当前位置:文档之家› 薄膜测试方法

薄膜测试方法

薄膜测试方法
薄膜测试方法

包装材料塑料薄膜性能的测试方法

资讯来源:《软包装》发布日期:2009-9-14 浏览次数:243

在塑料包装材料中,各种塑料薄膜、复合塑料薄膜具有不同的物理、机械、耐热以及卫生性能。人们根据包装的不同需要,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法。优先选择ISO国际标准、国际先进组织标准,如ASTM、TAPPI等和我国国家标准、行业标准,如BB/T标准、QB/T标准、HB/T标准等等。

笔者在从事检验工作中,使用过一些检测方法,下面向大家简单介绍一下。

规格、外观

塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要。有些薄膜的外观与货架效果紧密相连,外观有问题直接影响商品销售。而厚度又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有:

1.厚度测定

GB/T6672-2001《塑料薄膜和薄片厚度测定机械测量法》该非等效采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械测量法》。适用于薄膜和薄片的厚度的测定,是采用机械法测量即接触法,测量结果是指材料在两个测量平面间测得的结果。测量面对试样施加的负荷应在0.5N~1.0N之间。该方法不适用于压花材料的测试。

2.长度、宽度

GB/T 6673-2001《塑料薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。

塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。

标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20

层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。

3.外观

塑料薄膜的外观检验一般采取在自然光下目测。外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。缺陷的大小一般需用通用的量具,如钢板尺、游标卡尺等等进行测量。

物理机械性能

1.塑料力学性能——拉伸性能

塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。

塑料拉伸性能试验的方法国家标准有几个,适用于不同的塑料拉伸性能试验。

GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。适用于厚度大于1mm的材料。

GB/T13022-1991《塑料薄膜拉伸性能试验方法》是等效采用国际标准ISO1184-1983《塑料薄膜拉伸性能的测定》。适用于塑料薄膜和厚度小于1mm的片材,该方法不适用于增强薄膜、微孔片材、微孔膜的拉伸性能测试。

以上两个标准中分别规定了几种不同形状的试样,和拉伸速度,可根据不同产品情况进行选择。如伸长率较大的材料,不宜采用太宽的试样;硬质材料和半硬质材料可选择较低的速度进行拉伸试验,软质材料选用较高的速度进行拉伸试验等等。

2.撕裂性能

撕裂性能一般用来考核塑料薄膜和薄片及其它类似塑料材料抗撕裂的性能。

GB/T 16578-1996《塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法》是等效采用国际标准ISO 6383-1:1983《塑料-薄膜和薄片-耐撕裂性能的测定第1部分;裤形撕裂法》适用于厚度在1mm以下软质薄膜或片材。试验方法是将长方形试样在中间预先切开一定长度的切口,像一条裤子。故名裤形撕裂法。然后在恒定的撕裂速度下,使裂纹沿切口撕裂下去所需的力。使用仪器同拉伸试验仪中的非摆锤式的试验机。

QB/T1130-1991《塑料直角撕裂性能试验方法》适用于薄膜、薄片及其它类似的塑料材料。试验方法是将试样裁成带有900直角口的试样,将试样夹在拉伸试验机的夹具上,试样的受力方法与试样方向垂直。用一定速度进行拉伸,试验结果以撕裂过程中的最大力值作为直角撕裂负荷。试样如果太薄,可采用多片试样叠合起来进行试验。但是,单片和叠合试样的结果不可比较。叠合试样不适用于泡沫塑料片。

GB/T11999-1989《塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法》是等效采用国际标准ISO 6383/2-1983《塑料薄膜和薄片耐撕裂性的测定――第二部分:埃莱门多夫法》适用于软塑料薄膜、复合薄膜、薄片,不适用于聚氯乙烯、尼龙等较硬的材料。原理是使具有规定切口的试样承受规定大小摆锤贮存的能量所产生的撕裂力,以撕裂试样所消耗的能量计算试样的耐撕裂性。

3.摩擦系数

静摩擦系数是指两接触表面在相对移动开始时的最大阻力与垂直施加于两个接触表面的法向力之比。

动摩擦系数是指两接触表面以一定速度相对移动时的阻力与垂直施加于两个接触表面的法向力之比。

试验是由水平试验台、滑块、测力系统和使水平试验台上两试验表面相对移动的驱动机构等组成。

试验通过是将两试验表面平放在一起,在一定的接触压力下,使两表面相对移动,测得试样开始相对移动时的力和匀速移动时的力。通过计算得出试样的摩擦系数。

静(动)摩擦系数=目前常用的方法标准为GB/T10006-1988《塑料薄膜和薄片摩擦系数测定法》它非等效采用国际标准ISO 8295-1986《塑料-薄膜和薄片-摩擦系数的测定》。

