人教版-七年级全册数学知识点汇总
- 格式:doc
- 大小:247.50 KB
- 文档页数:15
人教版七年级上册数学知识点大全
一、数的概念和整数运算
- 数的概念:数的分类、数的表达方式、数的读法和写法- 整数的加法、减法、乘法和除法
- 整数的绝对值和相反数
- 整数的比较和排序
二、分数与小数
- 分数的概念和基本性质
- 分数的加法、减法、乘法和除法
- 分数和整数的换算
- 小数的概念和读法
- 小数和分数的关系
三、图形与运动
- 点、线、线段和射线的概念
- 角的概念和表示方法
- 平行线和垂直线的判定
- 面的概念和分类
- 三角形和四边形的特性
- 运动的基本概念和描述方法
四、图形的变换
- 翻折、旋转和平移的概念和性质
- 图形的对称和轴对称
五、数据的收集和整理
- 数据的收集和整理方式
- 数据的图表表示:条形图、折线图和饼图- 数据的分析和解读
六、算式与方程
- 代数式和算式的概念
- 算式的加减法原则
- 一元一次方程的概念和解法
七、数与量
- 长度、质量和时间的单位换算
- 面积和体积的概念和计算
八、函数
- 函数的概念和性质
- 函数的图像和特性
以上是人教版七年级上册数学的知识点大全,总结了数的概念和运算、分数与小数、图形与运动、图形的变换、数据的收集和整理、算式与方程、数与量以及函数等内容。
希望对你的学习有所帮助!。
七年级人教版数学知识点全作为初中数学学科的入门级别,七年级的数学内容涵盖了很多基础知识点,掌握这些知识对后续的学习非常重要。
本文将介绍七年级人教版数学的知识点,包括数与代数、几何、函数与应用:一、数与代数:1.自然数与整数自然数是指从1开始的整数,整数包括自然数以及0和负整数,记作Z。
2.有理数有理数包括整数和分数(正数、0和负数),它们都可以换算成分数的形式。
3.分数分数是一个数除以另一个不等于0的数的结果,分数的大小可以通过分子分母的大小关系来判断。
4.小数小数是分数的一种表现形式,可以是有限小数或循环小数。
5.比例和比例关系比例是两个数值之间的比较,比例关系是三个或三个以上的数值之间的比较。
6.百分数百分数是将分数的分母改为100后得到的数,通常用%表示。
7.代数式代数式是数或字母等量的代数和运算符号组成的表达式。
二、几何:1.平面图形平面图形包括三角形、四边形、圆等,学生需要掌握它们的基本属性和面积计算方法。
2.空间图形空间图形包括立方体、正方体、棱柱等,学生需要了解它们的基本特征和计算方法。
3.相似和比例相似是指两个图形的形状相同但大小不同,比例是两个数值之间的比较。
4.三角形三角形的类型包括等腰三角形、等边三角形、直角三角形等,学生需要掌握它们的性质和计算方法。
5.四边形四边形的类型包括矩形、正方形、菱形、梯形等,学生需要掌握它们的特点和计算方法。
6.圆圆的基本属性包括圆心、半径、直径等,学生需要掌握它们的概念和计算方法。
三、函数与应用:1.函数的概念函数是指一个输入和一个输出之间的对应关系,通常用f(x)表示。
2.函数的图像函数的图像是指将所有可能的输入和对应的输出连接起来形成的图形。
3.应用问题数学可以应用到外部世界中,掌握应用问题的解决方法对学生的实际生活和学习非常重要。
以上是七年级人教版数学的知识点介绍,学生们需要认真学习理解这些知识点,以便在后续的学习中能够更好地掌握相关内容,建立扎实的数学基础。
人教版七年级数学全册知识点第一章:有理数知识框架:正分数负分数正整数0负整数基本概念:1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
7.由绝对值的定义可知:(1) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
(2)正数大于0,0大于负数,正数大于负数。
(3)两个负数,绝对值大的反而小。
8.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
9.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
10.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
11.有理数减法法则减去一个数,等于加上这个数的相反数。
12.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
13.有理数中仍然有:乘积是1的两个数互为倒数。
14.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
15.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
16.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
17.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a叫做底数,n叫做指数18.根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
千里之行,始于足下。
人教版初一数学知识点总结
