Maneuvering Target Tracking Based on Adaptive Square Root Cubature Kalman Filter Algorithm
- 格式:pdf
- 大小:375.95 KB
- 文档页数:8
0引言在现代战争中,大量的空中机动目标出现在战场,并且以其高机动性、高灵活性、全天候作战和有效的攻击火力,承担着越来越重要的作用,使战争由平面发展到立体空间,对战略战术和军队组成等产生了重大影响。
但是,随着地面雷达和低空导弹的日益完善以及反空火力的增强,空中机动目标在作战中的危险性不断增加。
由于雷达对低空目标的快速反应能力很差、波束宽等原因,基于雷达体制收稿日期:2017-05-01修回日期:2017-06-23基金项目:国家自然科学基金资助项目(61201391)作者简介:鲁鹏威(1992-),男,江苏泰州人,在读硕士。
研究方向:角度跟踪和轨迹预测。
*摘要:在现代战争中,空中目标的低空作战方式严重威胁了地面的作战单位。
针对轻型防空武器系统,提出了一种基于角度的跟踪算法,对低空机动目标的飞行特性进行分析,采用“当前”统计模型,利用扩展卡尔曼滤波理论,同时通过最小均方算法对机动频率进行自适应调整,实现了对目标的角跟踪和预测。
仿真结果表明,与固定机动频率的角跟踪算法相比,该角跟踪算法具有更好的跟踪性能,误差明显减小,并且该算法具有计算速度快、稳定性好等特点。
关键词:角跟踪,“当前”统计模型,自适应滤波,最小均方算法中图分类号:TN953+.5;TJ0文献标识码:ADOI :10.3969/j.issn.1002-0640.2018.06.006引用格式:鲁鹏威,贾方秀,王晓鸣,等.自适应低空机动目标角跟踪算法研究[J ].火力与指挥控制,2018,43(6):32-36.自适应低空机动目标角跟踪算法*鲁鹏威1,贾方秀1,王晓鸣1,刘铭2(1.南京理工大学智能弹药技术国防重点学科实验室,南京210094;2.西安交通大学人居环境与建筑工程学院,西安710049)文章编号:1002-0640(2018)06-0032-05Vol.43,No.6Jun ,2018火力与指挥控制Fire Control &Command Control 第43卷第6期2018年6月Adaptive Angle Tracking Algorithm for Low Altitude Maneuvering TargetLU Peng-wei 1,JIA Fang-xiu 1,WANG Xiao-ming 1,LIU Ming 2(1.Ministerial Key Laboratory of Intelligent Ammunition ,Nanjing University of Science and Technology ,Nanjing 210094,China ;2.Human Settlements and Architectural Engineering ,Xi'an Jiao Tong University ,Xi ’an 710049,China )Abstract :In the modern war ,the low-level mode of operations of the maneuvering target seriouslythreatens the combat units on the ground.For the light air defense weapon system ,this paper proposes a tracking algorithm based on the angle.The flight characteristics of the maneuvering target are analyzed.The "current"statistical model and the extended Calman filter are used to realize the angle tracking and prediction ,and adjust the maneuvering frequency adaptively by the least mean square algorithm.The simulation results show that compared with the fixed maneuvering frequency angle tracking algorithm ,the angle tracking algorithm has better tracking performance and less error ,and thealgorithm has the advantages of fast computation speed and good stability.Key words :angle tracking ,“current ”statistical model ,adaptive filtering ,least mean square Citation format :LU P W ,JIA F X ,WANG X M ,et al.Adaptive angle tracking algorithm for low altitude maneuvering target [J ].Fire Control &Command Control ,2018,43(6):32-36.32··(总第43-)的防空系统将无法完成对低空、超低空目标的探测与跟踪[1]。
第45卷 第12期2023年12月系统工程与电子技术SystemsEngineeringandElectronicsVol.45 No.12December2023文章编号:1001 506X(2023)12 4005 08 网址:www.sys ele.com收稿日期:20220920;修回日期:20230312;网络优先出版日期:20230427。
网络优先出版地址:https:∥kns.cnki.net/kcms/detail/11.2422.TN.20230427.1351.010.html 通讯作者.引用格式:陈维义,何凡,刘国强,等.变结构交互式多模型滤波和平滑算法[J].系统工程与电子技术,2023,45(12):4005 4012.犚犲犳犲狉犲狀犮犲犳狅狉犿犪狋:CHENWY,HEF,LIUGQ,etal.Variablestructureinteractivemultiplemodelfilteringandsmoothingalgorithm[J].SystemsEngineeringandElectronics,2023,45(12):4005 4012.变结构交互式多模型滤波和平滑算法陈维义1,何 凡1, ,刘国强2,毛伟伟2(1.海军工程大学兵器工程学院,湖北武汉430030;2.海军士官学校兵器系,安徽蚌埠233000) 摘 要:针对机动目标跟踪问题,提出了一种变结构交互式多模型滤波和平滑算法。
首先,对多模型滤波和平滑问题进行了简单描述,并给出了前向交互式多模型滤波和后向交互式多模型平滑的数学模型;然后,建立了变结构交互式多模型算法的精确模型,模型子集之间并行独立运行,通过选取概率最高的模型子集的状态估计作为最终的估计结果;最后,对变结构交互式多模型算法的滤波数据进行平滑处理,得到了变结构交互式多模型滤波和平滑算法。
所提算法将前向滤波和后向平滑相结合,提高了目标跟踪精度。