4.热合强度

塑料薄膜作为包装材料,常常用热合的方法将被包装物封装在内,是否达到良好的密封,热合的质量很重要,目前试验室常用的仪器设备是“热梯度仪”是一台可设定不同温度、压力、时间的热合试验设备,它可用于试验某种材料在某种条件下封合的最佳效果,封合质量可用QB/T 2358-1998 《塑料薄膜包装袋热合强度试验方法》是常用的方法标准。本标准适用于各种塑料薄膜包装袋的热合强度测定。

试验是将条形试样的两端夹在拉力试验的两个夹具上,进行拉伸,破坏试样封合部位的最大力值,就是热合的力值,结果一定以单位长度的试样所用的力值来表示,即热合强度。所用的力用N/m来表示。

5.剥离力

复合薄膜是用干复式或共挤式将不同单膜复合在一起,复合的好环直接影响着复合膜的强度,阻隔性及今后的使用寿命。所以在选用包装材料前测试复合层的剥离力很重要。

GB/T8808-1988《软质复合塑料材料剥离试验方法》是将预先剥开起头的被测膜的预分离层的两端夹在拉力试验机上,测试剥开材料层间时所需的力。

6.抗冲击性能

GB/T8809-1988《塑料薄膜抗摆锤冲击试验方法》适用于各种塑料薄膜抗摆锤冲击试验。试验是测量半圆形摆锤冲击在一定速度下冲击穿过塑料膜所消耗的能量。

GB/T9639-1988《塑料薄膜和薄片抗冲击性能试验方法自由落标法》适用于塑料薄膜和厚度小于1mm 的薄片。试验是在给定的自由落标冲击下,测定50%塑料薄膜和薄片试样破损时的能量。以冲击破损质量表示。

阻隔性能

塑料薄膜作为包装材料,需要有对内装物起到保护作用,阻隔外界环境对商品的影响。如防潮、防氧化、防油、防气味等。

1.阻隔水蒸气性能

防潮性能的测试方法有很多。常用的测试方法有GB/T1037-1988《塑料薄膜和片材透水蒸汽性能试验方法杯式法》该方法适用于塑料薄膜、复合塑料薄膜、片材和人造革等材料。被测试样在规定的温度、相对温度条件下,将试样用混合的石蜡和蜂蜡封在透湿杯上,杯内装一定量的干燥剂,试样的两端保持一定的水蒸气压差。称量封好试样在试验前和加湿后重量的变化,其增量即水蒸气透过量。

GB/T16928-1997《包装材料试验方法透湿率》该标准等效采用美国联邦标准FED-STD-101中第3030,该方法适用于纸塑复合材料等。试验是将干燥剂封装在试样中,将被测面暴露在测试环境中,经一定时间,称量其试验前后重量变化的增量。

GB/T6981-2003《软包装容器透湿度试验方法》适用于密封的软包装容器,将干燥剂装入被测容器中,将其密闭,然后置于规定的温湿度条件下,经一定的时间试样增重的量,即水蒸气透过量。

以上方法的缺点是试验时间长,受环境影响较大。特别是近年来,高阻隔的塑料包装材料越多,有些方法的精度显然不够了。现在本实验室引进美国M0CON公司和香港拔萃公司的透湿度测定仪。M0CON公司采用美国ASTM《 F1249-2001(代替F1249-90) Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor》的标准。香港拔萃公司的透湿度标准正在研制检测方法标准,不久将采用于材料透水蒸气的试验。

2.阻气性能

目前国内普通应用的透气性试验方法为GB/T1038-2000《塑料薄膜和薄片气体透过性试验方法压差法》该标准等效采用ISO 2556:1974适用于测定塑料薄膜和片材。试验仪器有低压和高压腔组成,将试样贴在高、低压腔之间,密闭腔将两腔用真空泵抽真空,然后向高压腔充1个大气压(0.1MPa)的试验气体。通过测量低压室内的压力增量来计算气体透过量。本实验室也引进美国M0CON公司的仪器。采用的是美国ASTM《Designation: D3985-81(Reapproved 1988) Stand Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor》的标准。

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

电解电容测试指导书

1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于IQC对电解电容器来料的检验。 3准备设备、工具: 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。 4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引岀端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况; 且其标识清晰牢固、正确完整。 4.5检查其引岀端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引岀端子无扭曲、变形和影响插拔的机械损伤。 4.6检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%勺误差范围),其损耗角 正切值tan 9 (即D值)大小是否符合国家标准(电解电容器tan 9 0.25 )。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按POWE!键开启测试仪的工作电压; 按LCR键选择测试类型(L:电感,C:电容,R:电阻)。 5.3按UP'与DOWN!选择测试量程(疗、nF、pF),按FREQ键选择测试频率(100HZ 120HZ 1KHZ,可根据厂商提供的技术参数来选择所需的测试频率,本试验选择100HZ'。

视频信号指标与测试方法

1.视频信号幅度: 标准的视频信号幅度是1Vp-p,由两个测试指标组成: 1) 白条幅度(视频电平):700mV 2) 同步脉冲幅度:300mV 图1 视频信号 幅度对视频的影响: l 同步幅度:超出指标值会引起图像扭曲,甚至图像显示无法观看 l 白条幅度:超出指标值会造成图像过亮或过暗 2.亮度非线性 从消隐电平(黑电平)到白电平之间变化的线性度。 5级幅度的阶梯信号(每级140mV)通过被测通道后,计算相应各阶梯幅度值之间的最大差值.