人教版初一数学知识点主要包括以下内容:
一、数与式
1. 整数的概念及运算:正整数、零、负整数的概念、整数的加减法、整数的乘法、整数的除法、乘法消去律、除法和零的关系。
2. 小数的概念及运算:小数的定义、小数的加减法、小数的乘法、小数的除法、小数的大小比较、小数和整数进行运算。
3. 分数的概念及运算:分数的定义、分数的相等、分数的大小比较、分数的加减法、分数的乘法、分数的除法。
二、代数表达式
1. 代数表达式的概念及基本运算:代数表达式的定义、代数式的计算、同类项的合并、代数式的加减法、代数式的乘法。
2. 一元一次方程:方程的概念、解一元一次方程的方法、方程与解的关系、应用题。
三、图形与变换
1. 点、直线、线段的概念:点的位置、点的坐标、直线的定义、线段的定义。
第1页/共2页
锲而不舍,金石可镂。
2. 角的概念及度量:角的概念、角的度量、角的比较、角的运算。
3. 二维图形的概念及性质:三角形、四边形、五边形、六边形的概念和性质、正方形、长方形、平行四边形的性质。
4. 图形的位置与方向关系:平移、旋转、翻转的概念及性质。
四、数据与图表
1. 数据的收集与整理:数据的调查、数据的整理与分类、数据的图表表示。
2. 统计指标:平均数、中位数、众数等统计指标的概念及计算。
以上就是人教版初一数学知识点的主要内容总结,希望对你有所帮助。
第一章有理数1、正负数:正负数表示两种相反意义的量。
注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数。
(如:a 为负数,则-a 为正数。
a 为0,则-a 也为0)2、有理数:(1)整数和分数(包括有限小数和无限循环小数)统称有理数。
π是无限不循环的小数所以不是有理数;(2)分类:① ②(3)数学语言:自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2、数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线。
数轴上,从左往右数依次变大。
越往左越小,越往右越大。
3、相反数:(1)只有符号不同的两个数,叫做互为相反数;如5的相反数是-5,-5的相反数是5。
5和-5互为相反数。
一定要说谁是谁的相反数,⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数单独的一个数不能称为相反数。
0的相反数是0本身。
(2)注意:求一个数的相反数只要在这个数的前面添上“-”号即可。
如:a 的相反数是-a ;a-b 的相反数是-(a-b )= b-a ;a+b 的相反数是-(a+b)=-a-b ;a-b+c 的相反数是-(a-b+c)= -a+b-c 。
(3)互为相反数的两个数的和为0 。
a+b=0 ⇔ a 、b 互为相反数.(4)负负为什么会得正?正负数表示两种相反意义的量。
如:2的相反数是-2,-2的相反数是2,同时-2的相反数是-(-2),所以-(-2)= 2 。
即一个数的相反数的相反数等于本身。
4、绝对值:(1)意义:一个数在数轴上所对应的点到原点的距离。
数a 的绝对值,记作a 。
因距离不能为负数,所以任何数的绝对值都是非负数,即|a|≥0,非负性。
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; 正数和0的绝对值都是它本身,负数的绝对值是它的相反数; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;5、有理数比大小:(1)正数永远比0大,负数永远比0小;正数都比负数大;(2)两个负数比较,绝对值大的反而小;(3)数轴上的两个数,右边的数总比左边的数大;(4)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版初中数学知识点总结目录七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (7)第三章一元一次方程 (9)第四章图形的认识初步 (11)七年级数学(下)知识点 (12)第五章相交线与平行线 (12)第六章平面直角坐标系 (16)第七章三角形 (17)第八章二元一次方程组 (23)第九章不等式与不等式组 (24)第十章数据的收集、整理与描述 (26)八年级数学(上)知识点 (28)第十一章全等三角形 (28)第十二章轴对称 (30)第十三章实数 (31)第十四章一次函数 (33)第十五章整式的乘除与分解因式 (34)八年级数学(下)知识点 (37)第十六章分式 (37)第十七章反比例函数 (40)第十八章勾股定理 (41)第十九章四边形 (42)第二十章数据的分析 (46)九年级数学(上)知识点 (47)第二十一章二次根式 (47)第二十二章一元二次根式 (49)第二十三章旋转 (51)第二十四章圆 (53)第二十五章概率 (55)九年级数学(下)知识点 (61)第二十六章二次函数 (61)第二十七章相似 (64)第二十八章锐角三角函数 (66)第二十九章投影与视图 (68)七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数 > 0,小的数-大的数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。