一种机动目标多雷达协同跟踪方法刘志国(中国电子科技集团公司第二十研究所,西安 710068)摘 要:目标的机动性能不断提高,使得对目标跟踪提出越来越高的要求。
针对多部雷达协同探测的目标联合跟踪问题,提出了基于扩展卡尔曼滤波的交互式多模型算法(IMM-EKF)。
为了验证算法的有效性,对实测数据进行了处理。
首先,对三部雷达接收的目标运动状态量测数据进行预处理,包括坐标转换、线性插值和数据融合,然后,根据数据预处理后目标航迹的特性,采用基于扩展卡尔曼滤波的交互式多模型算法(IMM-EKF)对目标进行在线跟踪。
试验数据处理结果表明,IMM-EKF算法对于机动目标跟踪的有效性。
关键词:扩展卡尔曼滤波;互式多模型;目标跟踪;雷达协同中图分类号:TN953文献标识码:A 文章编号:1674-7976-(2020)-05-362-05 Multiple Radar Collaborative Tracking Method for Multiple Maneuvering TargetsLIU ZhiguoAbstract:Maneuvering target tracking based on multiple sensors is one of important aspects in the field of target tracking, which has been paid attention by domestic and foreign scholars and experts. With the development of modern science and technology and the unceasing enhancement of the target maneuver performance, which put forward higher requirement to target tracking. Aiming at maneuvering targets maneuvering characteristic, this paper focuses on Interacting Multiple Model based on Extended Kalman Filter (IMM-EKF) algorithm. The data preprocessing consisted of three process, coordinate transform,linear interpolation and data fusion. The Singer model of accelerate is used in target tracking on line based on IMM-EKF algorithm. The simulation of this algorithm shows that the algorithm is effective and superior.Key words:Extended Kalman Filter; Interacting Multiple Model; Target Tracking; Radar Cooperation0 引言目标跟踪是指根据雷达等传感器所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。
目标联合状态类型密度表示的跟踪门技术权宏伟;彭冬亮;薛安克【摘要】Most conventional tracking gate techniques only use the targets' kinematic measurement information, which typically results in great uncertainties of measurement-to-track association for multi-target tracking in clutter. Considering that the target class information can be derived from attribute sensors, the tracking gate technique for joint target state-class probability density is proposed. Firstly, a joint probability density description of the target state and target class is given, by which the method for constructing the class-conditioned gates is developed. In order to comply with nonlinearity in practical application, evaluating of the gate threshold adopted an algorithm based on simulation. Scenario 1 shows that if the target predictive measurement density is skewed distribution, the simulation-based threshold-evaluating algorithm can achieve optimal gate volume; and scenario 2 presents a target tracking process for ground formation. Compared with the data association methods using traditional tracking gates, the class-conditioned gate technique significantly improves the probabilities of the measurement-to-track association.%大多数传统的跟踪门技术仅使用目标的运动学量测信息,在多目标、多杂波跟踪场景中会导致较大的关联不确定性.考虑到属性传感器可以获取目标的类型信息,提出了基于目标联合状态类型概率密度的跟踪门方法.首先给出目标状态与类型的联合概率密度表示,从而导出以类为条件的跟踪门构建方法.为了适用于实时的非线性跟踪系统,门限的计算采用了基于仿真的算法.场景1显示如果目标的量测预测密度为偏斜函数时,基于仿真的门限算法可以获得最优的跟踪门;场景2为地面编队目标的跟踪过程.与使用传统的跟踪门相比,以类为条件的跟踪门技术在很大程度上提高了目标量测到航迹的关联率.【期刊名称】《光电工程》【年(卷),期】2012(039)001【总页数】6页(P88-93)【关键词】目标跟踪;数据关联;跟踪门;概率密度【作者】权宏伟;彭冬亮;薛安克【作者单位】华东理工大学信息科学与工程学院,上海200237;杭州电子科技大学信息与控制研究所,杭州310018;杭州电子科技大学信息与控制研究所,杭州310018【正文语种】中文【中图分类】TP271杂波环境中的多目标跟踪通常涉及到数据关联。
文章编号:1009-8119<2006)05-0039-03多速率数字信号处理及其研究现状张惠云<北京理工大学电子工程系,北京 100081)摘要回顾了多速率信号处理的发展背景,并对其基础理论作了简要介绍。
