券deferred coupon bonds/split coupon bonds;期初几年不支付;后期才开始支付票息..前期资金紧张或研发型项目实物支持债券payment-in-kind/PIK coupon bonds票息不是现金;而是实物..常见的是同等的债券或股票来代替;这类风险更高;收益率更高..浮动票息债券folating-rate notes/FRN;通常与LIBOR绑定;通过利差quoted margin和基点basis point来体现..切记计算时需要使用上一期的LIBOR..最常见的LIBOR是美元3月期..指数挂钩债券index-linked bonds;消费者价格指数/通货膨胀保障指数信用挂钩债券credit linked coupon bonds与信用评级挂钩股权挂钩债券equity linked notes与股权权益挂钩..或有条款可赎回债券callable bond权利属于债券发行人;价格等于同等条件不可赎回债券价格减去期权的价格..随时可赎回叫美式期权、一个赎回日叫欧式期权、多个赎回日称为百慕大期权..可回收债券putable bond权利属于债券投资人;利率上升时投资人会行使此权利..价格等于同等条件不可赎回债券价格加上期权的价格..可转换债券convertible bond;持有人可将持有债券转换为公司股票的权利..价格等于同等条件不可转债券价格加上股票看涨期权的价格..有抵押品的债券称为担保债券cecured bonds;没有抵押品的债券称为无担保债券unsecured bonds资产担保债券比资产支持证券信用风险更低..原因1.资产支持证券会成立SPV公司;担保债券可要求清算的资产基数更大..2.资产无法提供足够现金时;担保债券可以要求替换资产..内部信用增强:结构化subordination、超额抵押overcollateralization、储备账户reserve accounts现金储备、利差储备..外部信用增信:银行保函、信用证、现金担保账户..正面条款affirmative要求发行人必须做的事情、负面条款negative禁止发行人做的事情..本币债券national bond 包含了所有机构或本人在本国以本币发行的债券..欧元债券eurobond指在欧洲债券市场发行和交易的债券;本质而言是指离岸发行和交易的债券;和“欧洲”并无关联..欧洲美元债eurodollar bond 指美国境外发行以美元计价的债券、欧洲日元债券euroyen bond指在日本境外发行的日元计价债券..因为没有使用主权国本币;欧元债券受到监管最弱..如果在欧洲债券市场和至少一个本国债券市场同时发行债券;则被称为全球债券global bond..大部分欧洲债券是不记名债券bearer bonds;本币债券是记名债券registered bonds..根据信用质量债券市场分为投资级 investment grade和投机级speculative grade债券..一级分为私募发行private placement和债券市场公开发行public offerings公开发行分为:包销underwritten offering;多家包销称为辛迪加或银团发行syndicated offering代销best effort offering拍卖auctions上架注册shelf registration;主体提交一份注册资料;但可以多次发行;好的主体才有资格..市场新发行的国债称为新发行国债on the run;新发行国债是二级市场交易最为活跃的..期限小于1年的为短期国库券treasury bills/T-bills1年和10年之间的称为treasury notes/T-notes大于10年的称为treasury bonds/T-bonds公司债务分为银行贷款:双边贷款bilateral loan一家银行一个公司、辛迪加贷款syndicated loan商业票据commercial paper期限1天到1年的融资票据公司债券大于1年的债券..结构化金融工具structured financial instruments;又称为结构化产品structured products;根据需求设计;通常是一个传统固定收益证券加上至少一个衍生工具构成..核心是对资产现金流结构重塑;以便重新分配风险..分为以下几类:资本保护性工具capital protected instruments;分为全额资本保护型工具和部分资本保护型工具..最常见的是保护凭证guarantee certificate;由零息债券和看涨期权的多头组成..核心是保护本金安全;使用利润冒险..收益增强型工具yield enhancement;通过增加风险敞口以增加期望收益;最常见的是信用联结债券credit linked notes..归还本金取决于信用事件是否发生;将风险转移给了投资人;通常深度折价发行;如果发生违约;归还本金部分应减去对应损失额..参与性工具participation instruments让投资者参与特定资产收益..常见的是“付固定、收浮动”的互换头寸;可以间接获得市场利率上升的收益..杠杆工具leveraged instruments银行短期融资方式零售存款retail deposits;分为活期存款账户demand deposits/checking accounts、定期存款账户savings account、货币市场账户money market accounts介于活期和定期;支付市场利率;可在较短时间取出存款短期批发融资short term wholesale funds..准备金reserve funds向超额准备金银行借、银行间资金interbank funds、大额可转让定期存单certificate of deposit/CD..回购repurchase /reop与逆回购reverse repurchase协议;指出售证券时同时签订一份协议;约定特定价格购回证券;可看成是抵押贷款;出售的证券就是抵押品..1天的回购叫隔夜回购;大于1天的称为期限回购..买入证券、借出资金的一方称为逆回购reverse repo方..单一折现率的债券定价 - 市场折现率当票息率小于市场折现率;债券价格小于面值;称为折价债券当票息率等于市场折现率;债券价格等于面值;称为平价债券当票息率大于市场折现率;债券价格大于面值;称为溢价债券单一折现率的债券定价–到期收益率yield to maturity ;YTM本质是债券现金流的内部收益率IRR单一折现率的债券定价–赎回收益率yield to call赎回收益率与到期收益率本质是一样的;只不过持有期限不同;到期收益率持有至到期;赎回持有至赎回..第一个赎回日收益率yield to first call、第二个赎回日收益率yield to second call单一折现率的债券定价–矩阵定价matrix pricing利用交易活跃的可比债券对不活跃债券进行定价单一折现率的债券定价–浮动利率债券收益率市场参考利率加上报价利差quoted margin;除报价利差还有一种叫要求利差requited margin即期利率spot rates;用即期利率给债券定价时;每一个时间点对应现金流所使用的折现率即期利率彼此不同..例题:一年期即期利率3%、两年期4%、三年期5%;求三年期、每年付息一次、票息率6%、面值100的债券价格..P=6(1+3%) + 6(1+4%)^2 + 106(1+5%)^3=102.939 远期利率forward rates;未来某一时间点看“更未来”某段时间的利率;是远期市场上所使用利率..3y2y 代表3年后的2年期利率..例题:计算隐含远期利率2y1y;1年期零票息债券YTM3%;2年期零票息债券YTM4%;3年期零票息债券YTM5%..2年后利率乘以1年后利率;应该与3年后利率相等1+4%2^4 1+2y1y 2^2= 1+5%2^6 例题:计算远期利率的定价0y1y=3%;1y1y=4%;2y1y=5%;求三年期每年付息一次;票息率4%;面值100的债券价格..P=4(1+3%)+ 4(1+3%)∗(1+4%)+ 4(1+3%)∗(1+4%)∗(1+5%) = 100.082 债券报价和交割家不一样;因为需要加上上一个付息日到交割日之前的应计利息accrued interest /AIAI = t TPMT;其中PMT 表示两个付息日之间的票息.. 价格价格称为全价full price/dirty price;报价称为净价flat price/clean price..计算净价时;先求现价、再求全价、再将全价减去应计利息;得出净价.. 计算债券收益率;按照合同约定付息时间计算天数;不避开周末或假期称为管理收益率street convention yield;如果遇到假期付息推迟到下一交易日称为真实收益率true yield;真实收益率永远不可能大于管理收益率..通常使用华尔街street 的管理收益率当前收益率current yield;是一种一年期票息除以债券净价不考虑付息和应计利息的简单估计方法简单收益率simple yield;将利得和损失考虑在内;除以债券净价..例题:3年期债券价格97;票息率10%;每年付息一次;当前收益10/97=10.31%;简单收益10+(100−97)/397= 11.34%;注意是一年期票息而不是一期票息..折扣率discount rate/DR、附加率add-on rates/AOR、债券等值收益bond equivalent yield;BEY例题:计算BEY150天存单;面值100;折扣率5.35%、求BEYDR=5.35%=100−PV100360150得出PV等于97.771再带入BEY公式;求出BEY=100−97.77197.771365150= 5.548%DR<AOR<BEY收益率利差yield spread指两个不同债券的收益率之差;分解为两部分:基准收益率和利差..基准收益率通常采用政府债券收益率;利差是超过基准收益率部分;又称为基准利差..基准利差反映宏观经济因素、利差反映微观因素..以政府债券收益率作为基准的利差称为G-spread以标准互换利率swap rate作为基准的利差称为I-spread以政府债券的即期利率曲线为基准的利差称为Z-spread例题:计算G-spread;先求国债收益率;再求公司债收益率;公司债收益率-国债收益率即为G-spread资产支持证券asset-backed security;ABS..以特定的资产作为抵押;用资产现金流作为支付票息和本金的来源..特定资产一般由原始所有者卖给特殊目的机构spcial purpose entity;SPE;再由SPE去发行ABS..SPE公司有一个重要的属性:破产隔离bankruptcy remote..SPE一般是专业从事发行ABS的子公司;资产来源往往是母公司..SPE公司同时也称为special purpose vehicle;SPV或者special purpose company;SPC..常见住房、汽车、学生贷款、应收账款等..其中住房抵押贷款支持证券称为mortgage-backed security;MBS..其他通常ABS;MBS属于ABS..资产证券化好处:减少中间环节disintermediation提高金融资产流动性投资人对标的资产具有更直接的合法要求..投资人可以更好选择适合自己风险目标、收益目标及投资期限的产品美国住房贷款通常是固定利率贷款-抵押品价值比率loan-to-value ratio;LTV..越低越好借款人有提前还款权利prepayment option;银行面临提前还款风险prepayment risk;部分银行要求提前还款有罚金penalty无追索权贷款non-recourse loan;银行只可回收抵押品变卖所得..