浅谈抽象函数的图像对称性、周期性及奇偶性的关系
- 格式:pdf
- 大小:139.22 KB
- 文档页数:2
抽象函数周期性对称性相关定理全总结1. Fourier级数定理:Fourier级数定理是抽象函数周期性对称性的基本理论定理之一、它表明,任何以L为周期的可积函数f(x)都可以展开成正弦函数与余弦函数的无穷级数形式,即Fourier级数。
这个级数可以表示为:f(x) = a0 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,L是函数周期,a0是常数项,an和bn分别是系数。
2.奇偶周期性与对称性:奇周期性与对称性是周期性对称性的两种特例。
如果一个函数满足f(x) = -f(-x),则称其为奇函数。
奇函数可以展开成sin函数的Fourier级数形式。
如果一个函数满足f(x) = f(-x),则称其为偶函数。
偶函数可以展开成cos函数的Fourier级数形式。
3. 对称函数的Fourier级数展开与傅里叶定理:对称函数的Fourier级数展开是指将一个以L为周期的对称函数展开成cos函数的Fourier级数形式。
傅里叶定理表明,对于一个以L为周期的函数f(x),如果f(x)是一个对称函数,则其Fourier级数展开只包含cos函数;如果f(x)是一个奇函数,则其Fourier级数展开只包含sin函数。
4. 函数的周期拓展与周期函数的Fourier级数:函数的周期拓展是指将一个以L为周期的函数f(x)拓展成以2L为周期的函数。
周期拓展后的函数可以用以L为周期的函数的Fourier级数展开。
具体而言,如果将f(x)的周期拓展后的函数记作F(x),则对于周期拓展后的函数F(x),存在一个以L为周期的函数g(x),使得F(x) = g(x)在[-L, L]上成立。
所以,F(x)的Fourier级数展开实际上是以L为周期的函数g(x)的Fourier级数展开。
综上所述,抽象函数周期性对称性相关定理涉及四个方面:Fourier级数定理、奇偶周期性与对称性、对称函数的Fourier级数展开与傅里叶定理、函数的周期拓展与周期函数的Fourier级数。
抽象函数的奇偶性、对称性与周期性“妙趣横生”
李居强;李琪
【期刊名称】《高中数理化》
【年(卷),期】2024()3
【摘要】在高中数学中,抽象函数的奇偶性、对称性与周期性往往形影相伴,三者之中“因二生一”的内在联系,在历年的高考中备受命题者的青睐,特别是已知抽象函
数y=f(x)的奇偶性和周期性,判断该函数对称性的这种问题.本文对奇偶性与轴对称
结合探究周期性、周期性与轴对称结合探究奇偶性的问题进行具体分析,以期能引
起广大同学们的思考.
【总页数】2页(P1-2)
【作者】李居强;李琪
【作者单位】陕西省宝鸡市教育教学研究室
【正文语种】中文
【中图分类】G63
【相关文献】
1.浅谈抽象函数的图像对称性、周期性及奇偶性的关系
2.从抽象函数形式看函数性质——抽象函数在周期性、对称性、奇偶性上的体现
3.巧记结论灵活处理抽象函
数的对称性、奇偶性及周期性的相关问题4.巧记结论灵活处理抽象函数的对称性、奇偶性及周期性的相关问题5.2022年新高考Ⅰ卷第12题通法与“秒杀”——抽
象函数的奇偶性、周期性和对称性问题
因版权原因,仅展示原文概要,查看原文内容请购买。
函数奇偶性对称性周期性知识点总结文档函数的奇偶性、对称性和周期性是函数图像特征的重要方面。
在数学中,研究函数的这些特性可以帮助我们更好地理解函数的行为和性质。
本文将对函数的奇偶性、对称性和周期性进行总结。
一、函数的奇偶性奇偶性是指函数关于坐标原点或者其中一点的对称性。
如果函数f(x)满足f(x)=f(-x),则称函数为偶函数;如果函数f(x)满足f(x)=-f(-x),则称函数为奇函数。
1.偶函数的特点:(1)关于y轴对称,即函数的图像关于y轴对称;(2)具有对称性质,即对于任意x,有f(x)=f(-x);(3)如果函数f(x)在定义域内可导,则偶函数的导函数也是偶函数。
2.奇函数的特点:(1)关于原点对称,即函数的图像关于原点对称;(2)具有对称性质,即对于任意x,有f(x)=-f(-x);(3)如果函数f(x)在定义域内可导,则奇函数的导函数也是奇函数。
二、函数的对称性对称性是指函数图像关于其中一直线、其中一点或者其中一中心进行对称的性质。
1.关于y轴对称:如果函数f(x)满足f(x)=f(-x),则函数关于y轴对称。
这意味着函数的图像在y轴左右对称。
2.关于x轴对称:如果函数f(x)满足f(-x)=-f(x),则函数关于x轴对称。
这意味着函数的图像在x轴上下对称。
3.关于原点对称:如果函数f(x)满足f(-x)=-f(-x),则函数关于原点对称。
这意味着函数的图像在原点对称。
三、函数的周期性周期性是指函数在一定区间内以一些特定的周期重复出现的性质。
1.周期函数:如果函数f(x)在定义域的一些区间内满足f(x+T)=f(x),其中T为正数,则称函数为周期函数,T为函数的周期。
周期函数的图像在段区间内重复出现。
2.周期函数的性质:(1)在一个周期内,函数具有相同的性质和特点;(2)相邻两个周期之间的函数值关系相同;(3)周期函数的图像在一个周期内是相似的。
四、函数的判断在实际问题中,我们根据函数的表达式或者图像来判断函数的奇偶性、对称性和周期性。
抽象函数的对称性、奇偶性与周期性常用结论抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较 困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力。
一、函数)(x f y =图象本身的对称性(自身对称)1、函数的轴对称:推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称特殊地,函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称。
2、 函数的点对称:推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称特殊地,若()x f y =满足()()0=-++x a f x a f ,则()x f y =的图象关于点()0,a 对称。
特殊地,若()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称。
二、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
从抽象函数形式看函数性质—— 抽象函数在周期性、对称性、奇偶性上的体现㈠周期性定义:任意I ,I ∈x 是定义域,都有=()(+T),T f x f x 是非零常数。
则 ()f x 是周期函数,其周期是T 。
推广:①I ,∀∈x 都有),22(+)=(-T T f x f x 则()f x 是以T 为周期的周期函数。
②I ,∀∈x 都有()=()++f x A f x B ,A ,B 是常数,则()f x 是以||-B A 为周期的周期函数。
下面给出证明:令,+=∴=-∴+=-+x A X x X A x B X A B 。
()()()∴=+-∴f X f X B A f x 是以||-B A 为周期的周期函数。
另可发现规律:括号内两项之差为定值T ,周期T=定值。
③若存在非零常数T ,使()()0+-=f x T f x ,则()f x 是周期的周期函数。
联想:()()0++=f x T f x 是不是周期函数呢?事实上,若()()+=-f x T f x 成立,则()()+=-f x T f x ()()⎡⎤⎣⎦=---=-f x T f x T , ()∴f x 是以2T 为周期的周期函数。
证明:11()=(),()1()()+==-∴-f x T f x T f x f x f x T 是以2T 为周期的周期函数。
1(),()()⑤若+=-∴f x T f x f x 是以2T 为周期的周期函数。
11()(),()1()()+=-=-=-∴--f x T f x T f x f x f x T 是以2T 为周期的周期函数。
证明:11()(),()1()()+=-=-=-∴--f x T f x T f x f x f x T 是以2T 为周期的周期函数。
㈡对称性①偶函数()f x 关于y 轴0=x 对称,()()。