总结了目前多速率信号处理的一些主要应用领域,并对该领域的发展及应用做出了展望。
关键词多速率信号处理,滤波器组,抽取,内插Multirate Digital Signal Processing and Current Research StatusZhang Huiyun(Dept. of Electronics Engineering, Beijing Institute of Technology, Beijing 100081> Abstract First, the background and development of multirate digital signal processing are reviewed. Next, the basic theory is presented briefly. Then some of the recent application fields are discussed. In the end, the development prospect of multirate DSP is given.Keywords Multirate digital signal processing,Filter banks,Decimation,Interpolation1 绪论随着数字信号处理的发展,信号的处理、编码、传输和存储等工作量越来越大。
为了节省计算工作量及存储空间,在一个信号处理系统中常常需要不同的采样率及其相互转换,在这种需求下,多速率数字信号处理产生并发展起来。
它的应用带来许多好处,例如:可降低计算复杂度、降低传输速率、减少存储量等[1]。
基于IMM-UKF的纯方位机动目标跟踪算法顾晓东;袁志勇;周浩【期刊名称】《数据采集与处理》【年(卷),期】2009(024)0z1【摘要】In nonlinear maneuvering target tracking,filters are liable to diverge or have large tracking errors.To solve the problem,an interacting multiple model with unscented Kalman filter(IMM-UKF)algorithm is designed by introducing UKF into IMM algorithm based on bearings-only tracking for multi-stations.The algorithm is not affected by the linearization errot in extended Kalman filter(EKF)filter.Finally,the algorithm is compared with EKF,IMM-EKF algorithms.Simulations show that the IMM-UKF algorithm is more stable and effective,thus improving the convergence speed and tracking precision.%针对在非线性机动目标跟踪中存在的滤波器易发散、跟踪误差大等问题,本文在多站纯方位跟踪的基础上,把Unscented卡尔曼滤波(Unscented Kalman filter,UKF)引进到交互多模型算法(Interacting multiple model,IMM)中,设计了交互多模型UKF滤波算法,克服了EKF中引入的较大线性化误差对机动目标跟踪算法性能的影响.最后将该算法与扩展卡尔曼滤波(EKF)、IMM-EKF算法进行了比较,仿真结果表明:IMM-UKF 算法增强了EKF滤波器的稳定性,提高了滤波收敛速度和跟踪精度.【总页数】4页(P88-91)【作者】顾晓东;袁志勇;周浩【作者单位】海军工程大学兵器工程系,武汉,430033;海军工程大学兵器工程系,武汉,430033;海军工程大学兵器工程系,武汉,430033【正文语种】中文【中图分类】TN911【相关文献】1.基于IMM—UKF的纯方位机动目标跟踪算法 [J], 顾晓东;袁志勇;周浩2.一种新的双基阵纯方位机动目标跟踪算法 [J], 徐本连;王执铨3.基于MDA-MHT的纯方位多目标跟踪算法 [J], 丁振平;陈秀英;薛雯4.基于MDA-MHT的纯方位多目标跟踪算法 [J], 丁振平; 陈秀英; 薛雯5.基于纯方位的多无人机协同目标跟踪算法 [J], 辛沙欧;陈可;宋震林;桂欣颖;戚国庆因版权原因,仅展示原文概要,查看原文内容请购买。
2014年全国研究生数学建模竞赛B题机动目标的跟踪与反跟踪目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。
目标跟踪理论在军、民用领域都有重要的应用价值。
在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。
目标机动是指目标的速度大小和方向在短时间内发生变化,通常采用加速度作为衡量指标。
目标机动与目标跟踪是“矛”与“盾”的关系。
随着估计理论的日趋成熟及平台能力提升,目标作常规的匀速或者匀加速直线运动时的跟踪问题已经得到很好的解决。
但被跟踪目标为了提高自身的生存能力,通常在被雷达锁定情况下会作规避的机动动作或者释放干扰力图摆脱跟踪,前者主要通过自身运动状态的快速变化导致雷达跟踪器精度变差甚至丢失跟踪目标,后者则通过制造假目标掩护自身,因此引入了在目标进行机动时雷达如何准确跟踪的问题。
机动目标跟踪的难点在于以下几个方面:(1) 描述目标运动的模型[1,2]即目标的状态方程难于准确建立。
通常情况下跟踪的目标都是非合作目标,目标的速度大小和方向如何变化难于准确描述;(2) 传感器自身测量精度有限加之外界干扰,传感器获得的测量信息[3]如距离、角度等包含一定的随机误差,用于描述传感器获得测量信息能力的测量方程难于完全准确反映真实目标的运动特征;(3) 当存在多个机动目标时,除了要解决(1)、(2)两个问题外,还需要解决测量信息属于哪个目标的问题,即数据关联。
在一定的测量精度下,目标之间难于分辨,甚至当两个目标距离很近的时候,传感器往往只能获得一个目标的测量信息。
由于以上多个挑战因素以及目标机动在战术上主动的优势,机动目标跟踪已成为近年来跟踪理论研究的热点和难点。
不同类型目标的机动能力不同。
通常情况下战斗机的飞行速度在100~400m/s,机动半径在1km以上,机动大小一般在10个g以内,而导弹目标机动,加速度最大可达到几十个g,因此在对机动目标跟踪时,必须根据不同的目标类型选择相应的跟踪模型。
