强非均质时变性裂缝性油藏数值模拟研究
- 格式:pdf
- 大小:552.92 KB
- 文档页数:4
裂缝性潜山油藏地质建模与数值模拟一体化研究聂玲玲;张占女;童凯军;房娜【摘要】为了准确模拟和预测裂缝性潜山油藏的油水运动规律,以渤海海域J油田为例,综合岩心、测井、地质、地震及生产测试等多方面资料,分步建立了双重介质储集层的三维地质模型并开展了数值模拟研究.首先建立起工区构造模型,并建立了基质单元属性模型,然后利用岩心成像测井裂缝描述成果,以地震叠前属性反演成果为约束条件,模拟建立了裂缝分布网络模型,最后将基质属性和裂缝分布网络模型有机结合并建立了双重介质储集层三维地质模型.在此基础上,开展研究区历史拟合研究.结果表明:①采用该模型能够很好地表征裂缝性变质岩储层的渗流介质特征,数值模拟区块和单井历史拟合符合率高达90%;②潜山油藏开发可以划分为裂缝主要供油阶段、裂缝和基质同时供油阶段、基质主要供油阶段三个阶段;③运用定性-定量相结合方法研究得出的剩余油分布,能够客观地反映裂缝及基质系统对流体流动规律的影响,有力地指导了研究区下一步调整措施的实施.【期刊名称】《物探化探计算技术》【年(卷),期】2016(038)001【总页数】8页(P131-138)【关键词】潜山油藏;基质系统;裂缝系统;地质建模;数值模拟;剩余油分布【作者】聂玲玲;张占女;童凯军;房娜【作者单位】中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452;中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452;中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452;中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452【正文语种】中文【中图分类】TE122.2目前,我国在冀中、辽河、济阳、黄骅坳陷及渤海海域等地区先后发现了近百个潜山油气藏,其中大部分已投入开发。
潜山油气藏将成为新世纪我国油气勘探开发的主要目的层。
对于变质岩潜山油藏而言,由于变质岩储层中裂缝分布的强烈非均质性,往往使得该类油藏的开发难度极大,对于海上油田开发尤为如此。
《Oseil油田碳酸盐岩油藏裂缝描述及数值模拟研究》篇一一、引言Oseil油田作为一个重要的碳酸盐岩油藏,其储层特性特别是裂缝分布与油田的开发具有重要关系。
了解裂缝的形态、规模及分布情况对于优化采油工艺和提高采收率具有重要意义。
本文将对Oseil油田的碳酸盐岩油藏裂缝进行详细描述,并基于数值模拟技术进行深入研究。
二、Oseil油田碳酸盐岩油藏裂缝描述1. 裂缝类型与形态Oseil油田的碳酸盐岩油藏中,裂缝主要分为构造裂缝和成岩裂缝两大类。
构造裂缝主要由地壳运动引起,形态上多呈直线或曲线状;成岩裂缝则是在岩石成岩过程中由于温度、压力变化等因素形成的,形态较为复杂。
2. 裂缝规模与分布通过对油田进行地质勘探和地球物理分析,我们发现Oseil 油田的裂缝规模较大,部分主裂缝宽度可达数十米。
在空间分布上,这些裂缝往往呈网络状分布,且具有一定的方向性。
在平面和剖面上均存在较大的变化。
三、数值模拟研究方法针对Oseil油田的碳酸盐岩油藏,我们采用了数值模拟技术进行研究。
该技术通过建立数学模型,模拟油田的实际生产过程,从而预测和优化采油工艺。
在模型中,我们详细考虑了裂缝的形态、规模及分布情况,以及油藏的物理性质、流体性质等因素。