-=f x f x②结论1:()f x 的图象关于=x a 对称()()⇔+=-f a x f a x证明:⇐对,0∀x 不妨令,00>x 在(,0)a 右侧0x 处,取+0,=x a x 对应纵坐标()10=+y f a x 。
函数的对称性、周期性以及之间的关系对称性、奇偶性、周期性、单调性函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.在研究函数图象的对称性时,一定要区分是一个图象自身的对称(称之为“自对称”),还是两个函数图象间的对称(称之为“互对称”)。
函数的对称性指的是函数的图象的对称性,通常包括点对称和直线对称,即中心对称和轴对称。
自对称一、函数的对称性关于函数图象的对称性,我们有这样两个命题。
命题1:如果函数y=f(x)的图像关于点M(m, n)对称,那么f (m +x) + f (m-x)=2n 即f(x)+f(2m-x)=2n命题2:如果函数y=f(x)的图像关于直线x=m对称,那么f (m +x) = f (m-x)即f (x) = f (2m-x)二、函数的奇偶性与对称性的联系命题1:函数y=f(x)的图像关于点M(0, 0)对称的充要条件是函数y= f (x)是奇函数,即f (x) + f (-x) = 0命题2:函数y=f(x)的图像关于点直线x=0对称的充要条件是函数y= f (x)是偶函数,即f (x) = f (-x)三、函数的周期性与对称性的联系包括点点对称、线线对称、点线对称的周期性命题:①若函数y = f (x) 图像同时关于点A (m ,c)和点B (n ,c)成中心对称(m ≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.②若函数y = f (x) 图像同时关于直线x = m 和直线x = n成轴对称(m≠n),则y = f (x)是周期函数,且2| m-n|是其一个周期.③若函数y = f (x)图像既关于点A (m ,c) 成中心对称又关于直线x =n成轴对称(m≠n),则y = f (x)是周期函数,且4| m-n|是其一个周期.(同为中心对称或同为轴对称乘2;一中心对称一轴对称乘4)四、函数的奇偶性、周期性和对称性的联系奇偶性只是特殊的点线对称。
第二章函数第3讲函数的奇偶性、周期性与对称性课标要求命题点五年考情命题分析预测1.了解奇偶性的概念和几何意义.2.了解周期性的概念和几何意义.函数的奇偶性2023新高考卷ⅠT11;2023新高考卷ⅡT4;2023全国卷乙T4;2023全国卷甲T13;2022新高考卷ⅠT12;2022全国卷乙T16;2021全国卷乙T4;2021全国卷甲T12;2021新高考卷ⅠT13;2021新高考卷ⅡT8;2021新高考卷ⅡT14;2020全国卷ⅡT9;2020新高考卷ⅠT8;2019全国卷ⅡT14;2019全国卷ⅢT11本讲为高考命题重点,命题热点有函数奇偶性的判断,利用函数的奇偶性求解析式、求函数值、解不等式等,函数周期性的判断及应用.题型以选择题、填空题为主,函数性质综合命题时难度中等偏大.预计2025年高考命题稳定,备考时注重常规题型训练的同时,关注命题角度创新试题及抽象函数性质的灵活运用.函数的周期性2022新高考卷ⅠT12;2022新高考卷ⅡT8;2022全国卷乙T12函数图象的对称性2022全国卷乙T12函数性质的综合应用2022新高考卷ⅠT12;2022全国卷乙T12;2021新高考卷ⅡT8;2021全国卷甲T12;2020新高考卷ⅠT8;2019全国卷ⅢT11学生用书P0241.函数的奇偶性奇偶性定义图象特征特性单调性奇函数一般地,设函数f (x )的定义域为D ,如果∀x ∈D ,都有-x ∈D ,且①f (-x )=关于②原点对称.(1)如果定义域中包含0,那么f (0)=③0.(2)若函数在关于原在关于原点对称的区间上单调性⑤相同.-f(x),那么函数f(x)就叫做奇函数.点对称的区间上有最值,则f(x)max+f(x)min=④0.偶函数一般地,设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且⑥f(-x)=f(x),那么函数f(x)就叫做偶函数.关于⑦y轴对称.f(x)=f(|x|).在关于原点对称的区间上单调性⑧相反.注意(1)只有函数在x=0处有定义时,f(0)=0才是f(x)为奇函数的必要不充分条件;(2)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.规律总结1.常见的奇(偶)函数(1)函数f(x)=a x+a-x为偶函数,函数g(x)=a x-a-x为奇函数;(2)函数f(x)=--+-=2-12+1为奇函数,函数g(x)=log a-+为奇函数;(3)函数f(x)=log a(x+2+1)为奇函数,函数g(x)=log a(2+1-x)也为奇函数.2.函数奇偶性的拓展结论(1)若函数y=f(x+a)是偶函数,则f(x+a)=f(-x+a),函数y=f(x)的图象关于直线x=a对称.(2)若函数y=f(x+b)是奇函数,则f(x+b)+f(-x+b)=0,函数y=f(x)的图象关于点(b,0)中心对称.2.函数的周期性(1)周期函数一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且⑨f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的⑩最小正周期.注意并不是所有的周期函数都有最小正周期,如f(x)=5.常用结论函数周期性的常用结论设函数y=f(x),x∈R,a>0,a≠b.(1)若f(x+a)=-f(x),则2a是函数f(x)的周期;(2)若f(x+a)=±1(),则2a是函数f(x)的周期;(3)若f(x+a)=f(x+b),则|a-b|是函数f(x)的周期.3.函数图象的对称性已知函数f(x)是定义在R上的函数,(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线⑪x=+2对称.(2)若f(a+x)+f(b-x)=c,则y=f(x)的图象关于点⑫(+2,2)对称.注意(1)奇、偶函数的图象平移之后对应的函数不一定有奇偶性,但其图象一定有对称性.(2)注意区分抽象函数的周期性与对称性的表示,周期性的表示中,括号内x的符号相同,对称性的表示中,括号内x的符号相反.常用结论函数f(x)图象的对称性与周期的关系(1)若函数f(x)的图象关于直线x=a与直线x=b对称,则函数f(x)的周期为2|b-a|;(2)若函数f(x)的图象既关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期为2|b-a|;(3)若函数f(x)的图象既关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期为4|b-a|.1.已知函数f(x)为奇函数,当x>0时,f(x)=x2+1,则f(-1)=(A)A.-2B.0C.1D.22.函数f(x)=r1图象的对称中心为(B)A.(0,0)B.(0,1)C.(1,0)D.(1,1)解析由题知f(x)=r1=1+1,其图象可由y=1的图象向上平移一个单位长度得到,又y=1的图象关于(0,0)对称,所以f(x)=1+1的图象关于(0,1)对称.3.[多选]以下函数为偶函数的是(AC)A.f(x)=x2-1B.f(x)=x3C.f(x)=x2+cos xD.f(x)=1+|x|4.已知函数f(x)为R上的偶函数,且当x<0时,f(x)=x(x-1),则当x>0时,f(x)=x(x+1).5.已知定义在R上的函数f(x)满足f(x)=f(x-2),当x∈[0,2)时,f(x)=x2-4x,则当x∈[4,6)时,f(x)=x2-12x+32.解析设x∈[4,6),则x-4∈[0,2),则f(x-4)=(x-4)2-4(x-4)=x2-12x +32.又f(x)=f(x-2),所以函数f(x)的周期为2,所以f(x-4)=f(x),所以当x∈[4,6)时,f(x)=x2-12x+32.6.[2024北京市海淀区中国农业大学附属中学模拟]若f(x)=+,<0,B-1,>0是奇函数,则a=1,b=1.解析由f(x)为奇函数,知f(-x)=-f(x),当x>0时,可得-x+a=-bx+1,所以b=1,a=1.