量化量测条件下的交互多模型箱粒子滤波赵雪刚;宋骊平;姬红兵【摘要】In the distributed multi-sensor networks,in order to save the communication bandwidth,to quantize the point observations obtained by sensors into the interval measurements is required.However, the traditional filtering algorithm can not directly deal with the quantitative measurements.The box particle filter (Box-PF) as a"generalized particle filter"algorithm uses the box particles and the bounded error model to replace the traditional point particles and the error statisticalmodel.Therefore,it is a powerful tool for processing interval measurements.Key advantages of the Box-PF against the standard particle filter (PF)are a smaller particle number,reduced computational complexity and a fast running speed.Therefore, to cope with the maneuvering target tracking with the quantitative measurements,this paper presents an interacting multiple model box particle filter(IMMBPF)algorithm.Simulation results show that under the condition of quantitative measurements IMMBPF and IMMPF are both able to accurately estimate the states of the maneuvering target.The IMMBPF,however,needs fewer particles,and computes more efficiently.%在分布式多传感器网络中,为了节省通信带宽,需要将传感器得到的点量测量化成区间量测,而传统的滤波算法均不能直接处理这种量化量测。
Chapter95Maneuvering Target Tracking Basedon Adaptive Square Root CubatureKalman Filter AlgorithmSisi Wang and Lijun WangAbstract Concerning low accuracy even divergence of maneuvering target tracking due to inaccurate tracking model and statistical property,an adaptive Square Root Cubature Kalman Filter(SCKF)is proposed based on the standard SCKF and modified Sage-Husa estimator.The proposed algorithm can estimate the statistical parameters of unknown system noises online,and restrain the tracking error caused by unknown system noises effectively;hence it is applied to maneuvering target tracking.The simulation is preformed latterly and experi-mental results show that comparing with the standard SCKF algorithm,the adaptive SCKF can achieve better accuracy and stability for maneuvering target tracking while the system noises is unknown and time variation. Keywords Adaptive SCKFÁManeuvering target tracking95.1IntroductionManeuvering Target Tracking is a hotspot and difficulty in radar information processingfields at all times.In maneuvering tracking target applications,target dynamics are usually modeled in Cartesian coordinates.State vector encompass velocity and position components.The corresponding measurement information is expressed in polar coordinates,including distance components,bearing S.Wang(&)ÁL.WangSchool of Navigation,Guangdong Ocean University,40#,East Jiefang Road,Zhanjiang,Chinae-mail:mars32lin@L.Wange-mail:123wanglijun@W.Lu et al.(eds.),Proceedings of the2012International Conference on Information901 Technology and Software Engineering,Lecture Notes in Electrical Engineering210,DOI:10.1007/978-3-642-34528-9_95,ÓSpringer-Verlag Berlin Heidelberg2013902S.Wang and L.Wang components even elevation components and so on.Hence,Maneuvering Target Tracking is considered as a typical multidimensional nonlinear estimate problem.The square root cubature Kalmanfilter proposed in recent year is a effectively method for the multidimensional nonlinear estimate problem[1].The simulation result proved that under the hypothesis of equal computational complexity,the SCKF algorithm has the higher accuracy than the common nonlinear estimate method such as Particle Filter and Unscented Kalman Filter and so on[2].But while thefilter is based on the inaccurate model and noise statistical