四、数值模拟结果与分析1. 油藏流场模拟通过数值模拟,我们得到了Oseil油田的流场分布情况。
在裂缝发育的区域,流速较快,压力降低较快;而在非裂缝区域,流速较慢,压力降低较慢。
这表明裂缝对油藏的流体流动具有重要影响。
2. 采收率预测与优化基于流场模拟结果,我们可以预测不同开采工艺下的采收率。
通过对比分析,我们发现优化采油工艺、合理安排井位和调整开采速度等措施可以有效提高采收率。
此外,针对不同区域的裂缝分布情况,我们还可以制定针对性的开采策略。
五、结论通过对Oseil油田的碳酸盐岩油藏裂缝进行详细描述及数值模拟研究,我们得到了以下结论:1. Oseil油田的碳酸盐岩油藏中存在大量构造裂缝和成岩裂缝,这些裂缝对油藏的流体流动具有重要影响。
《Oseil油田碳酸盐岩油藏裂缝描述及数值模拟研究》篇一一、引言随着全球能源需求的持续增长,碳酸盐岩油藏因其储量丰富和良好的开采潜力,已成为全球石油工业的重要研究对象。
Oseil 油田作为碳酸盐岩油藏的典型代表,其内部的裂缝发育和油藏特征对于油气的有效开发具有重要意义。
本文旨在通过对Oseil油田碳酸盐岩油藏的裂缝进行详细描述,并利用数值模拟方法进行深入研究,以期为该油田的合理开发和利用提供科学依据。
二、Oseil油田碳酸盐岩油藏裂缝描述(一)裂缝类型与分布Oseil油田碳酸盐岩油藏的裂缝主要包括构造裂缝和成岩裂缝两种类型。
构造裂缝主要由地壳应力作用形成,呈网状分布,具有较好的连通性;成岩裂缝则是在岩石成岩过程中形成的,分布较为零散。
通过地质勘探资料和岩心分析,我们可以发现这些裂缝在油田内具有一定的规律性分布。
(二)裂缝特征参数裂缝的特征参数包括裂缝的宽度、长度、密度和方向等。
通过对岩心和测井数据的分析,我们可以得到这些参数的具体数值。
在Oseil油田中,裂缝宽度多在几毫米到几十毫米之间,长度则数米至数百米不等。
裂缝密度则受岩性、构造等因素的影响,具有一定的区域性差异。
此外,裂缝的方向也受地应力场的影响,具有明显的方向性。
三、数值模拟研究方法针对Oseil油田碳酸盐岩油藏的裂缝特征,我们采用了先进的数值模拟方法进行研究。
首先,建立了油田的地质模型,包括岩石类型、孔隙度、渗透率等参数的分布。
然后,利用有限元或有限差分等方法,对油田的流场进行模拟,分析油气的运动规律。
此外,还考虑了重力、毛细管力等因素对油气运动的影响。
四、数值模拟结果分析(一)流场分布特征通过数值模拟,我们可以得到油田的流场分布特征。
在Oseil 油田中,由于裂缝的存在,流场呈现出明显的非均质性。
在裂缝发育的区域,油气运移速度较快,压力降低较快;而在其他区域,油气运移速度较慢,压力相对稳定。
这种非均质性对油气的开采具有重要影响。
(二)开采策略建议根据流场分布特征,我们可以制定相应的开采策略。
采用数值模拟优化裂缝性油藏开发技术温玉焕;周敏;黄玉池;唐怀轶;李本维;齐海青;王萨;王红【摘要】针对裂缝性双重介质油藏在开发过程中的特殊性,采用数值模拟方法对油藏中裂缝方向与井排方向、注水开发等进行研究.结果表明,补充能量、油水井交错布置、水井沿裂缝方向部署的开发效果优于其它开发方案;在开发过程中可适当加大井距、减小排距.该研究结果对裂缝性油藏开发具有一定的指导意义.【期刊名称】《承德石油高等专科学校学报》【年(卷),期】2013(015)001【总页数】5页(P1-4,17)【关键词】裂缝;油藏;注采井网;数值模拟【作者】温玉焕;周敏;黄玉池;唐怀轶;李本维;齐海青;王萨;王红【作者单位】中国石油冀东油田分公司勘探开发研究院,河北唐山 063000【正文语种】中文【中图分类】TE34随着裂缝性双重介质油藏的相继投入开发,发现该类油藏非均质性极强,应力敏感性强,常规注水水窜,水淹严重,而且基质中的原油难以开采。