学生用书P026命题点1函数的奇偶性角度1判断函数的奇偶性例1(1)[全国卷Ⅰ]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(B)A.f(x)g(x)是偶函数B.f(x)|g(x)|是奇函数C.|f(x)|g(x)是奇函数D.|f(x)g(x)|是奇函数解析因为f(x)为奇函数,g(x)为偶函数,所以f(x)g(x)为奇函数,f(x)·|g(x)|为奇函数,|f(x)|g(x)为偶函数,|f(x)g(x)|为偶函数,故选B.(2)[2021全国卷乙]设函数f (x )=1-1+,则下列函数中为奇函数的是(B )A.f (x -1)-1B.f (x -1)+1C.f (x +1)-1D.f (x +1)+1解析解法一因为f (x )=1-1+,所以f (x -1)=1-(-1)1+(-1)=2-,f (x +1)=1-(r1)1+(r1)=-r2.对于A ,F (x )=f (x -1)-1=2--1=2-2,定义域关于原点对称,但不满足F (x )=-F (-x );对于B ,G (x )=f (x -1)+1=2-+1=2,定义域关于原点对称,且满足G (x )=-G (-x );对于C ,f (x +1)-1=-r2-1,定义域不关于原点对称;对于D ,f (x +1)+1=-r2+1,定义域不关于原点对称.故选B.解法二f (x )=1-1+=2-(r1)1+=21+-1,为保证函数变换之后为奇函数,需将函数y =f (x )的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f (x -1)+1,故选B.方法技巧1.(1)函数定义域关于原点对称是函数有奇偶性的前提条件;(2)若定义域关于原点对称,则判断f (x )与f (-x )是否具有等量关系,具体运算中,可转化为判断f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.2.在公共定义域内有:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数.注意对于分段函数奇偶性的判断,要分段判断f (-x )=f (x )或f (-x )=-f (x )是否成立,只有当所有区间都满足相同关系时,才能判断该分段函数的奇偶性.角度2函数奇偶性的应用例2(1)[2023新高考卷Ⅱ]若f (x )=(x +a )·ln 2-12r1为偶函数,则a =(B )A.-1B.0C.12D.1解析解法一设g(x)=ln2-12r1,易知g(x)的定义域为(-∞,-12)∪(12,+∞),且g(-x)=ln-2-1=ln2r12-1=-ln2-12r1=-g(x),所以g(x)为奇函数.若-2r1f(x)=(x+a)ln2-12r1为偶函数,则y=x+a应为奇函数,所以a=0,故选B.解法二因为f(x)=(x+a)ln2-12r1为偶函数,f(-1)=(a-1)ln3,f(1)=(a+1)ln13=-(a+1)ln3,所以(a-1)ln3=-(a+1)ln3,解得a=0,经检验,满足题意,故选B.(2)[2024江苏南通模拟]已知定义在R上的函数f(x),g(x)分别是奇函数和偶函数,且f(x)+g(x)=x2-2x,则f(2)+g(1)=-3.解析由f(x)是奇函数,g(x)是偶函数,得f(-x)=-f(x),g(-x)=g(x),∵f(x)+g(x)=x2-2x,∴f(-x)+g(-x)=(-x)2-2(-x)=x2+2x,即-f(x)+g(x)=x2+2x,则有f(x)=-2x,g(x)=x2,则f(2)+g(1)=-4+1=-3.方法技巧函数奇偶性的应用类型及解题策略(1)求函数解析式或函数值:借助奇偶性转化为求已知区间上的函数解析式或函数值,或利用奇偶性构造关于f(x)的方程(组)求解析式.(2)求参数值:利用定义域关于原点对称或f(x)±f(-x)=0列方程(组)求解,对于在x=0处有定义的奇函数f(x),可考虑列等式f(0)=0求解.注意利用特殊值法求参数时要检验.训练1(1)[2024辽宁鞍山一中模拟]下列函数中,既是偶函数又在(0,+∞)上单调递增的是(C)A.f(x)=x ln xB.f(x)=ln(-x+2+1)C.f(x)=e x+e-xD.f(x)=e x-e-x解析对于A,因为f(x)=x ln x的定义域为(0,+∞),不关于原点对称,所以f(x)=x ln x不是偶函数,故A选项不符合题意;对于B,因为f(x)=ln(-x+2+1)的定义域为R,关于原点对称,f(x)+f(-x)=ln(-x+2+1)+ln(x+2+1)=ln 1=0,所以f (x )=ln (-x +2+1)是奇函数,故B 选项不符合题意;对于C ,因为f (x )=e x +e -x 的定义域为R ,关于原点对称,且f (-x )=e -x +e x =f (x ),所以f (x )=e x +e -x 是偶函数.f '(x )=e x -e -x ,当x ∈(0,+∞)时,有e >e 0=1>e -,则f '(x )=e x -e -x >0,所以f (x )=e x +e -x 在(0,+∞)上单调递增,故C 选项符合题意;对于D ,因为f (x )=e x -e -x 的定义域为R ,关于原点对称,但f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以f (x )=e x -e -x 是奇函数,故D 选项不符合题意.故选C.(2)[2024江苏省扬州中学模拟]定义在R 上的奇函数f (x ),当x ≥0时,f (x )=2x -a ·3-x ,当x <0时,f (x )=3x -2-x.解析因为函数f (x )为奇函数,定义域为R ,所以f (0)=20-a ×30=0,解得a =1.若x <0,则-x >0,所以f (-x )=2-x -3x ,又f (x )为奇函数,所以当x <0时,f (x )=-f (-x )=3x -2-x ,即当x <0时,f (x )=3x -2-x .命题点2函数的周期性例3(1)已知f (x +1)是定义在R 上且周期为2的函数,当x ∈[-1,1)时,f (x )=-22+4,-1≤<0,sin π,0≤<1,则f (3)·f (-103)=(A)A.3B.-3C.解析因为f (x +1)是定义在R 上且周期为2的函数,所以f (x )也是周期为2的函数,(解题关键:由f (x +1)的周期得到f (x )的周期)则f (3)=f (-1)=-2+4=2,f (-103)=f (23)=sin 2π3=f (3)·f (-103)=2=3,故选A.(2)[2022新高考卷Ⅱ]已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )·f (y ),f (1)=1,则∑J122f (k )=(A )A.-3B.-2C.0D.1解析因为f (1)=1,所以在f (x +y )+f (x -y )=f (x )f (y )中,令y =1,得f (x +1)+f (x -1)=f (x )f (1),所以f (x +1)+f (x -1)=f (x )①,所以f (x+2)+f (x )=f (x +1)②.由①②相加,得f (x +2)+f (x -1)=0,故f (x +3)+f (x )=0,所以f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),所以函数f (x )的一个周期为6.在f (x +y )+f (x -y )=f (x )f (y )中,令x =1,y =0,得f (1)+f (1)=f (1)f (0),所以f (0)=2,再令x =0,代入f (x +3)+f (x )=0,得f (3)=-2.令x =1,y =1,得f (2)+f (0)=f (1)f (1),所以f (2)=-1.由f (x +3)+f (x )=0,得f (1)+f (4)=0,f (2)+f (5)=0,f (3)+f (6)=0,所以f (1)+f (2)+…+f (6)=0,根据函数的周期性知,∑J122f (k )=f (1)+f (2)+f (3)+f (4)=f (2)+f (3)=-1-2=-3,故选A.方法技巧(1)利用函数的周期性可以将局部的函数性质扩展到整体.(2)判断抽象函数的周期一般需要对变量进行赋值.