2024年人教版七年级数学知识点总结一、有理数1. 有理数的概念:有理数是可以表示为两个整数的比值的数。
2. 有理数的分类:整数、分数、零。
3. 有理数的表示形式及比较大小:分数、小数、整数。
二、整数1. 整数的概念:由整数可以用整数1表示,包含正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法的运算法则。
3. 知识点:正负整数的加减法、乘法及除法的运算规则。
三、分数1. 分数的概念:分母为0的数除外,一个不能化为整数的数叫分数。
2. 分数的基本概念:分子、分母、真分数、假分数和带分数。
3. 分数的化简和等值分数:化简分数的方法,等分数的概念。
4. 分数的加减法:同分母的分数相加减,异分母的分数相加减。
5. 分数的乘法:分数与整数相乘,分数之间相乘。
6. 分数的除法:分数与整数相除,分数之间相除。
四、小数1. 小数的概念:有限小数和无限循环小数。
2. 小数的读法和写法:小数的读法,小数的书写规则。
3. 小数的四则运算:小数的加减法,小数的乘法,小数的除法。
4. 小数与分数的相互转换:小数转分数,分数转小数。
五、实数1. 实数的定义:有理数和无理数的统称。
2. 无理数的概念:不能表示为两个整数之比的数,如根号2,根号3等。
六、代数式与方程式1. 代数式的概念:用字母表示数的式子。
2. 方程式的概念:含有等号的代数式叫做方程式。
3. 一元一次方程的解:方程的根、方程的解集。
4. 一元一次方程的应用:利用一元一次方程解决实际问题。
七、比例与百分数1. 比例的概念:两个含有比的式子叫做比例。
2. 比例的性质:比例的基本性质、相等比例的性质。
3. 比例的计算:已知两个相等比例的三个量中的任意两个量,可以求出第三个量。
4. 百分数的概念:以百分号表示的数。
5. 百分数与分数、小数的相互转换。
6. 增长量和减少量的计算:已知原数和增长量(减少量)之比和增长率(减少率),可以求出增加量(减少量)。
八、平面图形的初步认识1. 二维图形的分类:几何图形、点、线段、直线、角、多边形、平行四边形、正方形、长方形、正三角形、等腰三角形。
人教版七年级数学知识点概括 (上下册 )第一章有理数正数和负数(1)正数:大于 0 的数;负数:小于 0 的数;(2)0 既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量拥有相反的意义;(4)- a 不必定是负数, +a 也不必定是正数;(5)自然数: 0 和正整数统称为自然数;(6 )a>0 a 是正数;a≥0 a 是正数或 0 a 是非负数;a< 0 a 是负数;a≤ 0 a 是负数或 0 a 是非正数 .有理数(1)正整数、 0、负整数、正分数、负分数都能够写成分数的形式,这样的数称为有理数;(2)正整数、 0、负整数统称为整数;(3)有理数的分类:正整数正整数正有理数整数零正分数有理数零有理数负整数负整数分数正分数负有理数负分数负分数(4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三因素)(5)一般地,当 a 是正数时,则数轴上表示数 a 的点在原点的右侧,距离原点 a 个单位长度;表示数- a 的点在原点的左侧,距离原点 a 个单位长度;(6)两点对于原点对称:一般地,设 a 是正数,则在数轴上与原点的距离为 a 的点有两个,它们分别在原点的左右,表示- a 和 a,我们称这两个点对于原点对称;(7)相反数:只有符号不一样的两个数称为互为相反数; (8)一般地, a 的相反数是- a ;特别地, 0 的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点对于原点对称; (10)a 、b 互为相反数a+b=0;(即相反数之和为0)a 1 或b 1)(11)a 、b 互为相反数1;(即相反数之商为-ba(12)a 、b 互为相反数 |a|=|b| ; ( 即相反数的绝对值相等)(13) 绝对值:一般地,在数轴上表示数 a 的点到原点的距离叫做 a 的绝对值;( |a| ≥0 ) (14) 一个正数的绝对值是其自己;一个负数的绝对值是其相反数;0 的绝对值是 0;(15) 绝对值可表示为: aa (a 0) 0(a 0)a (a 0 )(16)a1 a 0 ;a 1a 0;aa(17) 有理数的比较:在数轴上表示有理数,它们从左到右的次序,就是从小到大的次序。
人教版七年级数学知识点归纳上下册【人教版七年级数学知识点归纳上下册】数学是一门基础性的学科,对于七年级学生来说,掌握好数学的基本知识点对于后续学习打下坚实的基础。
本文将对人教版七年级数学上下册的知识点进行归纳和概括,供学生们参考复习。
一、整数与有理数1. 整数的概念及表示方法整数是由正整数、0和负整数组成的数集,可以用数轴来表示。
可以用a、b、c等字母表示整数,其中a和-b是互为相反数。
2. 整数的加法和减法整数的加法和减法满足交换律、结合律和分配律。
加法公式可表示为 a + b = c,减法公式可表示为 a - b = c。