图2 亮度非线性计算 亮度非线性对视频的影响: l 图象失去灰度,层次减少。 l 分辨率降低,产生色饱和度失真(由于色度信号是叠加在亮度信号上)。 3.K系数 把各种波形失真按人眼视觉特性给予不同评价的基础上来度量图象损伤,这里的失真是短时间波形失真。 一般用“2T正弦平方波失真”( K-2T)作为测试指标。

图3 2T脉冲 图4 K-2T计算 K系数对视频的影响: 导致图像出现多轮廓、造成重影,使清晰度下降。 4.微分增益(DG): 由图像亮度信号幅度变化引起的色度信号幅度失真。 5级带色度调制的阶梯信号通过被测通道后,计算各阶梯上的色度幅度值之间的最大差值。

图5 DG测试信号调制的五阶梯 图6 微分增益(DG)计算 微分增益(DG)对视频的影响 l 不同亮度背景下的色饱和度失真,影响彩色效果。比如:穿鲜红衣服从暗处走向亮处,鲜红衣服会变浓或变淡。 5.微分相位(DP): 由图像亮度信号幅度变化引起的色度信号相位失真。

5级带色度调制的阶梯信号通过被测通道后,计算各阶梯上的色度副载波的相位角和消隐电平上副载波信号的相位角之差,超前为正。 DP的测试信号与DG相同。 微分相位(DP)对视频的影响 在不同亮度背景下,色调产生失真,影响彩色效果。例如:鲜红衣服从暗处走到明处,鲜红衣服就偏黄或偏紫。 6.色度/亮度增益差 把一个具有规定的亮度和色度分量幅度的测试信号通过被测通道,输出端信号中亮度分量和色度分量幅度比的改变称色度/亮度增益差。 图7 20T脉冲

薄膜应力测试方法

薄膜的残余应力测试 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。

钻孔崩落应力测量方法简介

钻孔崩落应力测量方法简介 一.孔壁崩落的力学机制 根据弹性理论,在单项水平应力σ作用下的一个无限大矩形平板中,其内部为一均匀应力场。这时的应力分布状态为: 式中,θ由σ方向逆时针量取,σ r 、σ θ 和τ rθ 分别为径向,切向和剪切应力。 当在矩形板中心钻了一个半径为α的圆孔后,势必扰动原来的应力场,寻致应力的重新分布。这时,在圆孔附近的应力分布由基尔希方程给出: 而当γ=α时,也就是说,孔壁上的应力分布为: 由方程(3)可以看出,当时,即在与σ垂直的孔径的两个端点上,切向应力σ θ 有最大值3σ,当θ=0和π时,即在平行于σ的孔径的两个端点上,切向应力仅有极小值为-σ。 由上述可见,应力的集中,仅仅是在与σ正交的直径的孔壁上,切向应力取得最大值。而随着径向的延伸(即r逐渐增大),在与σ垂直的方向(即)上,切向应力变化为:

显然,切向应力σ θ 随着径向的延伸而迅速减小。当半径(r)等于几个钻孔半径时,切向应力就近似地等于施加应力(σ)。如当r=1.3α时,σ θ =1.82lσ,而当r=4α时,σ θ 就仅为1.0372σ。 地壳中的岩石,一般都是处在各向不等载荷的压应力作用下。对于一个沿直铅孔来说,它的横载面往往都是处于两项水平主应力σ 1 和σ 2 (σ 1 >σ 2 )的压缩之下。根据叠加原理,这时孔壁上(即r=α处)的应力分布状态为: 由上式可见,当时,即在与最小水平主应力平行的钻孔直径的两个端点(M和N),切向应力σ θ 达到最大值(σ θ =3σ 1 -σ 2 );而当θ=0和π时,即在与最大水平主应力平行的直径的两个端点(P和Q),切向应力σ θ 达到最小值(σ θ =3σ 2 -σ 1 图2)。根据脆性破裂理论,当作用在M和N点处的切向应力,达到或超过该点处的破裂强度时,就会使孔壁岩石崩落,形成崩落椭圆孔段,其长轴方向与最小水平主应力方向平行。 二.钻孔崩落椭圆的形成条件 在不同地质时期形成的各种岩石,都具有一定的强度,因而在地壳应力场的作用下,能够发生弹性变形,并可以在孔壁附近引起应力集中。 钻孔崩落椭圆的形成,必须满足一定的地应力场条件,即最大水平主应力与最小水平主应力不相等。如果钻孔处于各项均匀的地应力场中(即σ 1 =σ 2 ),这时沿钻孔圆周的切向应力σ θ ≈2σ 1 ,假定岩石也是各项均匀的话,则不会产生优势方向的孔壁崩落现象。 大量的地壳应力测量资料表明,在地壳中各项应力都存在着明显差异,而且两项水平主应力值及其差值(σ 1 -σ 2 ),大都是随深度呈线性增加的。因此,一般来说,形成钻孔孔壁崩落的地应力场条件是普遍存在的。