训练2(1)[2024广东梅州模拟]已知函数f (x )=e r1,≤1,-(-1),>1,则f (2024-ln 2)=(A )A.-22B.-2C.2D.22解析当x >1时,f (x )=-f (x -1),则f (x +2)=-f (x +1)=f (x ),所以x >1时,f (x )是周期为2的函数.因为2024-ln 2=2022+2-ln 2,且2>2-ln 2>2-ln e =1,所以f (2024-ln 2)=f (2-ln 2)=-f (1-ln 2)=-e1-ln 2+1=-e 2e ln2=-e 22.故选A.(2)[2024云南部分名校联考]已知f (x )是定义在R 上的偶函数,且f (x )+f (4-x )=0,当0≤x ≤2时,f (x )=a ·2x +x 2,则f (2024)=-1.解析因为f (x )是定义在R 上的偶函数,且f (x )+f (4-x )=0,所以f (x )=-f (4-x )=-f (x -4),f (x -4)=-f (x -8),所以f (x )=f (x -8),故f (x )是以8为周期的函数,则f (2024)=f (0).令x =2,则f (2)+f (4-2)=2f (2)=8a +8=0,则a =-1,所以f (0)=-20=-1,即f (2024)=-1.命题点3函数图象的对称性例4(1)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =r1与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1(x i +y i )=(B)A.0B.mC.2mD.4m解析由f (-x )=2-f (x )知f (x )的图象关于点(0,1)对称,而y =r1=1+1的图象也关于点(0,1)对称,因此两个函数图象的交点也关于点(0,1)对称,且成对出现,则x1+x m=x2+x m-1=…=0,y1+y m=y2+y m-1=…=2,所以∑i=1(x i+y i)=0×2+2×2=m.(2)函数f(x)=(x2-1)(e x-e-x)+x+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为2.解析设g(x)=(x2-1)(e x-e-x)+x,则f(x)=g(x)+1.因为g(-x)=(x2-1)(e-x-e x)-x=-g(x),且g(x)的定义域关于原点对称,所以g(x)是奇函数.由奇函数图象的对称性知g(x)max+g(x)min=0,故M+N=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.方法技巧1.解决与函数图象的对称性有关的问题,应结合题设条件的结构特征及对称性的定义,求出函数图象的对称轴或对称中心,进而利用对称性解决求值或参数问题.2.常用结论:三次函数f(x)=ax3+bx2+cx+d(a≠0)的图象的对称中心为(-3,f(-3)).训练3(1)[多选]关于函数f(x)=sin x+1sin,下列结论正确的是(BC)A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的图象关于直线x=π2对称D.f(x)的最小值为2解析由题意知f(x)的定义域为{x|x≠kπ,k∈Z},且关于原点对称.又f(-x)=sin(-x)+1sin(-)=-(sin x+1sin)=-f(x),所以函数f(x)为奇函数,其图象关于原点对称,所以A错误,B正确.因为f(π-x)=sin(π-x)+1sin(π-)=sin x+1sin=f(x),所以函数f(x)的图象关于直线x=π2对称,C正确.当sin x<0时,f(x)<0,所以D错误.故选BC.(2)已知函数f(x)=x3-3x2+x+1+sin(x-1),则函数f(x)在(0,2)上的最大值与最小值的和为0.解析由三次函数图象的对称性可得,y=x3-3x2+x+1的图象的对称中心为(1,0),因为y=sin(x-1)的图象也关于(1,0)对称,所以函数f(x)在(0,2)上的图象关于(1,0)对称,所以f(x)在(0,2)上的最大值与最小值的和为0.命题点4函数性质的综合应用例5(1)[2021全国卷甲]设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f(92)=(D)A.-94 B.-32 C.74 D.52解析因为f(x+1)为奇函数,所以函数f(x)的图象关于点(1,0)对称,即有f(x)+f(2-x)=0,令x=1,得f(1)=0,即a+b=0①,令x=0,得f(0)=-f(2).因为f(x+2)为偶函数,所以函数f(x)的图象关于直线x=2对称,即有f(x)-f(4-x)=0,令x=1,得f(3)=f(1),所以f(0)+f(3)=-f(2)+f(1)=-4a-b+a+b=-3a=6②.根据①②可得a=-2,b=2,所以当x∈[1,2]时,f(x)=-2x2+2.根据函数f(x)的图象关于直线x=2对称,且关于点(1,0)对称,可得函数f(x)的周期为4,所以f(92)=f(12)=-f(32)=2×(32)2-2=52.(2)[2024平许济洛第一次质检]定义在R上的偶函数f(x)满足f(2-x)+f(x)=0,且f(x)在[-2,0]上单调递增.若a=f(tan5π18),b=f(3),c=f(log43),则(A)A.a<b<cB.a<c<bC.c<b<aD.c<a<b解析由f(2-x)+f(x)=0可得f(x)的图象关于点(1,0)中心对称,由f(x)为偶函数可得f(x)的图象关于y轴对称,根据函数周期性结论可得函数f(x)的周期为4,所以f(3)=f(3-4)=f(-1)=f(1),因为0<log43<1,1=tanπ4<tan5π18<tanπ3=3<2,所以0<log43<1<tan5π18<2,因为偶函数f(x)在[-2,0]上单调递增,所以函数f(x)在(0,2]上单调递减,所以f(tan5π18)<f(1)=f(3)<f(log43),即a<b<c.故选A.方法技巧1.对于函数单调性与奇偶性的综合问题,常利用奇、偶函数的图象的对称性,以及奇、偶函数在关于原点对称的区间上的单调性求解.2.对于函数周期性与奇偶性的综合问题,常利用奇偶性及周期性将所求函数值的自变量转换到已知函数解析式的自变量的取值范围内求解.3.函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,在解题时,往往需要先借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.训练4(1)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=e x+x2+x,则不等式f(2-a)+f(2a-3)>0的解集为(B)A.(-1,+∞)B.(1,+∞)C.(-∞,-1)D.(-∞,1)解析易知f(x)在(0,+∞)上单调递增,且在(0,+∞)上,f(x)>1.因为f(x)为R上的奇函数,所以f(0)=0,f(x)在(-∞,0)上单调递增,且在(-∞,0)上f(x)<-1,故f(x)在R上单调递增.原不等式可化为f(2-a)>-f(2a-3),即f(2-a)>f(3-2a),所以2-a>3-2a,故a>1,选B.(2)[2024湖北部分重点中学联考]已知函数y=f(x)是R上的奇函数,∀x∈R,都有f(2-x)=f(x)+f(2)成立,则f(1)+f(2)+f(3)+…+f(2024)=0.解析因为函数f(x)是R上的奇函数,所以f(0)=0.因为∀x∈R,都有f(2-x)=f(x)+f(2),所以令x=2,得f(0)=2f(2),得f(2)=0,所以f(2-x)=f(x),则函数f(x)的图象关于直线x=1对称.因为函数f(x)的图象关于原点对称,所以函数f(x)是以4为周期的周期函数,且函数f(x)的图象关于点(2,0)中心对称,则f(1)+f(3)=0,又f(2)=0,f(4)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)=0,所以f(1)+f(2)+f(3)+…+f(2024)=506[f(1)+f(2)+f(3)+f(4)]=0.