property,it will lead to larger estimate error even divergence.And more often than not,the process noise is difficult represented its statistics property due to external inter-ference,acceleration physical characteristic and manipulate and so on.Therefore, process noise is usually unknown and time variation.To solve this problem,an adaptive SCKF(ASCKF)is proposed,which is a combination of modified Sage-Husa estimator and SCKF.The modified Sage-Husa suboptimal unbiased estimator which is embedded into the algorithm can recursively estimates and corrects the unknown noise on line,and thus the ASCKF can handle the recursive statefiltering in the presence of unknown process noise covariance matrices.95.2Problem StatementConsidering general maneuvering target tracking problem in Cartesian coordi-nates,the discrete time state system and measurement equation can be described as following state space model.x k¼f x kÀ1ðÞþv kÀ1ð95:1ÞðÞþx kð95:2Þz k¼h x kWhere x k2R n x is the state of the dynamic system at discrete time k;f: R n xÂR n x!R n x and h:R n xÂR n x!R n x are some known functions;z k2R n x is the measurement;v kÀ1f g and x kf g are independent process and measurement Gaussian noise sequences with means q and r and covariances Q kÀ1and R k, respectively.95.3Square Root Cubature Kalman FilterThe symmetry and positive definiteness of error covariance matrix are often lost in update cycle of the CKF,and then Ienkaran Arasaratnam proposed the SCKF algorithm base on the standard CKF.The rest of this section is devoted to describe the SCKF in detail.Firstly,according the 3rd spherical-radial rule,a total of m ¼2n cubature points is chosen,where n is the state-vector dimension,and cubature points set w i ;n i f g are used to piecewise linear approach the probability distribution function of state vector.Wherew i ¼1m ;n i ¼ffiffiffiffim 2r l ½ i;i ¼1;2;...;m ;m ¼2n ;ð95:3Þwhere l ½ 2R n is a generator,and l ½ i denote the ith element of l ½ .For example,l ½ 2R 2represents the following set of points:10;01 ;À10 ;0À1 &'ð95:4ÞAssume the posterior density probability p x k À1j z 1:k À1ðÞ$N x k À1;x k À1=k À1;ÀP k À1=k À1Þat time k À1is known,the Cholesky factor S k À1=k À1of error covariance is available as S k À1=k À1¼chol P k À1=k À1ÈÉ.The SCKF algorithm can be repre-sented as following three steps:Step 1:Initializationx 0j 0;S 0j 0¼chol P 0j 0ÀÁStep 2:Time updateX i ;k À1j k À1¼S k À1j k À1n i þ^x k À1j k À1X Ãi ;k j k À1¼f X i ;k À1j k À1;u k À1ÀÁ^x k j k À1¼1m X m i ¼1X Ãi ;k j k À1þq S k j k À1¼Tria v Ãk j k À1;S Q ;k À1h i ð95:5ÞWhereQ k À1¼S Q ;k À1S T Q ;k À1v Ãk j k À1¼1ffiffiffiffimp X Ã1;k j k À1À^x k j k À1X Ã2;k j k À1ÂÀ^x k j k À1ÁÁÁX Ãm ;k j k À1À^x k j k À1Ãð95:6ÞStep 3:Measurement updateX i ;k j k À1¼S k j k À1n i þ^x k j k À1Z i ;k j k À1¼h X i ;k j k À1;u k ÀÁ95Maneuvering Target Tracking Based on Adaptive Square Root 903^z k j k À1¼1m X m i ¼1Z i ;k j k À1S zz ;k j k À1¼Tria f k j k À1S R ;k ÂÃÀÁP xz ;k =k À1¼v k =k À1v T k =k À1W k ¼P xz ;k j k À1=S T zz ;k j k À1 =S zz ;k j k À1^x k j k ¼^x k j k À1þW k z k À^z k j k À1ÀÁð95:7ÞWhere R k ¼S R ;k S T R ;kf k j k À1¼1ffiffiffiffimp Z 1;k j k À1À^z k j k À1Z 2;k j k À1ÂÀ^z k j k À1ÁÁÁZ 3;k j k À1À^z