居民住房贷款抵押发行的MBS简称RMBS ; residential MBS;以商用住房为抵押发行的MBS简称为CMBS ; commercial MBS..RMBS由联邦机构或者政府支持机构发行的称为政府机构居民住房抵押贷款支持证券agency RMBS联邦机构:吉利美、政府支持机构:房利美、房地美政府机构居民住房抵押贷款支持证券叫做non-agency RMBSagency RMBS有两种形式分布是第一类:抵押转手债券mortgage pass-through security ; MPS;现金流来源于借款人每月归还的房贷;包括利息、本金和提前归还的本金;扣除服务费和管理费后直接流入MPS投资人;每个投资人收益与风险相同.. Pass-through rate是指MPS投资人收到的票息率Weighted average coupon rateWAC资产池所有房贷利率的加权平均值Weighted average maturityWAM资产池所有房贷剩余到期时间的加权平均值MPS不考虑信用风险;只考虑提前还款风险prepayment risk;提前还款风险有两个:每月提前还款率single monthly mortality rate;以下简称SMM;另外一个是每年提前还款率conditional prepayment rate;以下简称CPR..SMM是每月提前还款额占当月末未偿付本金余额的比重;分子是超过预定额度的还款量;分母是月初按揭贷款余额减去按计划计划本月归还额..CPR是年化后的SMM提前还款风险分为紧缩风险contraction risk 和扩张风险 extension risk利率下降有紧缩风险..利率上升有扩张风险;提前还款比预估更慢..美国通用衡量提前还款速率采用通用基准;称为公共证券联合会提前还款参照标准public securities association”PSA”prepaymentbenchmark..100PSA代表标准提前还款速率..含义是CPR从第一个月开始;每个月增加0.2%;直到第30个月增加到6%后不再变化..第二类:担保抵押债券collateralized mortgage obligations;CMO结构化又称为分层tranching;同一资产池发行级别不同的证券..分层有两种;一种是时间分层time tranching;通过使分层不同级别的证券具有不同类型的提前还款风险..另一种是信用风险credit tranching;通过信用分层;使不同级别证券有不同程度信用风险..CMO分层结构有以下三种顺序支持CMO结构;第一层投资者先收到本金;提前偿还本金也优先给第一层;所以扩张风险最低;紧缩风险最高..计划摊销与支持级结构;分为PAC层和支持层;PAC层在某个还款速率范围内不承担提前还款风险;全部由支持层承担..但是支持层保护也有限浮动利率层floating-rate tranches;MPS提供固定票息率;浮动利率结构将固定票息率分为两层:一层是浮动票息率;另一层是逆浮动票息率..如果投资人认为未来利率会上涨;就认购浮动层..商用住房为抵押发行的MBS简称为CMBS ; commercial MBS..CMBS主要面临信用风险;结构化CMBS按照信用分层..赎回保护call protection即限制提前还款的条款:提前还款锁定、提前还款罚金、报酬率维持法则yield maintenance charge/make whole charge、废止条款defeasance担保债务凭证collateralized debt obligation ;CDO以债务作为抵押发行;比如公司债务、MBS;银行贷款等..只是一个统称固定利率债券收益有三个来源:票息和本金、票息的再投资收益、到期前出售该债券能够获得的利得或者损失..例题:86价格的100元债券;10年后票息支付终止等于97.95;计算10年间收益率86=197.95(1+r)^10 求出r 等于8.69%短期投资市场风险占主导;因此利率越低收益越大..长期投资再投资风险占主导;利息越高收益越大..久期duration 用于衡量债券价格对利率变动的敏感程度..久期长;对利率变化敏感;风险较高..久期短;对利率敏感性低;风险也低..久期可以分为收益率久期yield duration 和收益曲线久期curve duration;前者反映到期收益率变化对债券价格变化敏感程度;后者反映债券基准利率曲线变化对债券价格变化敏感程度..收益率久期有:麦考利久期macaulay duration 、修正久期modified duration 、现金久期/美元久期money duration/dollar duration 、基点价值PVBP收益曲线久期最常见体现是有效久期effective duration麦考利久期macaulay duration;折现现金流的加权平均回流时间.. Macdur=∑t n t =1 PVCF t / ∑PVCFt其中PVCFt 代表时期t 现金流的现值;分母代表所有折现现金流之和即债券价格P;分子代表各期现金流按照实际t 加权求和..通常最后一期回流现金流最大;因此麦考利久期略低于债券的期限..久期随着期限的增加而上升;但幅度会逐渐递减..对于永续债麦考利久期计算可以简化为1+r/r;r代表期间收益率..例题:久期=时间加权现值/总现值=∑年份×现值/∑现值假如面值为10000元={1600/1+8%^1+2×600/1+8%^2+210000/1+8%^2}÷600/1+8%^1+600/1+8%^2+10000/1+8%^2=555.56+2514.40+28573.39/555.56+514.40+8573.39=1.9424年修正久期modified duration;即对麦考利久期进行简单修正后的久期 r是期间收益;而不是年化收益率..例如债券1年两次付Moddur=macdur1+r息;r就是年化收益率除以2..修正久期可以作为到期收益率YTM变化导致债券价格变化的线性估计即:% price -moddur yield例题:修正久期是8.43;如果市场收益率上升100个基点100bps;债券价格变化多少% P = -8.43 0.01 = -0.0843 = -8.43%;即市场收益率上升100基点;债券价格下降8.43%..现金久期/美元久期money duration/dollar duration;是衡量YTM变化发生时债券的价格变化;修正久期衡量的是债券价格变化的百分比;但现金久期衡量的是债券价格的变化额Moneydur = moddur pricefull;是修正久期乘以债券的全价而非净价;即包含应计利息的价格..面值100债券的现金久期;等于修正久期乘以面值100元债券的全价..收益率的变化为万分之一0.001%时;即一个基点basis point;债券全价变化为基点的价格PVBPprice value of basis point或者基点的久期价值DV01duration value of 1 basis point上升一个基点和下降一个基点带来债券全价价格不一样;所以采用平均价格的方式来表达DV01;即PVBP=P− −P+2例题:10年到期面值1000元;每年付息一次票息6%;目前价格为1042的债券;计算每万元的PVBP是多少先计算实际收益率i=5.44计算P-5.43%的PV=-10431.09 ; P+5.45%的PV=-10415.57PVBP=10431.09 - 10415.57 / 2 = 7.76有效久期effective duration;描述基准收益曲线变化时;债券价格的敏感程度..换言之;有效久期衡量在收益曲线平行移动时不同期限利率变化幅度相同的利率风险..Effetive dur = P− −P+2∗(?curve)∗p0P-是收益率下降时的价格;P+是收益率上升时的价格;P0意为收益率变化之前的价格;而?curve意为收益率变化的幅度..无论是麦考利久期还是修正久期;都包含收益率改变时现金流保持不变的前提假设..衡量含权债券时往往使用有效久期例题:可赎回价格为100.48、收益率上升10个BP时;全价变为99.76元;收益率下降10个BP时;全价变为101.68元..计算可赎回债券的有效久期101.68-99.76/2 0.001 100.48 = 10.95关键利率久期key rate duration计算曲线非平行移动时的价格变化..久期的基本性质:期限越长、久期和凸度越大票息越高久期和凸度越小意味着钱更早回流YTM越高;久期和凸度越小意味着钱更早回流含权债券久期的性质含有看涨期权的债券有效久期较低;在低利率时尤为显着因为存在提前行权的可能含有看跌期权的债券有效久期较低;在高利率时尤为显着因为存在提前行权的可能债券组合的久期=w1d1 + w2d2 +……..wndn其中wi代表债券i的权重;di代表债券i的久期..但是存在局限性;前提是平行移动;而现实中收益率曲线还存在非平行移动..修正久期是衡量YTM对债券价格变化的一阶影响;凸度convexity是衡量YTM对债券价格变化的二阶影响..传统债券凸度恒为正;而可赎回债券和MBS;由于赎回权和提前还款权本质是看涨期权的影响;其凸度为负..类似于近似久期的思想;近似凸度approximate convexity同样也是将利率降低带来价格增加与利率上升带来的价格下降进行平均公式如下:Approx con = P− + P+ − 2p0(yield)2 ∗ p0例题:某债券修正久期是32.45;凸度为854.74..如果YTM下跌10个BP;只考虑久期;以及考虑久期和凸度时;债券价格的变化分别是多少只考虑久期 % P=-32.45 -0.001 = 3.245%考虑久期和凸度 % P=-32.45 -0.001 + 0.5854.74 -0.0012= 3.245%现金凸度money convexity= convexity price full换言之现金凸度等于凸度乘以债券的全价有效凸度effective convexityeffective con = P− + P+ − 2p0(curve)2 ∗ p0凸度的正面影响凸度更大的债券;无论在利率上升还是下降时;其表现都优于凸度较小的债券..上升时上升的更多;下降时下降的更少债券价格波动是两方面因素叠加1.价格对YTM波动的敏感性..2.YTM自身的波动性..短期债券价格有可能比长期债券的价格波动更剧烈..投资者对某只债券的投资期与这只债券的麦考利久期相等;则此时债券票息的再投资和债券价格的市场波动风险正好可以互相抵消..前提是一次性的平行移动投资期限大于麦考利久期;票息再投资风险会超越债券的市场价格风险;投资者面临利率下降风险..投资期限小于麦考利久期;债券的市场价格风险会超越票息再投资风险;投资者面临利率上升风险..投资期限等于麦考利久期;票息再投资风险等于债券的市场价格风险;投资者没有实际影响..久期缺口duration gap;麦考利久期减去投资期限的时间..信用风险包括两个部分:违约风险/违约概率default risk/default probability以及损失严重度/违约损失率loss severity/loss given default..信用关联风险主要指价差风险;是公司债券与标准债券收益率之差;标准债券收益率就是国库券收益率;或称为无风险收益率..价差受两个因素影响:1.信用评级迁移风险credit migration risk/downgrade risk:债券发行人评级恶化时违约风险增加..2.市场流动性风险market liquidity risk;无流动性报价与成交价有价差..清偿顺序优先留置权贷款>优先担保债券>优先无担保债券>优先次级债券>次级债券>劣后次级债券清偿顺序并非绝对:1.具备索取资料的债权人会投票表决重组方案..2.意见大时会浪费时间;影响进度并产生额外费用..3.为避免浪费时间;债权人会有很强的倾向性去妥协..评级机构的局限性:1.是动态指标;随时变化..2.有出现错误的可能..3. 难考虑偶发性风险..4.滞后于市场对信用风险的定价..信用分析4C原则:经营能力capacity、抵押物collateral、契约covenants、品格character经营能力七方面分析:行业结构industry structure波特五力;行业基本面、公司基本面、竞争性定位、运营历史、管理层的决策和执行、比率和比率分析..契约分析:肯定契约affirmative covenants、否定契约negative covenants..利差yield spread指违约风险债券和无违约风险债券的收益率之差;主要由信用价差风险和流动性溢价构成..。