学生用书P028抽象函数问题的解题策略策略1赋值法例6[多选/2023新高考卷Ⅰ]已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则(ABC)A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点解析解法一令x=y,则有f(x2)=2x2f(x).当x=0时,可得f(0)=0,A正确.当x =1时,可得f(1)=2f(1),所以f(1)=0,B正确.因为f((-x)2)=2(-x)2·f(-x),即f(x2)=2x2f(-x),所以f(-x)=f(x),所以函数f(x)为偶函数,C 正确.因为无法判断函数f(x)的单调性,所以无法确定f(x)的极值点,故D不正确,故选ABC.解法二取x=y=0,则f(0)=0,故A正确;取x=y=1,则f(1)=f(1)+f(1),所以f(1)=0,故B正确;取x=y=-1,则f(1)=f(-1)+f(-1),所以f(-1)=0,取y=-1,则f(-x)=f(x)+x2f(-1),所以f(-x)=f(x),所以函数f(x)为偶函数,故C正确;因为f(0)=0,且函数f(x)为偶函数,所以函数f(x)的图象关于y轴对称,所以x=0可能为函数f(x)的极小值点,也可能为函数f(x)的极大值点,也可能不是函数f(x)的极值点,故D不正确.综上,选ABC.方法技巧赋值法是指利用已知条件,对变量赋值,从而得出抽象函数在某点处的函数值或抽象函数的性质.策略2性质转化法例7(1)[2022全国卷乙]已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图象关于直线x=2对称,g(2)=4,则∑22J1f(k)=(D)A.-21B.-22C.-23D.-24解析由y=g(x)的图象关于直线x=2对称,可得g(2+x)=g(2-x).在f(x)+g(2-x)=5中,用-x替换x,可得f(-x)+g(2+x)=5,可得f(-x)=f(x)①,所以y=f(x)为偶函数.在g(x)-f(x-4)=7中,用2-x替换x,得g(2-x)=f(-x-2)+7,代入f(x)+g(2-x)=5中,得f(x)+f(-x-2)=-2②,所以y=f(x)的图象关于点(-1,-1)中心对称,所以f(1)=f(-1)=-1.由①②可得f (x )+f (x +2)=-2,所以f (x +2)+f (x +4)=-2,所以f (x +4)=f (x ),所以函数f (x )是以4为周期的周期函数.由f (x )+g (2-x )=5可得f (0)+g (2)=5,又g (2)=4,所以可得f (0)=1,又f (x )+f (x +2)=-2,所以f (0)+f (2)=-2,得f (2)=-3,又f (3)=f (-1)=-1,f (4)=f (0)=1,所以∑J122f (k )=5(f (1)+f (2)+f (3)+f (4))+f (1)+f (2)=-24.故选D.(2)[多选/2022新高考卷Ⅰ]已知函数f (x )及其导函数f '(x )的定义域均为R ,记g (x )=f '(x ).若f (32-2x ),g (2+x )均为偶函数,则(BC )A.f (0)=0B.g (-12)=0C.f (-1)=f (4)D.g (-1)=g (2)解析解法一(转化法)因为f (32-2x )为偶函数,所以f (32-2x )=f (32+2x ),函数f (x )的图象关于直线x =32对称,则f (-1)=f (4),所以C 正确;因为g (2+x )为偶函数,所以g (2+x )=g (2-x ),函数g (x )的图象关于直线x =2对称,因为g (x )=f'(x ),所以函数g (x )的图象关于点(32,0)对称,(二级结论:若函数h (x )为偶函数,则其图象上在关于y 轴对称的点处的切线的斜率互为相反数,即其导函数的图象关于原点对称.本题函数f (x )的图象关于直线x =32对称,则其导函数g (x )的图象关于点(32,0)对称)因为g (x )的定义域为R ,所以g (32)=0.由g (x )的图象既关于直线x =2对称,又关于点(32,0)对称,知g (x )的周期T =4×(2-32)=2,所以g (-12)=g (32)=0,g (-1)=g (1)=-g (2),所以B 正确,D 错误;不妨取f (x )=1(x ∈R ),经验证满足题意,则f (0)=1,所以选项A 不正确.综上,选BC.解法二(特例法)因为f (32-2x ),g (2+x )均为偶函数,所以函数f (x )的图象关于直线x =32对称,函数g (x )的图象关于直线x =2对称.取符合题意的一个函数f (x )=1(x ∈R ),则f (0)=1,排除A ;取符合题意的一个函数f (x )=sin πx ,则f'(x )=πcos πx ,即g (x )=πcos πx ,所以g (-1)=πcos (-π)=-π,g (2)=πcos 2π=π,所以g (-1)≠g (2),排除D.又该题为多选题,选BC.方法技巧1.思路:利用题设中的条件等式,将其变形为满足函数某些性质的定义表达式,从而利用这些性质转化求解.2.设函数f(x)及其导函数f'(x)的定义域均为R.(1)若f(x)的图象关于x=a对称,则f'(x)的图象关于(a,0)对称;(2)若f(x)的图象关于(a,b)对称,则f'(x)的图象关于x=a对称;(3)若f(x)是以T为周期的函数,则f'(x)也是以T为周期的函数.注意利用函数图象的平移变换解决抽象函数性质问题时,注意在进行图象变换的同时,函数图象的对称轴或者对称中心也进行了相应的变换.策略3特殊函数模型法例8定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=(C)A.2B.3C.6D.9解析解法一由函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),联想到函数模型f(x)=x2+bx,由f(1)=2,可得b=1,则f(x)=x2+x,所以f(-3)=(-3)2+(-3)=6.解法二f(1)=f(1+0)=f(1)+f(0)+2×1×0=f(1)+f(0),得f(0)=0;f(0)=f(-1+1)=f(-1)+f(1)+2×(-1)×1=f(-1)+2-2=f(-1),得f(-1)=0;f(-2)=f(-1-1)=f(-1)+f(-1)+2×(-1)×(-1)=2f(-1)+2=2;f(-3)=f(-2-1)=f(-2)+f(-1)+2×(-2)×(-1)=2+0+4=6.故选C.方法技巧常用函数模型抽象函数性质基本函数模型f(x±y)=f(x)±f(y)∓b一次函数f(x)=kx+b(k≠0)f(x+y)=f(x)+f(y)+2xy二次函数f(x)=x2+bxf(xy)=f(x)f(y)或f()=()()幂函数f(x)=xαf(x+y)=f(x)f(y)或f(x-y)=()()指数函数f(x)=a x(a>0,且a≠1)f(xy)=f(x)+f(y)或f()=f(x)-对数函数f(x)=log a x(a>0,且a≠1)f(y)f(x+y)+f(x-y)=2f(x)f(y)余弦函数f(x)=cosωx(ω一般取满足要求的最小正数)注意应用特殊函数模型法解题时,要注意检验所选模型是否满足已知条件.训练5(1)[新高考卷Ⅰ]若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是(D)A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]解析由题意知f(x)在(-∞,0),(0,+∞)上单调递减,且f(-2)=f(2)=f(0)=0.当x>0时,令f(x-1)≥0,得0≤x-1≤2,∴1≤x≤3;当x<0时,令f(x-1)≤0,得-2≤x-1≤0,∴-1≤x≤1,又x<0,∴-1≤x<0;当x=0时,显然符合题意.综上,原不等式的解集为[-1,0]∪[1,3],故选D.(2)[多选/2024安徽省阜阳市模拟]已知函数f(x)的定义域为R,对任意实数x,y满足f(x-y)=f(x)-f(y)+1,且f(1)=0,当x>0时,f(x)<1.则下列选项正确的是(ACD)A.f(0)=1B.f(2)=-2C.f(x)-1为奇函数D.f(x)为R上的减函数解析解法一设f(x)=kx+1,因为f(1)=0,所以k=-1,所以f(x)=-x+1,满足x>0时,f(x)<1,则易得A,C,D均正确,故选ACD.