第六章复杂控制系统
- 格式:doc
- 大小:141.50 KB
- 文档页数:6
自动控制原理Automatic Control Principle一、课程基本信息二、课程简介自动控制原理是一门专业基础必修课,属于经典控制理论,主要处理单输入单输出定常反馈控制系统。
通过对本课程的学习,使学生掌握系统数学模型的建立方法,学会经典控制理论的三种分析方法,即时域法,根轨迹法和频域法,围绕三个性能指标,对控制系统进行分析,并在此基础上,学会控制系统的设计与综合,继而培养学生在实际中分析问题和解决问题的能力。
该课程为现代控制理论及智能控制理论等后继课程打下了必要的理论基础。
English Course IntroductionAutomatic Control Principle is a compulsory course in basic professional studies, which belongs to classical control theory. It mainly deals with the single input and single output steady feedback control system. Through the study of this course, the students can master the method of establishing the mathematical model of the system and learn the three analysis methods of the classical control theory, namely, the time domain method, the root locus method and the frequency domain method, and analyze the control system around three performance indexes, on this basis, learn the design and synthesis of the control system, and then train students in the actual analysis of problems and problem-solving ability. This course lays a necessary theoretical foundation for the following courses such as Modern Control Principle and Intelligent Control Principle.三、教学目的通过本课程的学习,使学生了解和掌握自动控制理论的基本概念、主要原理和分析方法,了解自动控制技术发展的概况,为学习后继课程以及从事与本专业有关的自动控制技术工作打下一定的基础。
第六章 模糊控制算法§6.1 §6.2 §6.3 §6.4 §6.5 §6.6 §6.7 模糊数学基础知识 模糊控制概述 精确量的Fuzzy化 模糊控制算法的设计 输出信息的Fuzzy判决 Fuzzy控制器查询表的建立 Fuzzy控制器实例1§6.1 模糊数学基础知识6.1.1 普通集合及其运算规则 6.1.2 Fuzzy集合 6.1.3 Fuzzy关系矩阵的运算26.1.1 普通集合及其运算规则:1.基本概念:UAB①论域:指在考虑一个具体问题时,先将议题局限在 一定范围内,这个范围称为论域,常用U表示; ②元素: 指论域中的每个对象,常用小写字母 a、b、c表示; ③ 集合:指对于一个给定论域,其中具有某种相同 属性的、确定的、可以彼此区别的元素的 全体,常用A、B、C、X、Y、Z等表示。
例:论域为U = { 1,2,3,4,5,6 } 偶数集合A = { 2,4,6 },奇数集合B = { 1,3,5 }32.普通集合的表示法:① 列举法(枚举法):当集合的元素数目有限时,可将其中的元素一 一列出,并用大括号括起,以表示集合。
例:论域为U = { 1,2,3,4,5,6 },则用列举法表示 偶数集合A = { 2,4,6 },奇数集合B = { 1,3,5 }② 描述法(定义法):当集合的元素数目无限时,可通过元素的定义来 描述 , 即A={x | p(x)}, 其中x为集合A的元素(x∈A), p(x)是x应满足的条件。