铝电解电容的耐压测试方法

电解电容器的耐压测试方法 电解电容器耐压测试及应用 电容的耐压,表示电容在一定条件下连续使用所能承受的电压。如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。 对于电解电容器,漏电流是性能指标中重要的一项。电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。当工作电压接近阳极的赋能电压时,漏电流会急剧上升。通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。 根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。 变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。 波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。表2为测试电路中的元件清单。 一、测试电路的使用方法 1.将测试电压调到比电容额定电压高一些的挡位。如测试35V的申容。可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。 2.选择合适的测试电流。测试电流应根据电容容量来选择,容量越大测试电流也越大。对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。 3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。接好后看到电压表指针先匀速缓慢偏转。正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。 4.测试完毕后将开关K2闭合,待电容放电后取下。 表3是利用附图的测试电路测量的部分电解电容器的产品实例。 二、测试经验总结 1.电容容量越大,测试电流(漏电流)也应相应变大。 国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF); 2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V 左右。 3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。 4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。 5.正品电解电容极限耐压一般为其额定电压的120%左右。 6.当工作电压高于额定电压时,电容就较容易击穿。因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。 7.使用本电路测试电解电容器,不会造成电容的损坏。 三、测试电路的改进 1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。如果能够换成DC320v表头就比较理想。表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。 2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。 3.V1若换成数字式电压表,电压读数将更加直观、精确。不过需另外加装一组DC5v浮动电源。

薄膜应力测试方法

薄膜的残余应力 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。 图三、牛頓环法示意图 3、干涉仪相位移式应力测量法

薄膜电容测试方法详解

薄膜电容测试方法详解 1. 准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量调压器0V~450V/三相1台电流表UNI-T 1台万用表FLUKE-117C 1台测温仪TM-902C 1台电桥测试仪Zen tech 1台双综示波器LM620C型1台游标卡尺mm/inch 1把变压器MTT-120K 1台耐压测试仪CC2672A型1台分流器TM-902C 2把2.外观物理检测 2.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。 2.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 2.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度、最大高度、以及引出端的直径与间距等参数在产品工艺的误差范围之内。 2.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 2.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 3.数字电桥测试 3.1用电桥测试其实际容量与标称容量是否一致(金属化薄膜电容一般会有±5%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(薄膜电容器tanθ≤0.0015,电解电容器tanθ≤0.25)。 3.2对Zen tech电桥测试仪的使用,正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

塑料应力测试方法及判定标准

塑料应力测试方法及判定 标准 This model paper was revised by the Standardization Office on December 10, 2020

三:常用塑料: 1. PA、PVC、PMMA、PC、POM、PE、PP、ABS、PS、EVA以及一些混合物。 2. 常用塑料特征、性能: 2.(尼龙):8026上盖、532支撑体、049D内芯等。 ①原色为乳白、微褐,燃烧缓慢,离火后慢熄,火焰呈上黄下蓝,熔融滴落,起泡,有特殊的羊皮或指甲烧焦气味。 ②较好的物理、机械性能, ③应力测试:正丙烷、乙无开裂、裂纹。 2.:聚氯乙烯 ①原色为无色透明,难燃离火即灭,火焰上黄下绿,白烟,燃烧变软有刺激性酸味。紫外线下,使PVC产生浅蓝、紫白的莹光。软的PVC发蓝或蓝白的荧光。②根据增剂的不同分为硬质和软质,硬质PVC采用分子量小的树脂,不含5%的曾剂,机械强度好,耐腐蚀、耐阳光、耐燃烧,软质PVC采用分子量较大的树脂,加入30%-70%增剂制成柔韧性好,抗化学药品性强。 2.:有机玻璃、压克力①原色为无色透明、易燃、离火后继续燃烧,火焰上黄下浅蓝,熔融滴落,加热到 120°C可自由弯曲,不自浊,冒出特有的压克力臭,易熔于丙酮、苯。②高透明性耐光折射率高,用丙酮、氯仿等溶剂自体粘结,制品成型收缩率,料粒的吸湿性可导致制品起泡。③应力测试:乙醇或异丙醇,十秒无开裂、裂痕。 2.:聚甲醛 ①原色为浅黄或白色,慢燃,离火后继续燃烧,火焰上黄下蓝,熔融滴落,强烈鱼腥臭。 ②较强机械性能,缺点不耐酸,强碱和不耐日光紫外线的辐射,长期在大气中暴晒会老化,粘合性差。 ③应力测试:12-18%盐酸溶液浸泡2H,无变形、裂纹。 2.:聚乙烯①原色为半透明——腊色,易燃,火焰上黄下蓝,边熔边滴落,有石腊气味,常温下不熔于溶剂,加热时可溶于丙酮、苯、甲醛。②根据加工方法,可分为高密度PE和低密度PE 高密度PE为半透明腊状固体,质地坚韧,不透水性,耐磨性,抗化学药品性较好。缺点:受热后因应力消失而发生尺寸减少,柔韧性、耐剧冷热差。低密度PE为无色无味无毒的固体,低温仍能保持柔曲特性,抗水性,化学稳定性较强。③应力测试:硬脂酸钠或肥皂水,无变形、裂纹、断裂。 2.:丙烯腈、丁乙烯和苯乙烯三种单体的三元共聚物①原色为乳白或白色,不透明,燃烧缓慢,离火后继续燃烧,火焰呈黄色,黑烟,软化烧焦,溶于丙酮、苯、甲苯。②丙烯腈具有拉伸强度、热稳定性、化学稳定性,丁二烯具有韧性、抗冲击能力以及低温性能,苯乙烯具有良好的光泽性、刚性和加工性;调节三者之间比例,可调节高冲击型、中冲击型、通用型、特殊耐热型ABS。缺点:耐热性不够高,易老化,不耐燃不透明。③应力测试:95%以上醋酸浸泡30秒,无变形、裂纹、断裂。 2.:聚丙烯①原色为半透明腊色,易燃,离火燃烧,火焰上黄下蓝,有少量黑烟,熔融滴落,发出石油气味。②密度cm3,是密度最小的塑料之一,熔点