因此,双重介质油藏比常规油藏的开发难度大、开发效果差,如何经济有效地开发好低渗透裂缝性油藏,是目前需要解决的技术难题。
裂缝性油藏在开采过程中有其特殊性,注采井网的优化部署,特别是井排方向与裂缝方向的优化配置,是裂缝性油藏注水开发成败的关键[1]。
针对裂缝性油藏开发的特殊性,国内外学者对其渗吸采油机理进行了实验及数值模拟研究[1-5],袁士义等[1]从理论上研究了开发方式对开发效果的影响。
本文结合油田现有资料,采用数值模拟的方法对裂缝性油藏的开发方式进行研究,对该类油藏的开发起到一定的指导作用。
1 建立三维地质模型首先根据野外露头调查、岩芯观察、常规测井等资料综合确定本区沉积相;然后采用物探、测井、钻井资料结合多种方法综合研究,有效地识别储层的储集空间类型、分布规律及储集性能;明确裂缝-孔隙为主要储集空间类型;最后确定性与随机建模方法相结合,建立了双重介质油藏三维地质模型,表征了断块双重介质油藏地质特征。
《裂缝性特低滲透油藏物理模拟实验方法及其应用》篇一裂缝性特低渗透油藏物理模拟实验方法及其应用一、引言随着油气资源需求的日益增长,裂缝性特低渗透油藏的开发成为了重要的研究领域。
由于这类油藏具有特殊的储层特征,如低渗透性、裂缝发育等,传统的开采方法往往难以满足高效开发的需求。
因此,开展裂缝性特低渗透油藏的物理模拟实验研究,对于理解其储层特性、优化开采策略和提高采收率具有重要意义。
本文旨在介绍裂缝性特低渗透油藏物理模拟实验方法及其应用,以期为相关研究提供参考。
二、裂缝性特低渗透油藏特点裂缝性特低渗透油藏是指储层中存在大量裂缝,且渗透性极低的油藏。
这类油藏具有以下特点:1. 储层非均质性严重,渗透率差异大;2. 裂缝发育,但连通性差;3. 油气流动性差,采收率低。
三、物理模拟实验方法为了研究裂缝性特低渗透油藏的储层特性和开采策略,本文提出了一种物理模拟实验方法。
该方法主要包括以下步骤:1. 模型设计与制作:根据实际地质资料,设计符合储层特征的物理模型。
模型应包括基质和裂缝两部分,基质采用低渗透介质,裂缝采用高精度模型进行模拟。
2. 实验装置搭建:搭建包括供液系统、测量系统和数据采集系统的物理模拟实验装置。
供液系统用于提供实验所需的流体,测量系统用于测量流体的流动特性,数据采集系统用于记录实验过程中的数据。
3. 实验过程:按照预定的实验方案,进行物理模拟实验。
实验过程中应控制温度、压力等参数,并记录流体的流动特性、压力分布等数据。
4. 数据处理与分析:对实验数据进行处理和分析,包括流场分析、压力分析、采收率分析等。
通过分析数据,可以了解储层的流动特性、裂缝的连通性以及开采策略的优化方向。
四、应用实例以某地区裂缝性特低渗透油藏为例,采用上述物理模拟实验方法进行研究。
通过实验发现,该油藏的基质渗透率较低,但裂缝发育,具有一定的连通性。
在开采过程中,应采用合适的开采策略,如调整井网布局、优化注采比等,以提高采收率。