credit default swap 通俗解释信用违约互换(Credit Default Swap,CDS)是指一种金融衍生品,通过将信用风险从一方转嫁给另一方,用于对冲信用违约风险。
信用违约互换是由债券市场衍生而来的金融产品,最早在20世纪90年代出现,并在其后几十年中迅速发展。
这篇文章将试图通过通俗的方式解释信用违约互换的概念、作用、运作机制以及其在金融市场中的影响。
信用违约互换是一种合约,通常由两个相互信任的当事人签订,即买方和卖方。
买方支付一定的保费给卖方,以换取其对一份特定债券债务违约风险的保护。
如果债务发行人(即债券发行方)违约,买方将获得赔偿,相当于债务违约的损失。
与此同时,卖方则承担相应的风险,并在发生违约时向买方支付赔偿。
信用违约互换的作用是用于对冲信用违约风险。
投资者可以利用这种工具来降低持有债务所面临的风险。
例如,一家银行持有大量的债券,但担心债券发行方可能违约,导致损失。
为了对冲这种风险,该银行可以购买信用违约互换,以便在债务违约时获得赔偿。
通过购买信用违约互换,银行可以降低其持有债务的风险,从而保护其财务状况。
信用违约互换的运作机制可以简单解释如下。
假设投资者A购买了一份债券,且担心发行方会违约。
投资者A可以与投资者B签订信用违约互换合约。
根据合约的内容,投资者A将支付给投资者B一定的保费。
如果发行方违约,投资者A将向投资者B索赔,获得赔偿。
通常情况下,合约中还规定了其他一些条款,比如违约定义、赔偿金额计算方法等。
这样,投资者A通过购买信用违约互换,实际上在投资者B那里获得了对债务违约的保护。
信用违约互换在金融市场中扮演着重要的角色。
它不仅对投资者降低风险提供了有力的工具,同时也对金融系统的稳定性起到了促进作用。
然而,信用违约互换也存在一些问题和风险。
首先,由于信用违约互换市场规模巨大且高度复杂,管理和监控这一市场变得更加困难。
其次,信用违约互换的流动性也可能受到影响。
金融工程常用术语中英对照AABS Asset-Backed Security 资产支持证券ABS CDO 由ABS所派生出的份额产品Accrual Swap 计息互换Accrued Interest 应计利息Actuaries 保险精算师Adaptive Mesh Model 自适应网格模型Adjusted Present Value 调整现值法Adverse Selection 逆向选择After-tax Interest Rate 税后利润Agency Costs 代理费用American Option 美式期权Amortization 分期偿付Amortization Schedule 分期偿付时间表Amortizing Swap 分期偿还互换Analytic Result 解析结果APR Annual Percentage Rate 年度百分率Annualized Capital Cost 按年折算的资本成本Arbitrage 套利Arbitrageur 套利者Asian Option 亚式期权Ask Price 卖盘价Asset 资产Asset Allocation 资产分配Asset-or-Nothing Call Option 资产或空手看涨期权Asset-or-Nothing Put Option 资产或空手看跌期权Asset Swap 资产互换As-You-Like-It Option 任选期权At-the-Money Option 平值期权Average Price Call Option 平均价格看涨期权Average Price Put Option 平均价格看跌期权Average Strike Option 平均执行价格期权BBackdating 倒填日期Back Testing 回顾测试Backwards Induction 倒推归纳Barrier Option 障碍期权Base Correlation 基础相关系数Basel Committee 巴塞尔委员会Basis 基差Basis Point 基点Basis Risk 基差风险Basis Swap 基差互换Basket Credit Default Swap 篮筐式信用违约互换Basket Option 篮筐式期权Bear Spread 熊市差价Bermudan Option 百慕大式期权Before-tax Interest Rate 税前利率Beta 贝塔Bid-Ask Spread 买入卖出差价Bid Price 买入价Bilateral Clearing 双边结算Binary Credit Default Swap 两点式信用违约互换Binary Option 两值期权Binomial Model 二项式模型Binomial Option Pricing Model 二项期权定价模型Binomial Tree 二叉树Bivariate Normal Distribution 二元正态分布Black’s Approximation 布莱克近似Black’s Model 布莱克模型Black-Scholes-Merton Model 布莱克-斯科尔斯-莫顿模型Bond Option 债券期权Bond Yield 债券收益率Book Value 账面价值Bootstrap Method 票息剥离方法Boston Option 波士顿期权BOT Build-Operate-Transfer 建设-经营-转让Box Spread 合式差价Break-even point 盈亏平衡点Break Forward 断点远期Brownian Motion 布朗运动Bull Spread 牛市差价Butterfly Spread 蝶式差价CCalendar Spread 日历差价Calibration 校正Callable Bond 可赎回债券Call Option 看涨期权Cancelable Swap 可取消互换Cap 上限Cap Rate 上限利率CAPM Capital Asset Pricing Model 资本资产定价模型Caplet 上限单元Capital gain 资本收藏Capital less 资本损失Capital Market 资本市场Capital Market Line 资本市场线Caps 赔付限额Case-Shiller Index 凯斯-席勒指数Cash budget 现金预算Cash cycle time 现金周转时间Cash Dividend 现金股利Cash Flow Mapping 现金流映射Cash-or-Nothing Call Option 现金或空手看涨期权Cash-or-Nothing Put Option 现金或空手看跌期权Cash Settlement 现金交割或现金清算CCP Central Clearing Party 中央结算对手CDD Cooling Degree Days 降温天数CDO Collateralized Debt Obligation 债务抵押债券CDS Credit Default Swap 信用违约互换CEBO Credit Event Binary Option 信用事件两点式期权Central Clearing 中心结算Central Clearing Party 中央结算对手Central Counterparty 中央交易对手CEV Model Constant Elasticity of Variance Model 常方差弹性模型Cheapest-to-Deliver Bond 最便宜可交割债券Cholesky Decomposition 乔里斯基分解Chooser Option 选择人期权Class of Options 期权分类Clean Price of Bond 债券除息价格Clearing House 结算中心Clearing Margin 结算保证金Cliquet Option 棘轮期权CMO Collateralized Mortgage Obligation 见房产抵押债券CMS Constant Maturity Swap 固定期限国债互换Collar 双限Collateral 抵押品Collateralization 抵押品策略Collateralized Debt Obligation 债务抵押债券Collateralized Mortgage Obligation 房产抵押债券Combination 组合Commercial Banks 商业银行Commercial Loan Rate 商业贷款利率Commodity Futures Trading Commission 商品期货交易管理委员会Commodity Swap 商品互换Compound Interest 复利Compounding 复利计息Compounding Frequency 复利利率Compound Correlation 复合相关系数Compound Option 复合期权Confidence interval 置信区间Continuous Probability Distribution 连续概率分布Confirmation 交易确认书Consumption Asset 消费资产Contango 期货溢价Continuous Compounding 连续复利Control Variate Technique 控制变量技术Convenience Yield 便利收益率Conversion Factor 转换因子Convertible Bond 可转换债券Convexity 曲率Convexity Adjustment 曲率调整Cornish-Fisher Expansion 科尼什-费雪展开Copayments 赔付比例Corporation 公司Correlation 相关性Cost of Capital 资本成本Cost of Carry 持有成本Controller 审计官Counterparty 交易对手Coupon 券息Coupon bond 付息债券Covariance 协方差Covarance Matrix 协方差矩阵Covered Call 备保看涨期权Crash phobia 暴跌恐惧症Credit Contagion 信用蔓延Credit Default Swap 信用违约互换Credit Derivative 信用衍生产品Credit Event 信用事件Credit Event Binary Option 信用事件两点式期权Credit Index 信用指数Credit Rating 信用等级Credit Ratings Transition Matrix 信用评级转移矩阵Credit Risk 信用风险Credit Spread Option 信用差价期权CSA Credit Support Annex 信用支持附约CVA Credit Value Adjustment 信用价值调节量Credit Value at Risk 信用风险价值度Cross Hedging 交叉对冲Currency Swap 货币互换Current yield 