例:A = {x | 25 ≤ x ≤ 50 } ,U ={ x |x≥ 0的实数 }4③ 特征函数法:由于元素a与集合A的关系只能有a∈A和a∈A 两种情况,故集合A可以通过函数 1, a∈A CA(a)= 来表示。
0, a∈A CA(a)称为集合A的特征函数,它只能取0,1两个值。
自动控制原理孙优贤教材第一章:控制系统组成和概念控制系统是一种由多个元素和过程组成的整体,它的主要目的是通过调节输入和输出之间的关系,以达到特定的性能指标。
控制系统一般包括控制器、执行器、传感器和被控对象等组成部分。
第二章:控制系统的数学模型控制系统的数学模型是用数学语言描述控制系统的方法,它可以帮助我们分析控制系统的性能和行为。
常用的数学模型包括传递函数模型、状态空间模型和Laplace变换模型等。
这些模型可以用来描述控制系统的动态特性,进行系统分析和设计。
第三章:控制系统的时域分析时域分析法是一种基于时间域的控制系统分析方法。
通过时域分析,可以了解控制系统的稳定性、响应速度、误差等性能指标,进而对系统进行优化设计。
第四章:频率特性分析法频率特性分析法是一种基于频率域的控制系统分析方法。
通过频率特性分析,可以了解控制系统的频率响应、相位和幅值等特性,进而对系统进行优化设计。
第五章:根轨迹分析方法根轨迹分析法是一种基于根轨迹的控制系统分析方法。
通过根轨迹分析,可以了解控制系统的稳定性、响应速度和阻尼比等性能指标,进而对系统进行优化设计。
第六章:采样控制系统采样控制系统是一种数字控制系统,它通过对模拟信号进行采样、量化、编码等处理,将其转化为数字信号进行控制。
采样控制系统的精度高、稳定性好、易于实现远程控制等优点,被广泛应用于工业自动化等领域。
第七章:状态空间方法状态空间法是一种基于状态空间模型的控制系统分析方法。
通过状态空间法,可以了解控制系统的动态特性和状态变量之间的关系,进而对系统进行优化设计。
状态空间法还可以用于控制系统的稳定性和鲁棒性分析等方面。
第八章:非线性系统分析非线性系统是指系统的输入和输出之间存在非线性关系的系统。
非线性系统的分析和设计比线性系统更为复杂,但非线性系统的应用范围更广泛。
非线性系统的分析方法包括相平面法、描述函数法等。
第六章控制工程及重难点工程的施工方案1控制工程及重难点工程的施工方案在工程实践中起着至关重要的作用,尤其是在复杂工程项目中,其施工方案的合理性和科学性直接关系到工程的顺利进行和质量保障。
本文将重点探讨控制工程以及重难点工程的施工方案设计,包括工程施工条件评估、方案设计原则和实施方案等方面。
工程施工条件评估在制定控制工程及重难点工程的施工方案之前,首先需要对工程施工条件进行全面评估。
这包括工程地质情况、水文地质条件、气象条件等各方面因素的详细调查和分析。
只有充分了解工程所处的环境条件和现状,才能设计出科学可行的施工方案。
方案设计原则1.安全第一:施工过程中必须始终以工人和设备的安全为首要考虑,合理设置安全防护措施,确保施工现场的安全环境。
2.合理高效:施工方案设计应考虑施工进度和成本,合理安排施工顺序和方法,提高施工效率。
3.质量保障:严格按照设计要求执行施工方案,保证工程质量和完整性。
4.资源合理利用:根据实际资源情况,合理配置人力、物力和财力,确保施工过程的资源充分利用。
实施方案控制工程施工方案控制工程旨在控制和调节某些物理量,例如压力、温度、流量等,通常包括自动化系统、控制系统等。
在控制工程的施工方案设计中,需要考虑以下几个方面:•系统设计:根据工程需求设计控制系统的具体结构和功能,确定最佳的控制策略和参数设置。
•设备选型:根据系统设计要求选择合适的控制设备和仪器,确保系统性能和稳定性。
•调试测试:在施工过程中进行系统的调试和测试,保证系统的正常运行和准确控制。
重难点工程施工方案重难点工程通常指的是在工程中具有技术难度和风险性的部分,需要特别注意和重点施工的部分。
在设计重难点工程的施工方案时,应注意以下几个方面:•风险评估:对重难点工程进行风险评估,制定风险应对策略,确保施工过程的安全性。
•技术方案:根据工程特点和难点,设计合理的施工工艺和方案,提前解决可能出现的技术问题。