裂缝性油藏数值模拟方法姚军(中国石油大学山东东营 257061)摘要:目前对天然裂缝性油藏的数值模拟可以大致分为连续性模型和离散性模型两大类;连续性模型又可以分为双重介质模型和单介质模型,双重介质模型主要是以Barrenblatt 和Warren-Root在20世纪60年代提出的双重孔隙/双重渗透模型为基础,在这类模型中认为油藏中每一点都存在有基岩和裂缝两种介质,基岩被相互平行排列的裂缝分割称为单个的岩块,每种介质存在独立的水动力场,通过两种介质间的窜流的将其联系起来;而对于单介质模型,则是通过一定的方法将裂缝的渗透率和基岩的渗透率进行综合的考虑,得出整个油田的有效渗透率,该有效渗透率考虑了裂缝的密度、方位等的影响,然后将该有效渗透率输入到普通的单一介质模拟器中来对裂缝性油藏进行模拟;由于双重介质模型不能够对不连续且控制着流体流动的大裂缝进行准确的模拟等原因,离散性模型在近段时间逐渐发展起来,而其又可以分为离散裂缝网络模型和离散管网模型;在离散裂缝网络模型中,对地质上描述出来的每个裂缝都进行了离散的显式的表示,同时根据局部裂缝的形状决定基岩的几何形状,由于地质上描述的裂缝数目一般较多,相应的在数值模拟中需要的离散点数目也就十分巨大,对模拟造成了一定的困难,所以目前很多的专家和学者又对该方法进行了进一步的改进,有许多简化的方法存在;离散管网模型则是先对所要模拟的区域进行了网格的划分,进而采用管子连接两个网格块,相应的两个网格块之间的传导率也采用管子的传导率来代替,这种方法的特点是数学上比较简单,灵活性较强,同时由于管子只对其连接的两个网格有影响,所以改变管子的传导率只会影响一个方向的传导性,而不会像常规的模拟器那样要同时影响两边的传导性,但是该方法目前研究较少。
0 前言随着世界碳酸盐岩油气田的大规模开发,系统深入研究这类油气田的渗流模式及其在开发中的应用已成为重要课题。
地质学家通过岩芯分析,确认碳酸盐岩(灰岩、白云岩)具有明显可见的裂缝、孔洞,含有密集的树枝状构造的粗裂缝以及连接的孔洞和孔隙。
《裂缝性特低滲透油藏物理模拟实验方法及其应用》篇一裂缝性特低渗透油藏物理模拟实验方法及其应用一、引言裂缝性特低渗透油藏作为石油勘探开发领域的一个重要部分,具有显著的挑战性。
这一类油藏的特点是孔隙网络中存在的细微裂缝导致储层渗流速度慢、渗透性低。
准确而全面地理解和预测此类油藏的开采行为,对于提高采收率、优化开采策略和降低开发成本具有重要意义。
因此,本文将详细介绍一种针对裂缝性特低渗透油藏的物理模拟实验方法,并探讨其在实际应用中的价值。
二、裂缝性特低渗透油藏的物理模拟实验方法1. 实验装置和材料物理模拟实验装置包括:油藏模拟系统、储层模拟器、高压驱替系统和微观成像系统等。
使用的材料主要包括砂石、矿物颗粒、人造流体等。
2. 实验步骤(1)储层模型的建立:根据地质资料和测井数据,通过合理比例配制砂石和矿物颗粒,构建与实际储层相似的物理模型。
(2)模拟油藏条件:在模拟器中设置适当的温度、压力等条件,以模拟实际油藏的储层环境。
(3)驱替实验:通过高压驱替系统,向储层模型中注入人造流体,观察并记录流体的流动行为和分布情况。
(4)微观分析:利用微观成像系统对储层模型进行微观观察,分析裂缝的分布、大小、连通性等特征对流体流动的影响。
三、实验结果分析通过物理模拟实验,可以获得以下关键信息:1. 裂缝的分布和大小:通过微观成像系统观察和分析,可以获得裂缝的分布情况、大小和连通性等信息。
这些信息对于了解储层的渗流特性和优化开采策略具有重要意义。
2. 流体流动行为:通过驱替实验,可以观察到流体的流动行为和分布情况,包括流体的流向、速度和分布等。
这些信息可以帮助我们更好地了解储层的渗流特性。
3. 开发潜力评估:结合实验数据和地质资料,可以对裂缝性特低渗透油藏的开发潜力进行评估,为优化开采策略提供依据。
四、应用与讨论裂缝性特低渗透油藏的物理模拟实验方法在实际应用中具有重要的价值。
具体表现在以下几个方面:1. 优化开采策略:通过对储层模型进行物理模拟实验,可以更好地了解储层的渗流特性和流体流动行为,从而为优化开采策略提供依据。