本期收益率DDay Count 计天方式Day Trade 即日交易DCF Discounted Cash flow Model 现金流折现模型DDM Dividend Discount Model 股利贴现模型DVA Debt Value Adjustment 债务价值调节量Decision Tree 决策树Deductible 免赔额Default Risk 违约风险Defined-benefit Pension Plan 规定受益型养老金计划Defined-contribution Pension Plan 规定缴费型养老金计划Delivery Price 交割价格Delta Hedging Delta对冲Delta-Neutral Portfolio Delta 中性交易组合Derivative 衍生产品Deterministic Variable 确定性变量Diagonal Spread 对角差价Differential Swap 交叉货币度量互换Diffusion Process 扩散过程Dirty Price of Bond 带息价格Discount Bond 折扣债券Discount Instrument 折扣产品Discounted Cash Flow Analysis 贴现现金流分析Discounted Dividend Model 股利贴现模型Diversifiable Risk 可分散风险Diversification 分散化Diversification Principle 分散化原则Diversifying 分散投资Discount Rate 贴现率Dividend 股息Dividend Yield 股息收益率Dodd-Frank Act 多德-弗兰克法案Dollar Duration 绝对额久期DOOM Option DOOM期权Down-and-In Option 下降-敲入期权Down-and-Out Option 下降-敲出期权Downgrade Trigger 降级触发Drift Rate 漂移变化率Duration 久期Duration Matching 久期匹配Dynamic Hedging 动态对冲EEAR/ EFF Effective Annual Rate 实际年利率Early Exercise 提前行使EBIT Earnings Before Interest and Tax 息税前利润Effective Federal Funds Rate 有效联邦基金利率Efficient Portfolio 有效投资组合Efficient Portfolio Frontier 有效投资组合边界Electronic Trading 电子交易Embedded Option 内含期权EMH Efficient Markets Hypothesis 有效市场假说Empirical Research 实证研究Employee Stock Option 雇员股票期权Equilibrium Model 均衡模型Equity Swap 股权互换Equity Tranche 股权份额Equivalent Annual Interest Rate 等价年利率Eurocurrency 欧洲货币Eurodollar 欧洲美元Eurodollar Futures Contract 欧洲美元期货合约Eurodollar Interest Rate 欧洲美元利率Euro LIBOR 欧元同业拆借利率European Option 欧式期权Exchange Option 互换期权Exchange Rate 汇率Exclusions 免赔条款Ex-dividend Date 除息日Exercise Limit 行使限额Exercise Multiple 行使倍数Exercise Price 执行价格Exotic Option 特种期权Expectations Theory 预期理论Expected Shortfall 预期亏损Expected Rate of Return 预期回报率Expected Value of a Variable 变量的期望值Expiration Date 到期日Explicit Finite Difference Method 显式有限差分方法Exponentially Weighted Moving Average Model 指数加权移动平均模型Exponential Weighting 指数加权Exposure 风险敞口Extendable Bond 可展期债券Extendable Swap 可延期互换External Financing 外部投资FFace Value 面值Factor 因子Factor Analysis 因子分析Federal Funds Rate 联邦基金利率FEI Financial Executives Institute 财务执行官组织Finance 金融学Financial Futures 金融期货Financial Guarantees 财务担保Financial Intermediary 金融媒介Financial System 金融系统Finite Difference Method 有限差分法Fixed-Income Instrument 固定收益证券Flat Volatility 单一波动率Flex Option 灵活期权Flexi Cap Flexi上限Floor 下限Floor-Ceiling Agreement 下限上限协议Floor let 下限单元Floor Rate 下限利率Flow of funds 资金流Foreign Currency Option 外汇期权Forward Contract 远期合约Forward Exchange Rate 远期汇率Forward Interest Rate 远期利率Forward Price 远期价格Forward Rate 远期率FRA Forward Rate Agreement 远期利率合约Forward Risk-Neutral World 远期风险中性世界Forward Start Option 远期开始期权Forward Swap 远期互换Fundamental Value 基本价值Futures Commission Merchants 期货佣金经纪人Futures Contract 期货合约Futures Option 期货期权Futures-Style Option 期货式期权FV Final Value 终值GGrowth annuity 增长年金GAP Management 制品管理Gap Option 缺口期权Gaussian Copula Model 高斯Copula 模型Gaussian Quadrature 高斯求积公式Generalize Wiener Process 广义维纳过程Geometric Average 几何平均Geometric Brownian Motion 几何布朗运动Girsanov’s Theorem 哥萨诺夫定理Guaranty Fund 担保基金HHaircut 折扣Hazard Rate 风险率Hedge 对冲Hedge Funds 对冲基金Hedger 对冲者Hedge Ratio 对冲比率Hedgers 套期保值者Historical Simulation 历史模拟Historical Volatility 历史波动率Holiday Calendar 假期日历Human Capital 人力资本IImmediate Annuity 即时年金Implicit Finite Difference Method 隐式有限差分Implied Correlation 隐含相关系数Implied Distribution 隐含分布Implied Dividend 隐含股利Implied Tree 隐含树形Implied Volatility 隐含波动率Inception Profit 起始盈利Index Amortizing Swap 指数递减互换Index Arbitrage 指数套利Index Futures 指数期货Index-linked Bonds 指数化债券Index Option 指数期权Index Principal Swap 指数本金互换Initial Margin 初始保证金Instantaneous Forward Rate 瞬时远期利率Insuring 保险Intangible Assets 无形资产Interest-rate Arbitrage 利率套利Interest Rate Cap 利率上限Interest Rate Collar 利率双限Interest Rate Derivative 利率衍生产品Interest Rate Floor 利率下限Interest Rate Swap 利率互换Internal Financing 内部融资International Swap and Derivatives Association 国际互换和衍生产品协会In-the-Money Option 实值期权Intrinsic Value 内涵价值Inverted Market 反向市场Investment Asset 投资资产Investment Banks 投资银行ISDA International Swap and Derivatives Association 国际互换和衍生产品协会IRR Internal Rate of Return 内部收益率JJump-Diffusion Model 跳跃扩散模型Jump Process 跳跃过程LLaw of One Price 一价原则Liability 负债LIBID London Inter Bank Bid Rate 伦敦同业借款利率LIBOR London Inter Bank Offered Rate 伦敦同业拆出利率LIBOR Curve LIBOR曲线LIBOR-in-Arrears Swap LIBOR后置互换Life Annuity 人寿年金Limited Liability 有限责任Limit Move 涨跌停版变动Limit Order 限价指令Liquidity 流动性Liquidity Preference Theory 流动性偏好理论Liquidity Premium 流动性溢价Liquidity Risk 流动性风险Locals 自营经纪人Lognormal Distribution 对数正态分布Long Hedge 多头对冲Long Position 多头Look back option 回望期权Low Discrepancy Sequence 低偏差序列MMaintenance Margin 维持保证金Margin 保证金Margin Call 保证金催付Market Capitalization Rate 市场资本化利率MSU Market-Leveraged Stock Unit 市场股票凭据Market Maker 做市商Market Model 市场模型Market Portfolio 市场投资组合Market Price of Risk 风险市场价格Market Segmentation Theory 市场分隔理论Market-weighted Stock Indexes 市场加权股票指数Marking to Market 按市场定价Markov Process 马尔科夫过程Martingale 鞅Maturity 期限Maturity Date 到期日Maximum Likelihood Method 极大似然方法Mean Reversion 均值回归Measure 测度Merger 合并Mezzanine Tranche 中层份额Minimum Variance 最小方差组合Modified