第一章 天线增益测量

天线与电波教学实验指导书 实验三 天线增益测量 3.1实验内容和目的: 用绝对测量法(即测传播损耗的方法)和相对测量法(即比较法)测量喇叭天线的增益,掌握天线增益的一般测量方法。 3.2测量原理 1.天线增益的绝对测量 根据福里斯公式,当发射功率为P t ,发射天线增益为G t ,接收天线增益为 G r ,收发天线相距 R ,则位于远场区的接收天线的最大接收功率为 2244??? ? ??=?=R G G P A R G P P r t t r er t t r πληπ 当收发天线完全相同即G t =G r =G 时,接收功率为 2244??? ? ??=?=R G P A R G P P t r er t t r πληπ 由此可求出每个天线的增益为 G P P R r t =?4πλ 如用dB 表示,则为 ??? ? ???+??? ??=t r P P R dB G lg 10214lg 10)(λπ 因此,如果测出收发电平差、工作频率和收发距离,即可通过上式求出被测天线的增益。 2.天线增益的相对测量 被测天线增益G 和参考天线增益G 0间存在简单的关系: G=gG 0 式中,g 是被测天线相对于参考天线的增益。

因此如果参考天线的增益已知,只要测出g ,即可按上式求出被测天线的增益。 用比较法测天线增益,常用半波对称振子(或折合振子)作线天线的标准增益天线(其增益约为1.64或2.15dB );常用按最佳方向性系数设计的标准增益喇叭作面天线的增益标准天线,其增益理论设计值和实际值相当吻合,可按下式估算: )(4lg 102dB Ak D G λ π≈≈ 式中,A 是喇叭口面面积,k 是口面利用率。对角锥喇叭天线k 取0.51。 3. 天线增益的综合测量 设三个不同天线的增益分别为G G G 010203、、,先用比较法测得1和2对3的相对增益 03 02 203011G G G G G G ==, 当G 03已知时,则 03 20203101G G G G G G ==,, 用dB 表示,即 ) ()()()()()(0320203101dB G dB G dB G dB G dB G dB G +=+=, 当G dB 03()未知时,可用上述1项(天线增益的绝对测量)的方法测出G dB G dB 0102()()+,与上两式联立求出G dB 03()。 3.3 测量方框图: 3.4主要测试设备: 发射源:厘米波分频锁相源(带隔离器,具连续波或1KHz 内方波调制输出,带数字频率指示和功率相对指示,工作频率11GHz ±250MHz ,输出功率连续可调,