k j k À1Ãv k j k À1¼1ffiffiffiffimp X 1;k j k À1À^x k j k À1X 2;k j k À1ÂÀ^x k j k À1ÁÁÁX m ;k j k À1À^x k j k À1Ãð95:8Þ95.4Adaptive SCKFMany adaptive filtering methods are proposed to avoid divergence due to inac-curate and time variation of the noise statistics property [3,4].Among them,the Sage-Husa noise estimator is used most extensively [5].However,it should be noted that adaptive filtering algorithms which the Sage-Husa estimator is applied can not estimate process and measurement noise simultaneously.And while the process noise is time variation,the latest data need be centered on,so the sub-optimal modified Sage-Husa estimator is introduced.Accordingly,aim at Maneuvering Target Tracking,an ASCKF which combines the advantages of modified Sage-Husa noise estimator and SCKF can recursively estimate the unknown process noise,and then filter in the nonlinear system.The detailed SCKF algorithm is described as below formulas.Step 1:Initializationx 0j 0;S 0j 0¼chol P 0j 0ÀÁ;^q 0¼q 0;^Q 0¼Q 0ð95:9ÞStep 2:Time updateCompute from (95.5–95.6)on the basis of given S k À1j k À1,^x k À1j k À1,^q k À1and ^Qk À1.Step 3:Measurement updateCompute from (95.7–95.8),the updated state estimate ^x k j k is achieved.904S.Wang and L.Wang^q k ¼1Àd k ðÞ^q k À1þd k À1^x k j k ÀU k ^x k À1j k À1ÂÃ^Q k ¼1Àd k ðÞ^Q k À1þd k W k ~z k ~z T k W T k ÂþP k j k ÀU k P k À1j k À1U T kÃð95:10ÞWhere~z k ¼z k Àh x k =k À1ÀÁ;d k ¼1Àb 1Àb ;0:95\b \0:99ð95:11Þb is a forgetting factor,~z k is predict residual and U k is transition matrix.95.5Numerical Simulations95.5.1Simulation ScenarioConsider Maneuvering Target Tracking scenario where a target executes maneu-vering turn in a horizontal plane at a constant,but unknown turn rate X ,and the process noise is unknown.So the kinematics of the turning motion can be modeled by the following nonlinear process equation [6].Where the state of target isx ¼x _xy _y ½ ;x and y denote position,and _x and _y denote velocities in the x and y directions,respectively;T is the time-interval between two consecutive measurementsx k ¼1sin X T X 0À1Àcos X T X 0cos X T 0Àsin X T 01Àcos X T X 1sin X T X 0sin X T 0cos X T2666437775x k À1þv k ð95:12ÞWhere the process noise with an unknown covariance as below equations.v k $N 0;Q k À1ðÞ;Q k À1¼diag g M g M ½ ;M ¼T 3=3T 2=2T 2=2T!ð95:13ÞThe scalar parameter g is related to process noise intensities.A radar is fixed at the origin of the target and equipped to measure the range r ,and bearing h .Hence,we write the measurement equation.r k h k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffix 2k þy 2k p tan À1x k y k"#þw k ð95:14ÞWhere the measurement noise w k $N 0;R ðÞ,with R ¼diag r 2r r 2h ÂÃDataT ¼1s ;X ¼À3 s À1;r r ¼10m ;r h ¼ffiffiffiffiffi10p mrad95Maneuvering Target Tracking Based on Adaptive Square Root 905True initial statex 0¼1;000m300ms À11;000m 0ms À1ÂÃAnd the associated covarianceP 0=0¼diag 100m 210m 2s À2100m 210m 2s À2ÂÃInitial state estimate^x 0=0$N x 0;P 0=0ÀÁQ k is designed to change according toQ k ¼diag ½g 2M g 2M 1 k 30diag ½g 3M g 3M 31 k 70diag ½g 4M g 4M 71 k 1008<:ð95:15ÞWhere g 2¼10;g 3¼40;g 4¼90;M ¼T 3=3T 2=2T 2=2T !95.5.2Simulation Results and Analysis250independent Monte Carlo runs