Duration 修正久期Money Market 货币市场Money Market Account 货币市场帐户Monte Carlo Simulation 蒙特卡罗模拟Moral Hazard 道德风险Mortgage-Backed Security 房产抵押贷款证券Mutual Fund 共同基金NNaked Position 裸露期权Netting 净额结算Net Present Value 净现值Net Worth 净资产No-Arbitrage Assumption 无套利假设No-Arbitrage Interest Rate Model 无套利假设Nominal Future Value 名义终值Nominal Interest Rate 名义利率Nominal Prices 名义价格Nondiversifiable Risk 不可分割风险Nonstationary Model 非平稳模型Non Systemic Risk 非系统风险Normal Backwardation 正常现货溢价NPV Net Present Value 净现值Normal Distribution 正态分布Normal Market 正常市场Notional Principal 面值(本金)Numeraire 计价单位Numerical Procedure 数值方法OOCC Option Clearing Corporation 期权结算中心Offer Price 卖出价格Open Interest 未平仓合约Open Outcry 公开喊价Opportunity Cost of Capital 资金的机会成本Optimal Combination of risky assets 风险资产的最优组合Option 期权Option-Adjusted Spread 期权调整差价Option Class 期权种类Ordinary Annuity 普通年金Out-of-the-Money Option 虚值期权Overnight Indexed Swap 隔夜指数互换Over-the-Counter Market 场外交易市场PPackage 组合期权Par bonds 等价债券Par Value 面值Par Yield 面值收益Parallel Shift 平行移动Parisian Option 巴黎期权Partnership 合伙制Path-Dependent Option 路径依赖型期权Payoff 收益Pay off Diagram 收益图Percent-of-sales method 销售收入百分比法Permanent Income 持久收入Perpetuity 永续年金Perpetual Derivatives 永续衍生品Portfolio Immunization 组合免疫Portfolio Insurance 证券组合保险Portfolio selection 投资组合选择Portfolio theory 投资组合理论Position Limit 头寸限额Premium 期权付费Premium Bond 溢价债券Present Value 现值Principal-agent Problem 委托人-代理人问题Prepayment Function 提前偿付函数Principal 本金Principal Components Analysis 主因子分析Principal Protected Notes 保本型证券Probability Distributions 概念分布Program Trading 程序交易Protective Put 保护看跌期权Pull-to-Par 收敛于面值现象Purchasing-power Parity 购买力评价Pure Discount Bonds 纯贴现债券Put-Call Parity 看跌-看涨期权平价关系式Put Option 看跌期权Puttable Bond 可提前退还债券Puttable Swap 可赎回互换President 总裁PMT Payment(Returns the periodic payment for an annuity)年金PPP Public-Private Partnership 政府和社会资本合作PV Present Value 现值QQuansi-Random Sequences 伪随机序列RRate of Return on capital 资本收益率Rainbow Option 彩虹期权Range-Forward Contract 远期范围合约Ratchet Cap 执行价格调整上限Real Future Value 实际终值Real Interest Rate 实际利率Real Option 实物期权Real Prices 实际价格Rebalancing 再平衡Recovery Rate 回收率Reference Entity 参考实体Reinvestment Rate 再投资利率Residual Claim 剩余索取权Repo 再回购Repo Rate 再回购利率Reset Date 重置日(定息日)RSU Restricted Stock Unit 受限股票单位Reversion Level 回归水平Risk Aversion 风险厌恶Risk-adjusted discount rate 风险调整贴现率Risk Exposure 风险暴露Rights Issue 优先权证Risk-Free Rate 无风险利率Risk Management 风险管理Risk Management Process 风险管理过程Risk-Neutral Valuation 风险中性定价Risk-Neutral World 风险中性世界Roll Back 倒推ROS Ratio of income as percentage of sales 销售利润率ROA Return On Assets 资产收益率ROE Rate of Return on Common Stockholders’ Equity 净资产收益率SScalper 投机者Scenario Analysis 情形分析Securitization 证券化Security Market Line 证券市场线Sensitivity Analysis 敏感性分析Self-financing Investment Strategy 自筹资金投资策略Settlement Price 结算价格Share Repurchase 股票回购Short Hedge 空头头寸对冲Short Position 空头头寸Short Rate 短期利率Short Selling 卖空交易Short-Term Risk-Free Rate 短期无风险利率Shout Option 喊价期权Simple Interest 单利Sole Proprietorship 独资企业Specialist 专家Speculator 投机者Spot futures price parity relation 现货期货价格平价关系。
Package‘credule’October12,2022Version0.1.4Date2020-05-09Title Credit Default Swap FunctionsMaintainer Bertrand Le Nezet<**************************>Depends R(>=2.14.1)DescriptionIt provides functions to bootstrap Credit Curves from market quotes(Credit Default Swap-CDS-spreads)and price Credit Default Swaps-CDS.License MIT+file LICENSEURL https:///blenezet/creduleBugReports https:///blenezet/credule/issuesSuggests knitrVignetteBuilder knitrNeedsCompilation yesAuthor Bertrand Le Nezet[cre,aut,cph],Richard Brent[ctb,cph],John Burkardt[ctb,cph]Repository CRANDate/Publication2020-05-1021:20:12UTCR topics documented:credule-package (2)bootstrapCDS (3)priceCDS (6)Index912credule-package credule-package Credit Default Swap pricing and Credit Curve bootstrappingDescriptionCredit Curve boostrapping from market quotes(Credit Default Swap-CDS-spreads)and Credit Default Swap-CDS-pricingDetailsPackage:creduleType:PackageVersion:0.1.3Date:2015-08-03License:MIT+file LICENSEA Credit Default Swap(CDS)is afinancial swap agreement that the seller of the CDS will com-pensate the buyer(usually the creditor of the reference loan)in the event of a loan default(by the debtor)or other credit event.This is to say that the seller of the CDS insures the buyer against some reference loan defaulting.The buyer of the CDS makes a series of payments(the CDS"fee"or "spread")to the seller and,in exchange,receives a payoff if the loan defaults.It was invented by Blythe Masters from JP Morgan in1994.April82009saw a"Big Bang"in the market for credit default swap(CDS)contracts and the way in which they are traded.Both contract and convention changes were implemented simultaneously.These changes were designed to make CDS more standardised to help support efforts for central clearing of CDS trades,make strides towards T+0trade processing and facilitate operational effi-ciency.The CDS"Big Bang"has introduced standardized coupon dates and maturity dates.The functions provided in this package do not use these"new"conventions(i.e.they