如何测试电容器质量的好坏

如何测试电容器质量的好坏? 在没有特殊仪表仪器的条件下,电容器的好坏和质量高低可以用万用表电阻档进行检测,并加以判断。容量大(1μF以上)的固定电容器可用万用表的电阻档(R×1000)测量电容器两电极,表针应向阻值小的方向摆动,然后慢慢回摆至∞附近。接着交换测试棒再试一次,看表针的摆动情况,摆幅越大,表明电容器的电容量越大。若测试棒一直碰触电容器引线,表针应指在∞附近,否则,表明该电容器有漏电现象,其电阻值越小,说明漏电量越大,则电容器质量差;如在测量时表针根本不动,表明此电容器已失效或断路;如果表针摆动,但不能回到起始点,则表明电容器漏电量较大,其质量不佳。 压力表对于容量较小的电容器,用万用表来测量往往看不出表针摆动,此时,可以借助一个外加直流电压和用万用表直流电压档进行测量,其方法如图1所示,即把万用表调到相应的直流电压档,负(黑)测试棒接直流电源负极,正(红)测试棒接被测的电容器一端,另一端接电源正极。 一只性能良好的电容器在接通电源的瞬间,万用表的表针应有较大摆幅;电容器的容量越大,其表针的摆幅也越大,摆动后,表针能逐渐返回零位。如果电容器在电源接通的瞬间,万用表的指针不摆动,则说明电容器失效或断路;若表针一直指示电源电压而不作摆动,表明电容器已被击穿短路;若表针摆动正常,但不返回零位,说明电容器有漏电现象,所指示的电压数值越高,表明漏电量越大。需要指出的是:测量容量小的电容器所用的辅助直流电压不能超过被测电容器的耐压,以免因测量而造成电容器击穿损坏。要想准确测量电容器的容量,需要采用电容电桥或Q表。上述的简易检测方法,只能粗略判断压力表电容器的好坏。 方法一:指针式万用表测量。 1、用万用表电阻档检查电解电容器的好坏 电解电容器的两根引线有正、负之分,在检查它的好坏时,对耐压较低的电解电容器(6V或 l0V),电阻档应放在R×100或 R×1K档,把红表笔接电容器的负端,黑表笔接正端,这时万用表指针将摆动,然后恢复到零位或零位附近。这样的电解电容器是好的。电解电容器的容量越大,充电时间越长,指针摆动得也越慢。 2、用万用表判断电解电容器的正、负引线 一些耐压较低的电解电容器,如果正、负引线标志不清时,可根据它的正接时漏电电流小(电阻值大),反接时漏电电流大的特性来判断。具体方法是:用红、黑表笔接触电容器的

激光增益的测量

激光增益的测量 一、 实验目的 1. 掌握用腔内损耗法测量激光参数的原理和方法。 2. 根据自动测试系统测得的曲线,取适当的数据,编写程序,利用计算机进行计算。 3. 通过对激光器增仪等参数的测量,对激光器的工作过程有进一步的了解。 二、 实验原理 在激光器中,小信号增益系数g 0、饱和光强I s 、腔内损耗α和最佳输出率T opt 等是决定激光器工作特性的重要参数,它们均可由实验测得,而这些参数的测量均与增益系数的测量有关。由增益系数的定义:1 2ln 1 I I l G = (1) 我们可以方便的利用一个激光器和一个与激光器充同样工作物质的放大管直接测出I 1、I 2。由放大管的长度计算出增益系数。但对于本实验所要测量的He-Ne 激光管的增益系数,由于探测过程中,荧光光强的贡献不能忽略,造成很大的误差。所以本试验采用的是腔内损耗法测量He-Ne 激光器的增益。因而可以消除这一误差因素,其测量装置的原理图如图1所示 图1 在两个全反射镜组成的外腔式He-Ne 激光器内,置一透明的平行平板作为反射器,该反射器与腔轴相交成某一角度,在满足振荡条件的情况下,反射器两边有一定功率的激光输出。 反射器单个表面对0.6328μm 的光的反射率R 是入射角?的函数,由菲涅尔公式得 )] /(sin sin [)]/(sin sin [)(1212n tg n tg R ?????--+-= (2) 其中n 为平行材料对激光波长的折射率。(本实验中所用平板玻璃对λ=0.6328μm 光的折射率为1.515)。 理论推导证明:在不考虑反射器本身的吸收和散射时,反射器的输出率(即来回一次在反射器表面反射的光强于入射光强之比)表示为: 2]) (1)(1[1)(???R R T +--= (3) 若将反射器绕与激光束相垂直,同时也与放电管布氏窗的发现相垂直的轴线旋转,入射角?将连续地变化,因此,该反射器将起一个反射率可变的平面耦合输出镜的作用。 定义α为激光腔除输出率以外的光学损耗(往返一次),成为内损耗,L 为激活介质的长度,g 0为小信号增益系数,P out 为耦合输出功率,P 0s 为饱和功率,由于本实验管较长,使