解法二对于A,取x=y=0,则f(0)=f(0)-f(0)+1,故f(0)=1,A正确;对于B,取x=0,y=1,则f(-1)=f(0)-f(1)+1=2,取x=1,y=-1,则f(2)=f(1)-f(-1)+1=-1,B错误﹔对于C,取x=0,则f(-y)=f(0)-f(y)+1=2-f(y),f(-y)-1=-[f(y)-1],则f(y)-1为奇函数,所以f(x)-1为奇函数,C正确;对于D,当x1>x2时,x1-x2>0,f(x1-x2)<1,则f(x1)-f(x2)=f(x1-x2)-1<0,故f(x)是R上的减函数,D正确,故选ACD.(3)已知函数f(x)满足f(1)=14,且4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2024)=-14.解析解法一令y=1,得4f(x)f(1)=f(x+1)+f(x-1),即f(x+1)=f(x)-f(x-1),f(x+2)=f(x+1)-f(x)=-f(x-1),即f(x+3)=-f(x),所以函数f(x)的周期为6,则f(2024)=f(2).令x=1,y=0,得f(0)=12,由f(x+1)=f(x)-f(x-1),可得f(2)=f(1)-f(0)=-14,所以f(2024)=-14.解法二因为f(x+y)+f(x-y)=4f(x)f(y),x,y∈R,联想到余弦函数模型cos(x+y)+cos(x-y)=2cos x cos y,两边同除以2,得12cos(x+y)+12cos(x-y)=cos x cos y=4·12cos x12cos y,故猜想f(x)=12cos(ωx),又f(1)=14,则f(1)=12cosω=14,当ω∈(0,π)时,可得ω=π3,即f(x)=12cos(π3x),故f(x)的周期为T=6,所以f(2024)=f(2)=12cos2π3=-14.1.[命题点1角度2/全国卷Ⅱ]设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)=(D)A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1解析依题意得,当x<0时,f(x)=-f(-x)=-(e-x-1)=-e-x+1,故选D.2.[命题点1角度2/2023全国卷乙]已知f(x)=x e B-1是偶函数,则a=(D)A.-2B.-1C.1D.2解析解法一f(x)的定义域为{x|x≠0},因为f(x)是偶函数,所以f(x)=f(-x),即x e B-1=-x-e-B-1,即e(1-a)x-e x=-e(a-1)x+e-x,即e(1-a)x+e(a-1)x=e x+e-x,所以a-1=±1,解得a=0(舍去)或a=2,故选D.解法二f(x)=x e B-1=e(-1)-e-,f(x)是偶函数,又y=x是奇函数,所以y=e(a-1)x-e-x是奇函数,故a-1=1,即a=2,故选D.3.[命题点2,3/多选/2024江苏省兴化市名校联考]已知函数f(x)为R上的奇函数,g(x)=f(x+1)为偶函数,下列说法正确的有(ABD)A.f(x)图象关于直线x=-1对称B.g(2023)=0C.g(x)的周期为2D.对任意x∈R都有f(2-x)=f(x)解析因为函数f (x )为R 上的奇函数,所以函数f (x )的图象关于点(0,0)中心对称,因为g (x )=f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )的图象关于x =1对称,所以f (-x +1)=-f (-x -1),所以f (x -1)=f (-x -1),所以函数f (x )的图象关于x =-1对称,故A 正确;由f (-x +1)=f (x +1)可得f (2-x )=f (x ),故D 正确;由f (2-x )=f (x )可得f (2+x )=f (-x )=-f (x ),所以f (4+x )=f (x ),即函数f (x )的周期为4,故C 错误;因为f (x )的周期为4,所以g (2023)=f (2024)=f (0)=0,故B 正确.故选ABD.4.[命题点3/2023大同学情调研]函数f (x )=6e +1+B ||+1在[-5,5]上的最大值为M ,最小值为N ,则M +N =(C )A.3B.4C.6D.与m 的值有关解析由题意可知,f (x )=6e +1+B ||+1=3-3(e -1)e +1+B ||+1,设g (x )=-3(e -1)e +1+B ||+1,则g (x )的定义域为(-∞,+∞),g (-x )=-3(e --1)e -+1+(-)|-|+1=-[-3(e -1)e +1+B ||+1]=-g (x ),所以g (x )为奇函数,所以当x ∈[-5,5]时,g (x )max +g (x )min =0,所以当x ∈[-5,5]时,f (x )max +f (x )min =M +N =g (x )max +3+g (x )min +3=6,故选C.5.[思维帮角度1,2/2021新高考卷Ⅱ]设函数f (x )的定义域为R ,且f (x +2)为偶函数,f (2x +1)为奇函数,则(B )A.f (-12)=0B.f (-1)=0C.f (2)=0D.f (4)=0解析因为函数f (2x +1)是奇函数,所以f (-2x +1)=-f (2x +1),所以f (1)=0,f (-1)=-f (3).因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),所以f (3)=f (1),所以f (-1)=-f (1)=0.故选B.6.[思维帮角度2/多选/2023四省联考]已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且f (x ),g (x )在(-∞,0]上均单调递减,则(BD )A.f (f (1))<f (f (2))B.f (g (1))<f (g (2))C.g(f(1))<g(f(2))D.g(g(1))<g(g(2))解析因为f(x)与g(x)分别是定义在R上的偶函数与奇函数,且两函数在(-∞,0]上均单调递减,所以f(x)在[0,+∞)上单调递增,g(x)在[0,+∞)上单调递减,即g(x)在R上单调递减,所以f(1)<f(2),g(2)<g(1)<g(0)=0,(提示:定义在R上的奇函数的图象必过原点)所以f(g(1))<f(g(2)),g(f(1))>g(f(2)),g(g(1))<g(g(2)),故B,D正确,C不正确.若f(1)<f(2)<0,则f(f(1))>f(f(2)),故A不正确.综上所述,选BD.学生用书·练习帮P2661.[2024黑龙江省鸡西市第一中学模拟]下列函数中,是奇函数且在定义域内单调递减的是(C)A.f(x)=tan(-x)B.f(x)=2-xC.f(x)=e-x-e xD.f(x)=2解析f(x)=tan(-x)=-tan x的定义域是{x|x≠kπ+π2,k∈Z},f(x)是奇函数,在定义域上不具有单调性,故A错误;f(x)=2-x=(12)x既不是奇函数也不是偶函数,在R上单调递减,故B错误;f(x)=e-x-e x的定义域为R,∵f(-x)=e x-e-x=-f(x),∴f(x)是奇函数,∵y=e-x,y=-e x均为R上的减函数,∴f(x)在R上单调递减,故C正确;f(x)=2的定义域为{x|x≠0},f(x)是奇函数,在定义域上不具有单调性,故D错误.故选C.2.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=(D)A.e x-e-xB.12(e x+e-x)C.12(e-x-e x)D.12(e x-e-x)解析因为f(x)+g(x)=e x,f(x)为偶函数,g(x)为奇函数,所以f(-x)+g(-x)=f(x)-g(x)=e-x,所以g(x)=12(e x-e-x).故选D.3.已知函数f(x)=2+2,≥0,2-2,<0,若f(-a)+f(a)≤2f(1),则实数a的取值范围是(C)A.[-1,0)B.[0,1]C.[-1,1]D.