•监控与调整:随时监控重难点工程的施工进度和效果,及时调整方案和措施,确保施工顺利进行。
第六章复杂适应系统理论复杂适应系统(Complex Adaptive System,简称CAS)理论的提出对于人们认识、理解、控制、管理复杂系统提供了新的思路。
CAS理论包括微观和宏观两个方面。
在微观方面,CAS理论的最基本的概念是具有适应能力的、主动的个体,简称主体。
这种主体在与环境的交互作用中遵循一般的刺激——反应模型,主体的适应能力表现在它能够根据行为的效果修改自己的行为规则,以便更好地在客观环境中生存。
在宏观方面,由这样的主体组成的系统,将在主体之间以及主体与环境的相互作用中发展,表现出宏观系统中的分化、涌现等种种复杂的演化过程。
1994年霍兰提出复杂适应系统理论,在桑塔费研究所成立10周年时正式提出的。
作为CAS理论的产生背景,有必要对该研究所简单介绍。
1. 圣菲(桑塔费)研究所CAS理论的诞生地——桑塔费研究所成立于1984年。
它是一个独立的非盈利的研究所,靠申请各种基金来支持跨学科的研究工作。
聚集在这里的研究人员虽然来自不同的阶层和背景,包括从梳着马尾巴发型的研究生到像物理学家盖尔曼、安德森和经济学家阿罗这样的诺贝尔桂冠得主,由年迈的学术巨子(头顶诺贝尔桂冠、地位特殊、声名显赫)创建的机构,但他们都达到了一个基本的共识,都坚信一个将普照自然和人类的新科学——复杂性理论,他们正在凌厉地冲破自牛顿时代以来一直统治着科学的线性的还原论的思维方式,但起步非常艰难。
1.1 还原论三百多年来,科学家们热爱的线性系统,在这个系统中,整体正好等于所有部分之和。
还原论把世界分解得尽可能小,尽可能简单。
为一系列或多或少理想化了的问题寻找解题的方案(通往诺贝尔奖的辉煌殿堂通常是由还原论的思维取道的),但却因此背离了真实世界,把问题限制到你能发现解决办法的地步,这就造成了科学上越来越多的碎裂片。
而真实的世界却要求我们用更加整体的眼光去看问题,任何事情都会影响到其它事情,你必须了解事情的整体关联网。
事实上,除了非常简单的物理系统,世界上几乎所有的事情、所有的人都被裹罩在一张充满刺激、限制和相互关系的巨大非线性网络之中,一个地方小小的变化会导致其它地方的震荡(一呼百应、千应,蝴蝶力量),整体几乎永远是远远大于部分的总和(气体整体属性有压强、温度、相变——凝固与蒸发,而单个气体分子只有动能、速度;一台安装好的机器具有它的零部件总和所没有的功能)。
一、概述控制系统设计是现代工程领域中一个重要的议题,对于各种工业过程、汽车、飞机、机器人等系统的性能和稳定性起着至关重要的作用。
而《控制系统设计指南》作为一部经典著作,在控制系统设计领域具有非常高的影响力和权威性。
本文将对《控制系统设计指南》原书第4版进行全面的阐述和分析。
二、作者及书籍概况《控制系统设计指南》是由美国知名控制系统专家George Ellis撰写的一部专著,涵盖了控制系统设计的理论和实践,适用于工程师、学生和研究人员。
本书已经出版了多个版本,第4版在第3版的基础上做了更新和扩充。
作者George Ellis是美国系统与控制学会的会员,拥有丰富的理论和实际经验,因此《控制系统设计指南》具有很高的权威性和可信度。
三、内容概述1. 第一章 - 控制系统概述本章介绍了控制系统的概念和基本原理,阐述了控制系统在各个领域的应用和意义,为后续章节的学习奠定了基础。
2. 第二章 - 数学模型本章深入探讨了控制系统设计所需的数学模型,包括传递函数、状态空间模型、离散时间系统等内容,为读者理解控制系统的数学基础做了详细解释。
3. 第三章 - 控制系统设计原则本章围绕系统性能、稳定性、鲁棒性等方面,介绍了控制系统设计的基本原则和方法,包括PID控制器设计、校正控制器设计等内容。
4. 第四章 - 控制系统实现本章讨论了控制系统实现的各种技术和方法,如数字控制系统、模糊控制系统、遗传算法等,为读者提供了多种选择和思路。
5. 第五章 - 稳定和性能分析本章介绍了稳定性和性能分析的相关理论和实践,包括时域分析、频域分析、极点分布等内容,帮助读者深入理解控制系统的稳定性和性能。
6. 第六章 - 鲁棒性设计本章详细介绍了鲁棒性设计的理论和方法,包括H-infinity控制、鲁棒控制、鲁棒优化等,为读者提供了多种解决方案。