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

薄膜应力

薄膜应力 通常薄膜由它所附着的基体支承着,薄膜的结构和性能受到基体材料的重要影响。因此薄膜与基体之间构成相互联系、相互作用的统一体,这种相互作用宏观上以两种力的形式表现出来:其一是表征薄膜与基体接触界面间结合强度的附着力;其二则是反映薄膜单位截面所承受的来自基体约束的作用力—薄膜应力。薄膜应力在作用方向上有张应力和压应力之分。若薄膜具有沿膜面收缩的趋势则基体对薄膜产生张应力,反之,薄膜沿膜面的膨胀趋势造成压应力[1-2]。应该指出,薄膜和基体间附着力的存在是薄膜应力产生的前提条件,薄膜应力的存在对附着力又有重要影响[3]。 图1薄膜中压应力与张应力的示意图[4] 1薄膜应力的产生及分类: 薄膜中的应力受多方面因素的影响,其中薄膜沉积工艺、热处理工艺以及材料本身的机械特性是主要影响因素。按照应力的产生根源将薄膜内的应力分为热应力和本征应力,通常所说的残余应力就是这两种应力的综合作用,是一种宏观应力[4]。 本征应力又称内应力,是在薄膜沉积生长环境中产生的(如温度、压力、气流速率等),它的成因比较复杂,目前还没有系统的理论对此进行解释,如晶格失配、杂质介入、晶格重构、相变等均会产生内应力[5]。本征应力又可分为界面应力和生长应力。界面应力来源于薄膜与基体在接触界面处的晶格错配或很高的缺陷密度,而生长应力则与薄膜生长过程中各种结构缺陷的运动密切相关。本征应力与薄膜的制备方法及工艺过程密切相关,且随着薄膜和基体材料的不同而不同[6]。 热应力是由薄膜与基底之间热膨胀系数的差异引起的。在镀膜的过程中,薄膜和基体的温度都同时升高,而在镀膜后,下降到初始温度时,由于薄膜和基体的热膨胀系数不同,便产生了内应力,一般称之为热应力,这种现象称作双金属效应[7]。但由这种效应引起的热应力不能认为是本质的论断。薄膜热应力指的是在变温的情况下,由于受约束的薄膜的热胀冷缩

应力测量方法的历史

应力测试方法的概述 在几乎所有的机械设备中, 都有金属构件承受负载。这些构件内部应力的大小及其变化是造成失效( 如疲劳等) 的主要原因。金属构件内部应力的大小变化除了与其受力情况有关外, 还与其加工过程, 形变及周围的温度有关。为了维护、检查这些和延长使用寿命, 长期以来人们很关注应力的检测。应力的测量方法也很多, 如盲孔法、x 射线法、磁力法、超声方法等。由于超声波所固有的特性, 如穿透能力强、仪器设备简单、测量速度快、低成本等, 利用超声波无损测量材料表面和内部的应力状况的潜力是显而易见的。目前应力超声波测量的主要理论有: 1 声速与应力关系的Hu g h e s 和ke lly 理论 超声波测量应力方法是基于声弹性效应, 其理论基本假设为: ( 1 ) 固体连续性假设; ( 2 ) 声波的小扰动叠加在物体静态有限变形上; ( 3 ) 物体是超弹性的、均匀的; ( 4 ) 物体在变形中可视为等温或等熵过程。1949 年Hughes 利用超声波测量晶体的三阶弹性常数, 以此为基础, 随后超声波应力测量技术得到了较大的发展。1953 年Hughes 和Kelly 利用Lame 常数λ和μ, 以及Murnaghan 常数l 、m 和n提出了各向同性材料的声弹性理论表达式, 建立了超声波在材料中传播速度与应力之间的关系。 设固体不存在机械耗散过程,可得质点的运动方程为: (1) 式中 是固体的单位体积中的势能, η是拉格朗日坐标下的应变矩阵, ai, xk( i , k =1 , 2 , 3 ) 是拉格朗日坐标和位移坐标。这一方程是研究声波在固体中传播的基础。利用( 1 ) 式, Hughes 和kelly 从理论上研究了各向同性中的波速与附加静压力或常应力的关系, 这些关系也是后来人们测量固体应力的理论基础。 选自变量为拉格朗日变量a , b , c , 质点位移用u , v, w 把表示, 由力学定律方程( 1 ) 可以写成

薄膜电容技术要求

湖北三环发展股份有限公司 1100V 420uF薄膜电容技术要求 一、应用标准 a)GB/T 17702 b)IEC61071。 二、技术参数 指标备注 材料聚丙烯薄膜 封装铝罐,干式 容量偏差±10% 100Hz,+25℃最大纹波电压Ur 250V 浪涌电压Us 1650V 有效电流Irms ≥60A 环境温度50℃ ≥50A 环境温度60℃脉冲电流冲击 dV/dt ≥10V/us 损耗角正切值tanδ 0≤2×10-3 100Hz,1.0V电平, +25℃ 等效串联电阻ESR≤3.0mΩ1KHz,1.0V电平杂散电感Ls≤65nH 工作温度-40℃~+70℃最大热点温度≤85 度 存储温度-40℃~+85℃阻燃性UL94-V0 寿命100000小时 额定电压下,max(hotspot)≤ 70℃ 三、结构要求(单位:mm)