were made,where the prior process noise covariance Q 0¼g 1M g 1M ½ ,and g 1¼0:1m 2s À3for a more accurate simula-tion.All the filters are initialized with the same condition in each run.The total number of scans per run is 100.To compare various nonlinear filters performances,the root-mean square error (RMSE)of the position and velocity is used.RMSE pos k ðÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1N X N n ¼1x n k À^x n k ÀÁ2þy n k À^y n k ÀÁ2 v u u t ð95:16ÞWhere x n k y n kÀÁand ^x n k ^y n k ÀÁare the true and estimated positions at the n-th Monte Carlo run.Similarly to the RMSE in position,the formula of RMSE in velocity is also written.Figure 95.1shows the trajectory of target and Fig.95.2compares the RMSEs in position and velocity,respectively.In addition,the mean of target state estimation RMSE is also shown in Table 95.1.In Fig.95.2,the RMSEs of various filters are compared across 100time steps,and By reason of the large estimation errors caused by unknown and time variant process noise,it can be seen from the Fig.95.2that RMSE of standard SCKF sometimes deviate from the true RMSE very large,especially when the true process noise is much different from the prior knowledge.Note that as expected in906S.Wang and L.Wang95Maneuvering Target Tracking Based on Adaptive Square Root907Table95.1Mean of target state estimation RMSEParameters SCKF ASCKF Unit Position44.996120.1605m Velocity16.234915.8687ms-1908S.Wang and L.Wang Table95.1,the mean of position and velocity estimations RMSE of ASCKF are obviously less than that of standard SCKF.The better performance of the ASCKF in maneuvering target tracking due to the modified Sage-Husa estimator which can estimate the unknown process noises online,whereas the standard SCKF depends on thefixed prior knowledge about the process noises.In new algorithm,the estimated noise statistics are recursively used by the ASCKF to adaptively compensate the influence caused by inaccurate a priori knowledge and changing statistics of system noise.Ultimately,according to the contents mentioned above,it can be concluded that the performance of the ASCKF is superior to standard SCKF in the condition of unknown and time variant process noises.95.6ConclusionsIn this paper,a new ASCKF,which is based on modified Sage-Husa estimator,has been proposed for maneuvering target tracking with unknown and time variant system noise statistics.The simulation results show that the proposedfilter pro-vides better performance in tracking accuracy than the CKF.References1.Arasara J,Haykin S(2009)Cubature Kalmanfilter.IEEE Trans Autom control54(6):1254–12602.Haykin S(2009).Cubaturefilters:new generation of nonlinearfilters that will impact theliterature.Available via internet.http://soma.mcmaster.ca3.Hu C,Chen W,Chen Y,Liu D(2003)Adaptive Kalmanfiltering for vehicle navigation.J Global Positioning Syst2(1):2–474.Mohamed AH,Schwarz KP(1999)Adaptive Kalmanfiltering for INS/GPS.J Geodesy73:193–2035.Sage A,Husa GW(1969)Adaptivefiltering with unknown prior statistics.In:Proceedings ofjoint automatic control conference,USA,pp760–7696.Bar Shalom Y,Li XR,Kirubarajan T(2001)Estimation with applications to tracking andnavigation.Wiley,New York。