7. 第七章 - 多变量系统设计本章探讨了多变量系统设计的理论和实践,包括多变量控制系统、模态分析、多变量稳定性分析等内容,帮助读者了解多变量系统设计的复杂性和挑战。
第六章复杂控制系统教学要求:掌握串级控制系统的基本概念、特点了解串级控制系统的设计方法、应用场合掌握比值控制系统的基本概念、特点和设计掌握前馈控制的基本概念,几种结构形式、应用场合掌握均匀控制的基本概念和控制方案掌握分程控制的基本概念和应用中的几个问题掌握选择性控制的基本概念,选择性控制的应用,了解积分饱和及其防止重点:串级控制系统的结构特点及应用场合,比值控制系统的三种形式的特点前馈控制的基本概念分程控制的基本概念选择性控制的应用难点:串级控制系统的结构特点,主、副控制器正反作用的选择动态前馈控制控制阀分程动作关系本章着重介绍各种复杂控制系统的组成、特点、工作过程与工程设计原则。
§6.1 串级控制系统6.1.1 串级控制系统的基本概念串级控制系统的采用了两个控制器,我们将温度控制器称为主控制器,把流量控制器称为副控制器。
主控制器的输出作为副控制器的设定,然后由副控制器的输出去操纵控制阀。
在串级控制系统中出现了两个被控对象,即主对象(温度对象)和副对象(流量对象),所以有两个被控参数,主被控参数(温度)和副被控参数(流量)。
主被控参数的信号送往主控制器,而副被控参数的信号被送往副控制器作为测量,这样就构成了两个闭合回路,即主回路(外环)和副回路(内环)。
二、串级控制系统的特点1. 改善了对象特征,起了超前控制的作用2. 改善了对象动态特性,提高了工作频率3. 提高了控制器总放大倍数,增强了抗干扰能力4. 具有一定的自适应能力,适应负荷和操作条件的变化6.1.3 串级控制系统的设计设计原则。
1. 在选择副参数时,必须把主要干扰包含在副回路中,并力求把更多的干扰包含在副回路中。
2. 选择副参数,进行副回路的设计时,应使主、副对象的时间常数适当匹配。
3. 方案应考虑工艺上的合理性、可能性和经济性。
6.1.4 串级控制系统的应用场合1. 被控对象的控制通道纯滞后时间较长,用单回路控制系统不能满足质量指标时,可采用串级控制系统。
2对象容量滞后比较大,用单回路控制系统不能满足质量指标时,可采用串级控制系统。
3.控制系统内存在变化激烈且幅值很大的干扰。
4. 被控对象具有较大的非线性,而负荷变化又较大。
6.1.5 串级控制系统应用中的问题1. 主、副控制器控制规律的选择串级控制系统中主、副控制器的控制规律选择都应按照工艺要求来进行。
主控制器一般选用PID控制规律,副控制器一般可选P控制规律。
2. 主、副控制器正、反作用方式的确定。
副控制器作用方式的确定,与简单控制系统相同。
主控制器的作用方向只与工艺条件有关。
3. 串级控制系统控制器参数整定⑴在主回路闭合的情况下,主、副控制器都为纯比例作用,并将主控制器的比例度置于100%,用4:1衰减曲线法整定副控制器,求取副回路4:1衰减过程的副控制器比例度(δ2p)以及操作周期(T2P)。
⑵将副控制器的比例度置于所求的数值δ2p上,把副回路作为主回路的一个环节,用同样的方法整定主控制器,求取主回路4:1衰减过程的δ1p和T1P。
⑶根据求得的(δ1p)和(T1P)、(δ2p)和(T2P)数值,按经验公式求出主、副控制器的比例度、积分时间和微分时间。
⑷按先副后主、先比例后积分再微分的程序,设置主、副控制器的参数,再观察过渡过程曲线,必要时进行适当调整,直到系统质量达到最佳为止。
6.2 比值控制系统6.2.1 概述在生产过程中经常需要两种或两种以上的物料以一定的比例进行混合或参加化学反应。
在需要保持比例关系的两种物料中,往往其中一种物料处于主导地位,称为主物料或主动量F1,而另一种物料随主物料的变化呈比例的变化,称为从物料或从动量F2。
例如在稀硝酸生产中,空气是随氨的多少而变化的,因此氨为主动量F1,空气为从动量F2。
6.2.2 常用的比值控制方案1. 单闭环比值控制这类比值控制系统的优点是两种物料流量之比较为精确,实施也较方便,所以得到广泛的应用。
2. 双闭环比值控制为了既能实现两流量的比值恒定,又能使进入系统的总流量F1+F2不变,因此在单闭环比值控制的基础上又出现了双闭环比值控制系统。