D H P H2 86 136 32 5~6 1、具体结构尺寸如上图表中所示,注意电容最大外径不得大于88mm。H2 是电极与电容表面的高度,务必满足不小于5mm的要求,强烈建议控制 在6mm。 2、电极端子M6,螺纹深度≥8mm。 3、电极端子所在盖板形式不拘泥于上图,要求保证合理的爬电距离。 4、底部带螺栓,要求螺栓单独发货。 5、最大电极扭矩要求:≥4Nm;最大安装扭矩要求:≥7Nm。 四、电气绝缘及检验方法的要求: 1、极间耐压要求及测试方法:Us(1min),无击穿无放电(电压上升速度 小于100V/s,电压稳定后漏电流小于1mA,不得有连续放电声)。 2、极壳耐压要求及测试方法:4000VAC(@50Hz),1min,无击穿,无飞弧, 无闪络。 3、要求耐压测试前后容量、损耗角正切在正常范围内,无明显变化。 4、绝缘阻抗要求及测试要求:Rs*C≥10000s,20℃,100VDC,测试两分钟 后读取。 5、抽样方案:遵循GB/T 2828.1-2003/ISO 2859-1:1999 《计数抽样检验程序》抽 检。 五、热稳定测试 电容置于45度温箱,在Un=1100V和Irms=50A下,电容器热点(hotspot)温度不应

电解电容测试操作

电解电容测试操作 测试操作时先用两表笔任意麓碰电容的两引脚然后调换表笔再碰一次如果电容是好的万用表指针会向右摆动一下随即向左迅速返回无穷大位置。电容量越大指针摆动幅度越大如果反复调换表笔触碰电容两引脚万用表指针始终不向右摆动说明该电容的容量已低于或者已经消失。NXP代理商测量中若指针向右摆动后不能再向左回到无穷大位置说明电容漏电或已经击穿短路测试时要注意为了观察到指针向右摆动的情况应反复调换表笔触碰电容器两引脚进行测量直到确认电容有无充电现象为止。 在采用上述三种方法进行测试时都应注意正确操作不要用手指同时接触被测电容的两个引脚否则人体电阻将影响测试的准确性容易造成误判。特别是使用万用表的高阻挡进行测量时若手指同时触到电容两引脚或两表笔的金属部分将使指针回不到无穷大的位置给测试者造成错觉误认为被测电容漏电。TI代理效字万用表测量将电容的两脚插人数字万用表的。插座内将数字万用衰置于相应的挡位即可。电电容的检舅电解电容既可以用数字万用表测量也可能用指针万用衷测量用敷字万用表测量电解电容时只需将电容的两脚插人数字万用表的。插座内将数字万用表置于相应的挡位即可。由于散字万用表电容测量挡量程有限般最大只能测量因此散字万用表只能对部分电解电容进行测量。 下面重点说明用指针万用表测量电解电容的方法和技巧。挡位的选择电解电容的容量较一般无极性电容大得多所以测量时应针对不同容量选用合适的量程根据经验一般情况下—的电容可用挡测量大于的电容可用挡测量测量漏电阻将万用表红表笔接咆解电容的负极黑表笔接正极在刚接触的瞬间万用表指针即向右偏转较大幅度对于同一电阻挡容量越大摆幅越大接着逐渐向左回转直到停在某一位置。此时的阻值便是电解电容的正向漏电阻。此值越大说明漏电流越小电容性能越好然后将红、黑表笔对调万用表指针将重复上述摆动现象。但此时所测阻值为电解电容的反向漏电阻此值略小于正向漏电阻。贴片钽电容即反向漏电流比正向漏电流要大实际使用经验表明电解电容的漏电阻一般应在几百以上否则将不能正常工作。在测试中若正向、反向均元充电的现象即表针不动则说明容量消失或内部断路如果所测阻值很小或为零说明电容嗣电大或已被击穿损坏不能再使用。极性判别对于正、负极标志不明的电謦电容器可利用上述测量漏电阻的方法加以判别。即先任意潮一下电阻记住其大小然后交换表笔再测出一个阻值两次测量中阻值大的那一次便是正向接法即黑表笔接的是正撅红表笔接的是负极。 检测大容量电解电容器的漏电阻用万用表检测电解电容器的漏电阻是利用表内的电池给电解电容充电的原理进行的。一旦将万用表电阻挡位确定下来充电的时间长短便取决于电容的容量大小对于同一咆阻挡而言容量越大充电时间越长例如选用挡测量一只的电解电容待其充完电显示出漏电阻约需左右显然时间过长不太实用但是万用表的不同电阻挡的内阻是不一样的。电阻挡位越高内阻越大电阻挡位越低内阻越小一般万用表的挡的内阻仅是挡的千分之一利用万用表这一特点采用变换电阻挡位的方法是可以比较快速地将大容量电解电容嚣的电阻测出的。钽电容具体操作方法是先使用或低阻挡视容量而定进行测量使电容器很快充足电指针迅速向左回旋到无穷大位置。这时再拨到挡若指针停在无穷大处说明罱电阻极小用挡已经测不出来若指针又缓慢向右摆动最后停在某一刻度上此时的读数即是被测电解电容的电阻值。wxq$#

相关主题
文本预览
相关文档 最新文档