use the conventions pre-April2008);therefore it’s not recommended to use them in a production context.In most cases the differences are marginal,therefore these functions are good enough for preliminary research.See vignette("credule")for more details.Note.I’m planning to update this package with proper CDS ISDA conventions handling at a later stage.Author(s)Bertrand Le Nezet Maintainer:Bertrand Le Nezet<bertrand dot lenezet at gmail dot com>ReferencesISDA Standard CDS Example /cdsmodel/assets/cds-model/docs/ Standard%20CDS%20Examples.pdfCDS Bing Bang /assets/en/docs/markit-magazine/issue-4/60-cds-big-bang.pdfExampleslibrary(credule)yieldcurveTenor=c(1,2,3,4,5,7)yieldcurveRate=c(0.0050,0.0070,0.0080,0.0100,0.0120,0.0150)creditcurveTenor=c(1,3,5,7)creditcurveSP=c(0.99,0.98,0.95,0.92)cdsTenors=c(1,3,5,7)cdsSpreads=c(0.0050,0.0070,0.00100,0.0120)premiumFrequency=4defaultFrequency=12accruedPremium=TRUERR=0.40#CDS pricingres_price=priceCDS(yieldcurveTenor,yieldcurveRate,creditcurveTenor,creditcurveSP,cdsTenors,RR,premiumFrequency,defaultFrequency,accruedPremium)res_price#Credit curve bootstrapping from CDS spreadsres_bootstrap=bootstrapCDS(yieldcurveTenor,yieldcurveRate,res_price$tenor,res_price$spread,RR,premiumFrequency,defaultFrequency,accruedPremium)res_bootstrapbootstrapCDS Bootstrap a Credit CurveDescriptionA function that bootstrap a credit curve from a set of Credit Default Swap spreads givent for variousmaturity.UsagebootstrapCDS(yieldcurveTenor,yieldcurveRate,cdsTenors,cdsSpreads,recoveryRate,numberPremiumPerYear=c(4,2,1,12),numberDefaultIntervalPerYear=12,accruedPremium=c(TRUE,FALSE))ArgumentsyieldcurveTenorA double vector.Each value represents a tenor of the yield curve expressed inyear(e.g.1.0for1Y,0.5for6M)yieldcurveRate A double vector.Each value represents the discount rate(continuously com-pounded)for a partical tenor(e.g.0.005means0.5%,0.02means2 cdsTenors A double vector.Each value represents the maturity expressed in year of a Credit Default Swap which we want to price(e.g5.0means5Y)cdsSpreads A double vector.Each value represents the CDS spread(expressed in decimal,e.g.0.0050represent0.5%or50bp)for a given maturityrecoveryRate A double.It represents the Recovery Rate in case of default(e.g0.40means 40%recovery which is a standard value for Senior Unsecured debt) numberPremiumPerYearAn Integer.It represents the number of premiums paid per year.CDS premiumspaid quaterly(i.e.numberPremiumPerYear=4)and sometimes semi-annually(i.e.numberPremiumPerYear=2)numberDefaultIntervalPerYearAn Integer.It represents the number of timesteps used to perform the numeri-cal integral required while computing the default leg value.It is shown that amonthly discretisation usually gives a good approximation(Ref.Valuation ofCredit Default Swaps,Dominic O Kane and Stuart Turnbull) accruedPremium A boolean.If set to TRUE,the accrued premium will be taken into account in the calculation of the premium leg value.DetailsIn brief,a CDS is used to transfer the credit risk of a reference entity(corporate or sovereign)from one party to another.In a standard CDS contract one party purchases credit protection from another party,to cover the loss of the face value of an asset following a credit event.A credit event isa legally defined event that typically includes bankruptcy,failure-to-pay and restructuring.Thisprotection lasts until some specified maturity date.To pay for this protection,the protection buyer makes a regular stream of payments,known as the premium leg,to the protection seller.This size of these premium payments is calculated from a quoted default swap spread which is paid on the face value of the protection.These payments are made until a credit event occurs or until maturity, whichever occursfirst.Modeling Credit Using a Reduced-Form Approach The world of credit modelling is divided into two main approaches,one called the structural and the other called the reduced-form.In the struc-tural approach,the idea is to characterize the default as being the consequence of some company event such as its asset value being insufficient to cover a repayment of debt.Structural models are generally used to say at what spread corporate bonds should trade based on the internal structure of thefirm.They therefore require information about the balance sheet of the firm and can be used to establish a link between pricing in the equity and debt markets.However, they are limited in at least three important ways:they are hard to calibrate because internal company data is only published at most four times a year;they generally lack theflexibility tofit exactly a given term structure of spreads;and they cannot be easily extended to price credit derivatives.In the reduced-form approach,the credit event process is modeled directly by modeling the prob-ability of the credit event ing a security pricing model based on this approach,this prob-ability of default can be extracted from market prices.Reduced form models also generally have theflexibility to refit the prices