[-2,2]解析若x<0,则-x>0,f(-x)=x2-2x=f(x),若x>0,则-x<0,f(-x)=x2+2x=f(x),故函数f(x)为偶函数,且当x≥0时,函数f(x)单调递增,由f(-a)+f(a)≤2f(1),得2f(a)≤2f(1),即f(a)≤f(1),所以|a|≤1,所以-1≤a≤1.故选C.4.[2024青岛市检测]若函数f(x)=cos x·lg(2+-x)为奇函数,则m=(C)A.-1B.0C.1D.±1解析解法一因为函数f(x)=cos x·lg(2+-x)为奇函数,又y=cos x为偶函数,所以g(x)=lg(2+-x)为奇函数,则g(x)+g(-x)=0,即lg(2+-x)+lg(2++x)=0,即lg[(2+-x)(2++x)]=lg(x2+m-x2)=lg m=0,解得m=1,故选C.解法二因为函数f(x)=cos x·lg(2+-x)为奇函数,又y=cos x为偶函数,所以g(x)=lg(2+-x)为奇函数,所以g(0)=0,即lg=0,解得m=1.经检验,符合题意.故选C.5.[2024安徽月考]已知函数f(x)=2sin x+x+2,x∈[-2π,2π],f(x)的最大值为M,最小值为m,则M+m=(A)A.4 D.2π+3-1解析因为y=2sin x+x的图象关于原点对称,所以f(x)=2sin x+x+2的图象关于点(0,2)对称,所以f(x)在[-2π,2π]上的最大值与最小值的和M+m=4.故选A.6.[2023南京市、盐城市一模]若函数f(x)=x3+bx2+cx+d满足f(1-x)+f(1+x)=0对一切实数x恒成立,则不等式f'(2x+3)<f'(x-1)的解集为(C)A.(0,+∞)B.(-∞,-4)C.(-4,0)D.(-∞,-4)∪(0,+∞)解析由f(1-x)+f(1+x)=0可知,函数f(x)的图象关于点(1,0)中心对称.解法一易得f'(x)=3x2+2bx+c的图象的对称轴为直线x=1,所以函数f'(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,则由f'(2x+3)<f'(x-1),得|2x+3-1|<|x-1-1|,解得-4<x<0,故选C.解法二函数f(x)=ax3+bx2+cx+d的图象的对称中心为点(-3,f(-3)),由-3=1,a=1,得b=-3,所以f'(x)=3x2-6x+c,由f'(2x+3)<f'(x-1),得3(2x+3)2-6(2x+3)+c﹤3(x-1)2-6(x-1)+c,解得-4<x<0,故选C. 7.[2024福州市一检]已知定义域为R的函数f(x)同时具有下列三个性质,则f(x)=-x(答案不唯一).(写出一个满足条件的函数即可)①f(x+y)=f(x)+f(y);②f(x)是奇函数;③当x+y>0时,f(x)+f(y)<0.解析因为f(x)是奇函数,且当x+y>0时,f(x)+f(y)<0,即x>-y时,f(x)<-f(y)=f(-y),所以f(x)是单调递减函数,再考虑到f(x+y)=f(x)+f(y),所以f(x)=kx(k<0)都符合题意.8.已知f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,则f(x)的解析式为f(x解析当x<0时,-x>0,则f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是R上的奇函数,故f(x)=-f(-x),所以当x<0时,f(x)=2x2+3x-1.因为f(x)为R上的奇函数,所以f(0)=0.综上,f(x)的解析式为f(x)=-22+3+1,>0,0,=0,22+3-1,<0.9.[2024安徽六校联考]已知函数f(x)=ln(2+1+x)-2+1,则不等式f(x)+f(2x-1)>-2的解集是(A)A.(13,+∞)B.(1,+∞)C.(-∞,13)D.(-∞,1)解析因为2+1>|x|≥-x,所以2+1+x>0在R上恒成立,所以函数f(x)的定义域为R,f(x)=ln(2+1+x)+(e-1)-(e+1)e+1=ln(2+1+x)+e-1e+1-1,令h(x)=f(x)+1=ln(2+1+x)+e-1e+1,则h(x)+h(-x)=[ln(2+1+x)+e-1e+1]+[ln(2+1-x)+e--1e-+1]=ln(2+1+x)+ln(2+1-x)+e-1e+1+1-e1+e=ln1+0=0,所以h(x)是奇函数.设g(x)=ln(2+1+x),则g(x)为奇函数.当x≥0时,y=2+1,y=x均单调递增,则y=2+1+x在[0,+∞)上单调递增.所以g(x)=ln(2+1+x)在[0,+∞)上单调递增.又g(x)为奇函数且g(0)=0,所以g(x)在R上单调递增.又y=e x+1在R上单调递增,所以y=2e+1在R上单调递减,所以y=-2e+1在R上单调递增,所以h(x)=g(x)-2e+1+1在R上单调递增.不等式f(x)+f(2x-1)>-2,即f(x)+1>-[f(2x-1)+1],也即h(x)>-h(2x-1)=h(1-2x),所以x>1-2x,解得x>13.故选A.10.[2024黄冈模拟]已知函数f(x)及其导函数f'(x)的定义域均为R,记g(x)=f'(x+1),且f(2+x)-f(2-x)=4x,g(3+x)为偶函数,则g'(7)+g(17)=(C)A.0B.1C.2D.3解析因为g(3+x)为偶函数,g(x)=f'(x+1),所以f'(x+4)=f'(-x+4),对f(2+x)-f(2-x)=4x两边同时求导,得f'(2+x)+f'(2-x)=4,所以有f'(4+x)+f'(-x)=4⇒f'(4-x)+f'(-x)=4⇒f'(4+x)+f'(x)=4⇒f'(8+x)=f'(x),所以函数f'(x)的周期为8,在f'(2+x)+f'(2-x)=4中,令x=0,得f'(2)=2,因此g(17)=f'(18)=f'(2)=2.因为g(3+x)为偶函数,所以有g(3+x)=g(3-x)⇒g'(3+x)=-g'(3-x)⇒g'(7)=-g'(-1)①,f'(8+x)=f'(x)⇒g(7+x)=g(x-1)⇒g'(7+x)=g'(x-1)⇒g'(7)=g'(-1)②,由①②可得:g'(7)=0,所以g'(7)+g(17)=2,故选C.11.[多选/2024辽宁开学考试]已知函数y =xf (x )是R 上的偶函数,f (x -1)+f (x +3)=0,当x ∈[-2,0]时,f (x )=2x -2-x +x ,则(ACD )A.f (x )的图象关于直线x =2对称B.4是f (x )的一个周期C.f (x )在(0,2]上单调递增D.f (2024)<f (12)<f (0.50.2)解析由函数y =xf (x )是R 上的偶函数可知,f (x )为奇函数,则f (-x )=-f (x ).又f (x -1)+f (x +3)=0,得f (x )+f (x +4)=0,则f (x +4)=-f (x )=f (-x ),所以f (x +2)=f (2-x ),则f (x )的图象关于直线x =2对称,A 项正确.由f (8+x )=-f (4+x )=f (x )可知,8是f (x )的一个周期,由f (x )=-f (x +4)可知,4不是f (x )的一个周期,B 项错误.当x ∈[-2,0]时,易知f (x )=2x -2-x +x 为增函数,又f (x )为奇函数,所以f (x )在(0,2]上单调递增,C 项正确;又f (2024)=f (8×253)=f (0),0<0.5<0.50.2,且f (x )在[-2,2]上单调递增,所以f (0)<f (12)<f (0.50.2),即f (2024)<f (12)<f (0.50.2),D 项正确.故选ACD.12.[多选/2024江西分宜中学、临川一中等校联考]已知函数y =f (x )对任意实数x ,y 都满足2f (x )f (y )=f (x +y )+f (x -y ),且f (1)=-1,则(AC )A.f (x )是偶函数B.f (x )是奇函数C.f (x )+f (1-x )=0D.