3. 有理数的概念及运算有理数是整数和分数的统称,有理数包括正有理数、负有理数和0。
有理数的加法、减法、乘法和除法运算与整数相似。
二、平方根与立方根1. 示意图设a是非负整数,b是自然数,√a表示非负数c满足c² = a,³√a表示满足b³ = a的数。
2. 平方根与立方根的计算求平方根可通过估值和逼近法,求立方根可通过估值、逼近法和立体积。
三、比例与相似1. 比例的概念及应用比例是两个或两个以上同类量的比值,可以通过等式、引进未知数和图表等方式表示。
比例常用于解决实际问题,如长度比例、面积比例和体积比例等。
2. 相似的概念及性质相似是指形状、大小不同但相应部分成比例的两个或两个以上图形。
相似的图形具有相似比、对应角相等和对应边成比例的性质。
四、代数式与简单方程1. 代数式的概念与运算代数式是由数、字母和运算符号组成的式子,常用于表示数学关系。
代数式的运算包括加法、减法、乘法和除法。
2. 简单方程的解法简单方程是一个未知数或多个未知数之间通过等号连接的代数式。
通过逆向运算、化简方程和等式变形等方法可求得简单方程的解。
五、统计与概率1. 统计的概念及方法统计是收集、整理、分析数据,并根据数据进行描述和推断的过程。
统计常用的方法包括调查问卷、图表和抽样等。
第一章有理数1. 正数和负数•正数:大于0的数。
•负数:在正数前面加上符号“-”的数。
•0的意义:不仅表示没有,还可以表示某种量的基准。
•相反意义的量:用正数和负数表示具有相反意义的量,如收入与支出、前进与后退等。
2. 有理数的分类•整数:正整数、0、负整数。
•分数:正分数、负分数。
•有理数:整数和分数的统称。
3. 数轴•定义:规定了原点、正方向和单位长度的直线。
•点与有理数的关系:任意一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数。
4. 相反数•定义:只有符号不同的两个数。
•性质:任何一个数都有相反数,且只有一个;正数的相反数是负数,负数的相反数是正数;0的相反数是0。
5. 绝对值•定义:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数。
•性质:绝对值表示数轴上某点到原点的距离。
6. 有理数的大小比较•利用数轴:数轴上右边的数大于左边的数。
•利用法则:同为正数或负数时,绝对值大的数分别更大或更小;正数大于0,负数小于0。
7. 有理数的运算•加法:同号相加取同号,异号相加取绝对值较大数的符号并相减。
•减法:减去一个数等于加上这个数的相反数。
•乘法:同号得正,异号得负,并把绝对值相乘。
•除法:除以一个数等于乘以这个数的倒数。
•乘方:求几个相同因数的积的运算。
第二章整式的加减1. 用字母表示数•代数式:用字母和数通过有限次的加、减、乘、乘方运算得到的式子。
•单项式:数与字母的乘积组成的式子。
•多项式:几个单项式的和。
2. 整式的加减•去括号:括号前是正数,去括号后各项符号不变;括号前是负数,去括号后各项符号改变。
•合并同类项:把多项式中的同类项合并成一项。
第三章一元一次方程1. 定义•一元一次方程:只含有一个未知数,且未知数的次数是1的整式方程。
2. 标准形式•ax+b=0(其中a、b是已知数,且a≠0)。
3. 解法步骤•整理方程•去分母(如果有的话)•去括号•移项•合并同类项•系数化为1•检验解的正确性第四章图形的初步认识1. 直线、射线、线段•直线:没有端点,无限长,不可度量。
第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
人教版七年级数学知识点汇总第一章有理数1.1 有理数•定义有理数的概念•正数、负数、零的定义•有理数的大小比较及图像表示法•有理数的加减乘除运算规律1.2 数轴及其应用•数轴的概念及表示方法•数轴上有理数加减法的计算方法•数轴上数量的比较及意义的解释•数轴上实际问题的分析及解决方法1.3 练习题及解答第二章图形的认识2.1 基本图形•点、直线、射线、线段、圆•方形、长方形、正方形、平行四边形2.2 计算图形的周长和面积•了解周长和面积的概念•两个长方形的面积关系及计算方法•长方形与正方形的面积关系及计算方法•平行四边形的面积计算方法2.3 练习题及解答第三章方程与代数式3.1 代数式•代数式的定义及基本形式•代数式的加减乘除运算及应用•梳理多项式中的同类项3.2 字母的应用•在式子中用字母表示未知量•字母在代数式中的应用和意义•列表方程解问题3.3 方程•方程的概念及种类•一元一次方程的解法及应用•对一般的代数式作变形,使之成为一元一次方程•实际问题选择解法及组方程3.4 练习题及解答第四章几何图形的变换4.1 平移•平移的概念及运用•对称图形的平移4.2 向量•向量的概念及表示方法•向量的平移及性质•一些应用4.3 旋转•旋转的概念及旋转角度•角度、弧度、圆周角度数之间的转换•公式法旋转•利用三角函数旋转4.4 练习题及解答第五章数据分析5.1 统计量•数据的收集及统计量的计算•众数、中位数、平均数的定义及计算方法•以上各统计量在实际中的应用5.2 数据的表示•数据的分组及其分布•直方图和折线图的理解和绘制•了解数学基础课程的相关知识5.3 练习题及解答以上为人教版七年级数学知识点汇总,通过学习以上内容,同学们可以系统地掌握数学基础知识,并能够熟练运用于实际生活中。