of a variety of credit instruments of different maturities.They can also be extended to price more exotic credit derivatives.It is for these reasons that they are used for credit derivative pricing.See vignette("credule")for more details.ValueReturns a Dataframe with3columns:tenor,survprob and hazrate.The tenor column contains the tenor value given in parameter cdsTenors,the survprob column gives the survival probability(in decimal)for each tenor(e.g.0.98menas98%)and the hazrate column gives the non-cumulative hazard rate(intensity of the poisson process)for each tenor(e.g.0.01means1%hazard rate). Author(s)Bertrand Le NezetExampleslibrary(credule)yieldcurveTenor=c(1,2,3,4,5,7)yieldcurveRate=c(0.0050,0.0070,0.0080,0.0100,0.0120,0.0150)cdsTenors=c(1,3,5,7)cdsSpreads=c(0.0050,0.0070,0.0090,0.0110)premiumFrequency=4defaultFrequency=12accruedPremium=TRUERR=0.40bootstrapCDS(yieldcurveTenor,yieldcurveRate,cdsTenors,cdsSpreads,RR,premiumFrequency,defaultFrequency,accruedPremium)priceCDS Credit Default Swap PricingDescriptionA function that calculates the spreads of several Credit Default Swaps(different maturities)from ayield curve and a credit curve.UsagepriceCDS(yieldcurveTenor,yieldcurveRate,creditcurveTenor,creditcurveSP,cdsTenors,recoveryRate,numberPremiumPerYear=c(4,2,1,12),numberDefaultIntervalPerYear=12,accruedPremium=c(TRUE,FALSE))ArgumentsyieldcurveTenorA double vector.Each value represents a tenor of the yield curve expressed inyear(e.g.1.0for1Y,0.5for6M)yieldcurveRate A double vector.Each value represents the discount rate(continuously com-pounded)for a partical tenor(e.g.0.005means0.5%,0.02means2%) creditcurveTenorA double vector.Each value represents a tenor of the credit curve expressed inyear(e.g.1.0for1Y,0.5for6M)creditcurveSP A double vector.Each value represents the survival probability for a partical tenor(e.g.0.98means98%)cdsTenors A double vector.Each value represents the maturity expressed in year of a Credit Default Swap which we want to price(e.g5.0means5Y)recoveryRate A double.It represents the Recovery Rate in case of default(e.g0.40means 40%recovery which is a standard value for Senior Unsecured debt) numberPremiumPerYearAn Integer.It represents the number of premiums paid per year.CDS premiumspaid quaterly(i.e.numberPremiumPerYear=4)and sometimes semi-annually(i.e.numberPremiumPerYear=2)numberDefaultIntervalPerYearAn Integer.It represents the number of timesteps used to perform the numeri-cal integral required while computing the default leg value.It is shown that amonthly discretisation usually gives a good approximation(Ref.Valuation ofCredit Default Swaps,Dominic O Kane and Stuart Turnbull) accruedPremium A boolean.If set to TRUE,the accrued premium will be taken into account in the calculation of the premium leg value.DetailsIn brief,a CDS is used to transfer the credit risk of a reference entity(corporate or sovereign)from one party to another.In a standard CDS contract one party purchases credit protection from another party,to cover the loss of the face value of an asset following a credit event.A credit event isa legally defined event that typically includes bankruptcy,failure-to-pay and restructuring.Thisprotection lasts until some specified maturity date.To pay for this protection,the protection buyer makes a regular stream of payments,known as the premium leg,to the protection seller.This size of these premium payments is calculated from a quoted default swap spread which is paid on the face value of the protection.These payments are made until a credit event occurs or until maturity, whichever occursfirst.Modeling Credit Using a Reduced-Form Approach The world of credit modelling is divided into two main approaches,one called the structural and the other called the reduced-form.In the struc-tural approach,the idea is to characterize the default as being the consequence of some company event such as its asset value being insufficient to cover a repayment of debt.Structural models are generally used to say at what spread corporate bonds should trade based on the internal structure of thefirm.They therefore require information about the balance sheet of the firm and can be used to establish a link between pricing in the equity and debt markets.However, they are limited in at least three important ways:they are hard to calibrate because internal company data is only published at most four times a year;they generally lack theflexibility tofit exactly a given term structure of spreads;and they cannot be easily extended to price credit derivatives.In the reduced-form approach,the credit event process is modeled directly by modeling the prob-ability of the credit event ing a security pricing model based on this approach,this prob-ability of default can be extracted from market prices.Reduced form models also generally have theflexibility to refit the prices of a variety of credit instruments of different maturities.They can also be extended to price more exotic credit derivatives.It is for these reasons that they are used