∑J12025f (k )=1解析在2f (x )f (y )=f (x +y )+f (x -y )中,令x =1,y =0,可得2f (1)f (0)=2f (1),即-2f (0)=-2,解得f (0)=1≠0,故f (x )不是奇函数,B 错误;令x =0可得2f (0)f (y )=f (y )+f (-y ),即f (y )=f (-y ),故函数f (y )是偶函数,即f (x )是偶函数,故A 正确;令x =y =12,则2f 2(12)=f (1)+f (0)=0,故f (12)=0,令x =12,可得2f (12)f (y )=f (12+y )+f (12-y )=0,故f (x )+f (1-x )=0,故C 正确;因为f (x )是偶函数,所以f (x )=f (-x ),故f (-x )+f (1-x )=0,即f (x )+f (1+x )=0,所以f (x +1)+f (2+x )=0,所以f (x +2)=f (x ),故函数f (x )的周期为2,因为f (1)+f (0)=0,f (1)=-1,所以f (1)+f (2)=f (1)+f (0)=0,f (2025)=f (1)=-1,所以∑J12025f (k )=f (1)+f (2)+…+f (2025)=f (2025)=f (1)=-1,故D 错误.故选AC.13.[多选/2024南昌市模拟]f (x )是定义在R 上的连续可导函数,其导函数为f'(x ),下列说法中正确的是(ACD )A.若f (x )=f (-x ),则f'(x )=-f'(-x )B.若f'(x )=f'(x +T )(T ≠0),则f (x )=f (x +T )C.若f (x )的图象关于点(a ,b )中心对称,则f'(x )的图象关于直线x =a 轴对称D.若f (-1+x )+f (-1-x )=2,f'(x +2)的图象关于原点对称,则f (-1)+f'(2)=1解析对于A :f (x )=f (-x )两边对x 求导,得f'(x )=-f'(-x ),故A 正确.对于B :f (x )=f (x +T )+C (C 为常数)⇔f'(x )=f'(x +T ),则C ≠0时,B 错误.对于C :f (x )的图象有对称中心(a ,b )⇒f (a -x )+f (a +x )=2b ,两边对x 求导,得-f'(a -x )+f'(a +x )=0,即f'(a -x )=f'(a +x )⇒f'(x )的图象关于直线x =a 对称,C 正确.对于D :f (-1+x )+f (-1-x )=2⇒f (x )的图象有对称中心(-1,1),则f (-1)=1.f'(x +2)的图象向右平移2个单位长度 f'(x )的图象⇒f'(x )的图象有对称中心(2,0),则f'(2)=0.所以f (-1)+f'(2)=1+0=1,故D 正确.故选ACD.14.[2022全国卷乙]若f (x )=ln |a +11-|+b 是奇函数,则a =-12,b =ln2.解析解法一f (x )=ln |a +11-|+b =ln |a +11-|+ln e b =ln |(r1)e -x 1-|.∵f (x )为奇函数,∴f (-x )+f (x )=ln |(r1)2e 2-2e 221-2|=0,∴|(a +1)2e 2b -a 2e 2b x 2|=|1-x 2|.当(a +1)2e 2b -a 2e 2b x 2=1-x 2时,(+1)2e 2=1,2e 2=1,解得=-12,=ln2.当(a +1)2e 2b -a 2e 2b x 2=-1+x 2时,(+1)2e 2=-1,2e 2=-1,无解.综上,a =-12,b =ln 2.解法二易知x≠1.∵函数f(x)为奇函数,∴由奇函数定义域关于原点对称可得x≠-1,∴当x=-1时,|a+11-|≤0.又∵|a+11-|≥0恒成立,∴当x=-1时,|a+11-|=0,∴a=-12.又由f(0)=0可得b=ln2.经检验符合题意,∴a=-12,b=ln2.15.[探索创新/2023广西联考]若定义在D上的函数f(x)满足下列条件:①∀x∈D,f(x-2)+f(2-x)=0恒成立;②∀x1,x2∈D,当x1≠x2时,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立;③∀x1∈R,∃x2∈D,使得f(x2)·21=1成立.则称该函数为“χ函数”,下列函数可以称为“χ函数”的是(D)A.f(x)=1-33r1+3B.f(x)=2+sin xC.f(x)=x4-x2+1D.f(x)=ln(2+1+x)解析由①∀x∈D,f(x-2)+f(2-x)=0恒成立可知,y=f(x)的图象关于原点对称,“χ函数”为奇函数.②∀x1,x2∈D,当x1≠x2时,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,整理可得(x1-x2)[f(x1)-f(x2)]>0,所以函数y=f(x)在D上单调递增.③∀x1∈R,∃x2∈D,使得f(x2)·21=1成立,整理可得f(x2)=(12)1,因为∀x1∈R,y=(12)1>0,所以(0,+∞)是f(x)的值域的子集.对于选项B,C,均不满足①,对于选项A,f(x)=1-33r1+3=2-(3+1)3(3+1)=23(3+1)-13,在定义域内单调递减,不满足②,f(x)=ln(2+1+x)满足①②③,故选D.。
抽象函数的奇偶性、周期性和对称性一、奇偶性1、奇函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有)()(x f x f -=-,那么 函数()f x 就叫做奇函数。
(1)定义域必须关于原点对称;(2)对定义中的任意一个x ,都有)()(x f x f -=-;(3)图象特征:奇函数图象关于原点对称。
(这是判断奇函数的直观方法)2、偶函数定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有)()(x f x f =-,那么函数 ()f x 就叫做偶函数。
(1)定义域必须关于原点对称;(2)对定义中的任意一个x ,都有)()(x f x f =-; (3)图象特征:偶函数图象关于y 轴对称。
(这是判断偶函数的直观方法) 二、周期性周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期,并不是所有周期函数都存在最小正周期。
例如,狄利克雷函数,当x 为有理数时,()f x 取1;当x 为非有理数时,()f x 取0。
(1)如果函数)(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。
(2)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期的周期函数。
(3)如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 2为周期的三、对称性1、函数图象本身的对称性(自身对称)题设:函数)(x f y =对定义域内一切x 来说,其中a 为常数,函数)(x f y =满足: (1))()(x a f x a f -=+⇔函数)(x f y =图象关于直线a x =成轴对称; (2))()2(x f x a f =-⇔函数)(x f y =的图象关于直线a x =成轴对称;(3))()(x b f x a f -=+⇔函数)(x f y =图象关于直线22)()(b a x b x a x +=-++=成轴对称; (4))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称(偶函数); (5))(2)2(x f b x a f -=-⇔函数)(x f y =图象关于),(b a 成中心对称; (6))(x f -=—)(x f ⇔函数)(x f y =图象关于原点成中心对称(奇函数);(7)如果函数)(x f y=满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的 常数),则)(x f y =是以为)(212T T -为周期的周期函数;(8)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期(9)如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 2为周期 的周期函数。
抽象函数的对称性、奇偶性与周期性常用结论及题型归纳一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性: (1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。