人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。
省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。
⑶表示一个确切的量。
例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
例如,π是无限不循环小数,不能写成分数形式,不是有理数。
有限小数和无限循环小数都可化成分数,都是有理数。
整数也能化成分数,也是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。
- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。
- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。
- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。
单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。
- 分数的相等:两个分数相等表示代表同一量的两个数。
- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。
- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。
- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。
- 分数的除法:分数除法可以先求倒数,再进行相乘。
单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。
- 代数式的运算:代数式的运算包括加法、减法和乘法。
- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。
...
(继续写下去,覆盖全册)。
人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。
1.概念负数: 在正数前面加上负号“—”的数叫做负数。
注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。
(不是带“—”号的数都是负数, 而是在正数前加“—”的数。
)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。
有理数: 整数和分数统称有理数。
1.概念整数: 正整数、0、负整数统称为整数。
分数: 正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。
2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。
三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。
三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。
3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。
(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。
2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。
四、相反数两个符号: 符号相同是正数, 符号不同是负数。
3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。
七年级全册数学知识要点汇总七年级数学(上册)知识点第一章 有理数1.有理数(1).正数和负数的概念正数:大于0的数叫正数。
(负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
0既不是正数也不是负数。
0是正数和负数的分界。
(3)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9. 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.(3)任何数同零相乘都得零;10.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a.无意义即11.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n 或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .12.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;13.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.14.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.15.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.第二章整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