for credit derivative pricing.See vignette("credule")for more details.ValueReturns a Dataframe with2columns:tenor and spread.The tenor column contains the tenor value given in parameter cdsTenors,the spread column give the Credit Default Swap spreads(in decimal) for each tenor(e.g.0.0050is equivalent to0.5%or50bp).Author(s)Bertrand Le NezetExampleslibrary(credule)yieldcurveTenor=c(1,2,3,4,5,7)yieldcurveRate=c(0.0050,0.0070,0.0080,0.0100,0.0120,0.0150)creditcurveTenor=c(1,3,5,7)creditcurveSP=c(0.99,0.98,0.95,0.92)cdsTenors=c(1,3,5,7)cdsSpreads=c(0.0050,0.0070,0.00100,0.0120)premiumFrequency=4 defaultFrequency=12 accruedPremium=TRUERR=0.40priceCDS(yieldcurveTenor,yieldcurveRate,creditcurveTenor,creditcurveSP,cdsTenors,RR,premiumFrequency,defaultFrequency,accruedPremium)Index∗CDS spreadbootstrapCDS,3credule-package,2priceCDS,6∗Credit Default Swaps bootstrapCDS,3credule-package,2priceCDS,6∗Credit Default SwapbootstrapCDS,3credule-package,2priceCDS,6∗bootstrappingbootstrapCDS,3credule-package,2priceCDS,6∗credit curvebootstrapCDS,3credule-package,2priceCDS,6∗default probabilitiesbootstrapCDS,3credule-package,2priceCDS,6∗default probabilitybootstrapCDS,3credule-package,2priceCDS,6∗hazard ratebootstrapCDS,3credule-package,2priceCDS,6∗poisson processbootstrapCDS,3credule-package,2priceCDS,6∗pricingbootstrapCDS,3credule-package,2priceCDS,6∗survival probabilitiesbootstrapCDS,3credule-package,2priceCDS,6∗survival probabilitybootstrapCDS,3credule-package,2priceCDS,6bootstrapCDS,3credule-package,2priceCDS,69。
信用违约互换与CDS全解析一、信用违约互换简介1、信用违约互换的定义信用违约互换(Credit Default Swap, CDS)又称为信贷违约掉期,是进行场外交易的最主要的信用风险缓释工具之一,也是目前全球交易最为广泛的场外信用衍生品。
信用违约互换是一种能够将参照资产(Reference Obligation)的信用风险从信用保护的买方(Protection Buyer)转移给信用保护卖方(Protection Seller)的金融合约。
在信用违约互换交易中,违约互换购买者定期向违约互换出售者支付一定费用(称为信用违约互换点差),而当参照实体(Reference Entity)一旦出现信用类事件(主要指债券主体无法偿付),违约互换购买者将有权利将债券以面值递送给违约互换出售者,从而有效规避信用风险。
违约互换的出售者向购买者所遭受的损失进行的这种赔付是一种或有偿付,即当合约到期时,如果参照实体没有发生任何信用事件,则信用保护的卖方无需向买方进行任何资金支付,合约终止。
举个简单的例子,假如A借钱给了B,每年得到一定的利息,到期B还本付息,但是借出去的钱总有一定风险,万一B未能按时将钱还给A,则A会遭受损失。
此时C提供一项服务,只要A 支付给C一定部分的利息或保险费用,若B未能按时偿付A的本息,由C来对A进行偿付。
这个A和C达成一致协议所签订的合约就是CDS。
此外,C还可能将CDS打包后再卖给其他人,这样风险就会层层传递下去。
查看原图通常CDS交易发生在两个参与主体之间,购买CDS称作购买保护或多头保护,违约互换的购买者被称作“信用保护的买方”,出售CDS称作出售保护或空头保护,违约互换的卖方被称作“信用保护的卖方”。
信用保护的买方一般为银行,卖方通常为投资银行或主承销商。
参考实体违约才会触发违约互换,违约和违约事件的概念略有不同,违约事件情况是由有关金融交易的法律文件中所规定的事件。
根据国际互换和衍生工具协会(International Swaps and Derivatives Association,以下简称ISDA)有关的信用违约互换的标准文件(2003),违约事件包括:(1)破产,无力偿还破产导致触发信用违约互换。
金融工程学期论文信用违约掉期课程名:金融工程专业年级:保险0912姓名:许芳欣学号:020*******授课教师:刘淼二O一二年零六月摘要信用违约掉期(Credit Default Swap, CDS)通俗讲即贷款或信用违约保险。
基于银行或其他金融机构在提供金融产品后,可能出现债务人违约,为了保障债权人权益,衍生出这种针对债务人违约的保险产品,旨在转移债权人风险。
当借款人向贷款人(银行或其他金融机构)申请贷款时,贷款人为了保障贷款安全,以支付保费为前提向保险人(多为保险公司)投保。
若借款人违约,由保险人代为偿还。
关键词:保险交易结构风险危机起源(一)信用违约掉期- 产生发展美国金融危机另一重要原因是CDS(信用违约掉期)市场过于分散。
信用违约掉期CDS--CREDIT DEFAULT SWAP(信用违约互换)是1995年由摩根大通首创由信用卡贷款所衍生出来的一种金融衍生产品,它可以被看作是一种金融资产的违约保险。
债权人通过这种合同将债务风险出售,合同价格就是保费。
购买信用违约保险的一方被称为买家,承担风险的一方被称为卖家。
双方约定如果金融资产没有出现违约情况,则买家向卖家定期支付“保险费”,而一旦发生违约,则卖方承担买方的资产损失。
CDS是目前全球交易最为广泛的场外信用衍生品。
信用违约掉期的出现满足了这种市场需求。
作为一种高度标准化的合约,信用违约掉期使持有金融资产的机构能够找到愿意为这些资产承担违约风险的担保人,其中,购买信用违约保险的一方被称为买家,承担风险的一方被称为卖家。
双方约定如果金融资产没有出现违约情况,则买家向卖家定期支付“保险费”,而一旦发生违约,则卖方承担买方的资产损失。
承担损失的方法一般有两种,一是“实物交割”,一旦违约事件发生,卖保险的一方承诺按票面价值全额购买买家的违约金融资产。
第二种方式是“现金交割”,违约发生时,卖保险的一方以现金补齐买家的资产损失。
信用违约事件是双方均事先认可的事件,其中包括:金融资产的债务方破产清偿、债务方无法按期支付利息、债务方违规招致的债权方要求召回债务本金和要求提前还款、债务重组。
第十二章信用衍生产品复习思考题12.1.单项选择题(1)在信用违约互换交易中,希望规避信用风险的一方称为信用保护()。
A、买方 B、卖方 C、甲方 D、乙方(2)信用违约互换只能使()在交易双方之间转移,与参考资产有关的利率风险和市场风险并不在保护范围之内。
A、操作风险B、声誉风险C、信用风险D、流动性风险(3)一份CDS期权的定义类似于远期信用违约互换,它是一份()期权,指持有者有权在未来一个特定时期内以某价差购买或者出售对某确定的参考实体的保护。
A、蝶式B、鞍式C、美式D、欧式(4)()的本质上是一份针对多个公司发生违约事件的保险合约。
A、总收益互换B、CDS期权C、一篮子CDSD、远期CDS(5)()是一种利用信用衍生性商品,在没有实质转移资产的情形下具有转移信用风险功能的结构化工具。
A、现金流型CDOB、合成型CDOC、套利型CDOD、资产负债表型CDO12.2.多项选择题(1)在信用违约互换协议中,交易双方需要对()达成协定。
A、合约大小B、有效期C、参考资产D、保险费率(2)信用违约互换中,下列哪些风险()不会在交易双方之间转移。
A、操作风险B、声誉风险C、信用风险D、流动性风险(3)总收益互换是指信用保障的买方在协议期间将参照资产的总收益转移给信用保障的卖方,总收益可以包括()。
A、本金B、利息C、预付费D、因资产价格的有利变化带来的资本利得(4)CDO依标的资产不同,可分为()。
A、现金流型CDOB、合成型CDOC、套利型CDOD、资产负债表型CDO(5)一篮子CDS估值方法目前主要有()。
A、Copula模型B、因子Copula模型C、条件独立违约方法D、传染模型12.3.什么是信用违约互换?信用违约互换的基本机制是怎样的?12.4.什么是远期CDS?12.5.什么是总收益互换?12.6.总收益互换和信用违约互换最大的区别在哪里?12.7.CDO定价的核心观点是什么?12.8.说明信用违约互换的两种交割方式。
外汇相关英语词汇--------------------------------------------------------------------------------AABS 资产担保证券(Asset Backed Securities的英文缩写)Accelerated depreciation 加速折旧Acceptor 承兑人;受票人;接受人Accommodation paper 融通票据;担保借据Accounts payable 应付帐款Accounts receivable 应收帐款Accrual basis 应计制;权责发生制Accrued interest 应计利息Accredited Investors 合资格投资者;受信投资人指符合美国证券交易委员(SEC)条例,可参与一般美国非公开(私募)发行的部份机构和高净值个人投资者Accredit value 自然增长值Accrediting 本金增值适用于多种工具,指名义本金在工具(如上限合约、上下限合约、掉期和互换期权)的期限内连续增长。
ACE 美国商品交易所Acid Test Ratio 酸性测验比率;速动比率Across the board 全面一致;全盘的Acting in concert 一致行动;合谋Active assets 活动资产;有收益资产Active capital 活动资本Actual market 现货市场Actuary 精算师;保险统计专家ADB 亚洲开发银行ADR 美国存股证;美国预托收据;美国存托凭证[股市] 指由负责保管所存托外国股票的存托银行所发行一种表明持有人拥有多少外国股票(即存托股份)的收据。
ADR一般以美元计价和进行交易,及被视为美国证券。
对很多美国投资者而言,买卖ADR比买卖ADR所代表的股票更加方便、更流动、成本较低和容易。
大部份预托收据为ADR;但也可以指全球预托收(GDR) ,欧洲预托收据(EDR) 或国际预托收据(IDR) 。