七年级(上)数学知识要点概括第一章有理数及其运算1.有理数包括 和 ;整数包含: 、 、 ;分数包含: 、 。
正整数和正分数通称为____________,负整数和负分数通称为_______________。
2.正数都比0大,负数都比0小, 既不是正数也不是负数。
3.正数和负数经常用来表示 的量。
4.数轴有三要素: 、 、 。
数轴上的两个点表示的数, 边的总比 边的大。
5.相反数:只有 不同的两个数互为相反数,a a 和-互为相反数,0的相反数是0。
在任意的数前面添上“ ”号,就表示原来的数的相反数。
6.绝对值:数轴上表示一个数的点与原点的 叫做该数的绝对值,用“|a|”表示。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0a =0时,0a =异号的两个数相加,绝对值不等时,取绝 的符号,并用 减去 。
互为相反数的两数相加得 一个数同0相加仍得这个数。
9.加法交换律:a b b a +=+ 加法结合律:()()a b c a b c ++=++ b+d=a-b= ,3-5= ,:两数相乘,同号得 ,异号得 ,并把绝对乘法结合律:()()ab c a bc = 举例 乘法分配律:()a b c ac bc +⨯=+ 举例13.有理数除法法则:·除以一个不等于0的数,等于乘这个数的 。
两个有理数相除,同号得 ,异号得 ,并把 相除。
0除以任何数都得0,且0不能作除数。
14.有理数的乘方:求n个因数a的积的运算叫做乘方,乘方的结果叫做幂。
即a n a,在n a…a_____叫做底数,叫做指数,n a读作an个a(或)。
15.乘方的正负:正数的任何次幂都是,负数的奇次幂是,负数的偶次幂是。
16.混合运算顺序:先算乘方,再乘除,后加减;同级运算,从左到右进行;如有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。
17.科学记数法:把一个绝对值大于10的数,表示成的形式,其中a 只有一位的整数,n是的位数。
这种记数的方法叫做科学记数法。
第二章整式1.单项式:由与的乘积组成的式子叫做单项式。
单独的一个数或字母也是单项式。
2.系数:单项式前面的 _____ 叫做这个单项式的系数。
3.单项式的次数:一个单项式中,所有 ___________ 的和叫做这个单项式的次数。
4.多项式:几个单项式的和叫做多项式。
其中,每个叫做多项式的项,不含字母的项叫做。
(注意,在说多项式的项的时候要带上符号)5.多项式的次数:多项式里 ________ 的次数,叫做这个多项式的次数。
6.整式:与统称整式。
7.同类项:相同,并且相同字母的也相同的项叫做同类项。
几个常数项也是。
8.合并同类项:把多项式中的合成一项,叫做合并同类项。
9.去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号。
10.一般地,几个整式相加减,如果有括号就先,然后再合并。
第三章一元一次方程1.含有的等式叫做方程,使方程左右两边的未知数的值叫做方程的解。
2.只含有未知数,未知数的次数是,这样的方程叫做一元一次方程。
3.列方程解应用题:(1)设 ____ 。
(2)找出 ___ 的数量关系,(3)根据 ___________ 关系列方程,解决问题。
4.等式的性质:①等式两边同一个数(或式子),结果仍相等。
②等式两边乘同一个数,或除以的数,结果仍相等。
5.移项:把等式一边的某项移到另一边,叫做移项6.解一元一次方程的一般步骤:①、②、③、④、⑤化未知数的系数为1。
第四章图形认识初步1.几何图形:我们把从中抽象出的各种图形统称为。
2.立体图形:各部分不都在同一平面内,这种图形叫做。
3.平面图形:各部分同一平面内,这种图形叫做平面图形。
4.平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的。
5.三视图:指主视图、左视图、俯视图。
6立体图形也称几何体简称为体,棱柱、、棱锥、圆锥、等都是几何体。
包围着体的是面,面有平的面和面两种。
面和面相交的地方形成,线和线相交的地方是。
点、线、面、体经过运动变化,组合成各种几何图形。
动成线,线动成,面动成。
7.几何图形的结构:点、线、面、体组成几何图形。
是构成图形的基本元素。
8.点:表示一个物体的位置,通常用一个字母表示,如点A、点B。
9.直线的表示方法:①可以用这条直线上任意 ______ 的字母(大写)来表示;②也可以用一个 _____ 字母来表示。
10.直线的基本性质:经过两点有一条直线,并且只有一条直线。
简称。
直线的特征:①直线没有端点,不可量度,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
点与直线的位置关系:①点在直线上,也可以说这条直线这个点;②点在直线外,也可以说直线不经过这个点。
两条直线的位置关系有两种:①相交,当两条不同的直线有一个公共点时,我们就说这两条直线相交,这个公共点叫做这两条直线的交点。
②不相交(即平行)。
11.射线:直线上一点和它一旁的部分叫做射线。
射线的表示方法:①用两个大写字母表示,表示的字母写在前面,在两个字母前加上“射线”;②也可以用一个字母表示。
射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
12.线段:直线上两点和它们之间的部分叫做。
线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
线段的表示方法:①用的大写字母表示;②用一个小写字母表示。
线段的基本性质:两点间的所有连线中,线段最短。
简称:。
两点的距离:连接两点间的线段的长度叫做这两点的。
13.线段的中点:把一条线段分成两条线段的点,叫做线段的中点。
14.线段大小的比较方法:(1)叠合法;(2)法;(3)估测法。
比较线段的大小与比较数的大小一样,也可以用“>”、“<”或“=”来表示,字母前面的“线段”省略不写。
线段的和差与其数量的和差是一致的。
15.角:①有公共端点的两条射线组成的图形叫做,这个公共端点叫做角的,这两条射线叫做角的两条边。
②角也可以看做是由一条射线绕着它的端点旋转而形成的图形。
射线旋转时经过的平面部分称为角的内部,平面的其余部分称为角的外部。
注意:①角的大小与边的长短关,只与构成角的两边的幅度有关;②角的大小可以度量,可以比较,也可以参与运算。
角的表示方法:角可以用大写英文字母、阿拉伯数字或小写希腊字母表示。
角的符号是“∠”。
具体表示方法如下:①用角的符号和数字表示一个角;②用角的符号和小写的希腊字母表示一个角;③用角的符号和一个大写的英文字母表示一个独立的角(在一顶点处只有一个角);④用角的符号和三个大写的英文字母表示任意一个角,表示顶点的字母要写在中间。
角的分类:按角的大小可分为锐角、、钝角、平角、周角等。
角的平分线:从一个角的顶点出发,把这个角分成的两个角的线,叫做这个角的平分线。
方位角:表示方向的角,是指正北(或正南)方向线与目标方向线之间所夹的锐角。
如东偏北方35O .2016年最新版人教版七年级数学下册知识点第五章 相交线与平行线一、知识网络结构二、知识要点1.在同一平面内,两条直线的位置关系有 种: 相交 和 , 垂直 是相交的一种特殊情况。
2.在同一平面内,不相交的两条直线叫 线。
如果两条直线只有 个 公共点,称这两条直线相交;如果两条直线 公共点,称这两条直线平行。
3.两条直线相交所构成的四个角中,有 顶点,且有 条公共边 的两个角是邻补角。
邻补角的性质:邻补角 。
如图1所示,∠1与∠2互为邻补角,∠2 与 ∠ 互为邻补角,∠3 与 ∠ 互为邻补角,∠ 与∠1互为邻补角。
∠1+∠ = 180°;∠2+ ∠ = 180°;∠3+∠ = 180°;∠4+∠ = 180°。
4.两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 延长线,这样的两个角互为 对顶角 。
对顶角的性质:对顶角 。
如⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321____________________________:图1 13 4 2图1所示,∠1与∠ 互为对顶角,∠2与∠ 互为对顶角。
∠1=∠ ;∠2=∠ 。
5.两条直线相交所成的角中,如果有一个是直角或90时,称这两条直线互相 ,其中一条叫做另一条的垂线。
如图2所示,当∠1或∠2或∠3或∠4=90°时,a ⊥ 。
垂线的性质:性质1:过一点有且只有 条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中, 线段最短。
性质3:如图2所示,当 a ⊥ b 时,∠1= ∠2 = ∠3= ∠4 = °。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6.同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一 ,都在第三条直线(截线)的同一 ,这样的两个角叫 同位角 。
图3中,共有 4对同位角:∠1与∠ 是同位角;∠2与∠ 是同位角;∠3与∠ 是同位角;∠4与∠ 是同位角。
③在两条直线(被截线)的 之间 , 都在第三条直线(截线)的同一 ,这样的两个角叫 同旁内角 。
图3中,共有2对同旁内角:∠1与∠ 是同旁内角;∠4与∠ 是同旁内角。
7.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
如图4所示, 如果a ∥b ,则∠3=∠ ;∠2=∠ ;∠4=∠ ;∠1=∠性质2:两直线平行,内错角相等。
如图4所示,如果a ∥b ,则∠1=∠ ;∠4=∠ 。
性质3:两直线平行,同旁内角互补。
如图4所示,如果a ∥b ,则∠1+∠6= 180°;∠4+∠ = 180°。
性质4:平行于同一条直线的两条直线互相平行。
如果a ∥b ,a ∥c ,则b ∥c 。