这类比值控制系统的优点是在主流量受到干扰作用开始到重新稳定在设定值这段时间内发挥作用,比较安全。
3. 变比值控制系统要求两种物料流量的比值随第三参数的需要而变化。
6.2.3 比值控制系统的设计1. 主、从动量的确定2. 控制方案的选择3. 比值系数的计算4. 控制方案的实施§6.3 前馈控制系统一、前馈控制系统的基本概念前馈与反馈控制比较。
前馈控制是一种按干扰进行控制的开环控制方法,当干扰出现以后,被控变量还未变化时,前馈控制器(也称前馈补偿装置)就根据干扰的幅值和变化趋势对操纵变量进行控制,来补偿干扰对被控变量的影响,所以相对于反馈控制,前馈控制是比较及时的。
6.3.2 前馈控制系统的几种结构形式1. 静态前馈控制系统2. 动态前馈控制系统静态前馈控制系统虽然结构简单,易于实现,在一定程度上可改善过程品质,但在扰动作用下控制过程的动态偏差依然存在。
对于扰动变化频繁和动态精度要求比较高的生产过程,对象两个通道动态特性又不相等时,静态前馈往往不能满足工艺上的要求,这时应采用动态前馈方案。
动态前馈与静态前馈从控制系统的结构上看是一样的,只是前馈控制器的控制规律不同。
动态前馈要求控制器的输出不仅仅是干扰量的函数,而且也是时间的函数。
要求前馈控制器的校正作用使被控变量的静态和动态误差都接近或等于零。
显然这种控制规律是由对象的两个通道特性决定的,由于工业对象的特性千差万别,如果按对象特性来设计前馈控制器的话,将会种类繁多,一般都比较复杂,实现起来比较困难。
一般采用在静态前馈的基础上,加上延迟环节和微分环节,以达到干扰作用的近似补偿。
3. 前馈-反馈控制通过前面的分析,我们知道前馈与反馈控制的优点和缺点总是相对应的,若将其组合起来,构成前馈-反馈控制系统,这样既发挥了前馈控制作用及时的优点,又保持了反馈控制能克服多个扰动和具有对被控参数进行反馈检测的长处,因此这种控制系统是适合于过程控制的较好方式。
6.3.3 前馈控制系统的应用场合1. 系统中存在着可测但不可控的变化幅度大,且频繁的干扰,这些干扰对被控参数影响显著,反馈控制达不到质量要求时。
2. 当控制系统的控制通道滞后时间较长,由于反馈控制不及时影响控制质量时,可采用前馈或前馈-反馈控制系统。
§6.4 均匀控制系统一、均匀控制的概念在石油化工生产中,采用连续生产方式,各生产过程都与前面的生产过程紧密联系。
前一设备的出料往往是后一设备的进料,而后者的出料又源源不断的输送给其他设备做进料。
于是产生了前后设备之间的供求矛盾和协调问题。
解决前后工序供求矛盾,使液面和流量的变化互相兼顾均匀变化,这就是均匀控制系统的目的。
怎样才算达到均匀控制系统的目的呢?通过以上讨论,液位和流量两个参数的变化应满足如下要求:1. 两个参数在控制过程中都应该是变化的,且变化是缓慢的。
2. 两个参数必须在允许的范围内变化,均匀控制要求在最大干扰作用下,液位在塔釜的上下限内波动,而流量应在一定的范围内平稳渐变,避免对后段工序产生较大的干扰。
二、均匀控制方案1. 简单均匀控制图从结构上看,与一般单回路液面控制系统无异,但从本质上看,两者是有区别的,区别主要在于控制器的控制规律选择及参数整定问题上。
2. 串级均匀控制系统克服阀前后压力变化的影响及液位自衡作用的影响效果较差。
为了克服这一缺点,可在原方案的基础上增加一个流量副回路,即构成串级均匀控制。
串级均匀控制系统所用仪表较多,适用于控制阀前后压力干扰和自衡作用较显著而且对流量的平衡要求又较高的场合§6.5 分程控制系统一、分程控制系统的基本概念由一个控制器的输出信号分段分别去控制两个或两个以上控制阀动作的系统称为分程控制系统。
分程控制方案中,阀的开闭形式,可分同向和异向两种,如图6.22和图6.23所示。
同向或异向规律的选择,全由工艺的需要而定 。
控制阀分程动作(同向)图6.23 控制阀分程动作(异向)二、 分程控制系统的应用设计分程控制有两方面的目的,一是扩大控制阀的可调范围,以改善控制系统的品质;二是满足工艺上的特殊需求。
1. 用于扩大控制阀的可调范围2. 用于控制满足工艺上操作的特殊要求 分程控制还能解决生产过程中的一些特殊要求。
100 20 60 100 0 阀压/kPa 阀 阀 阀 开 度 (%) B A 20 60100 0阀压/kPa A 阀 B 阀 阀 开度(%) 100 100 20 60 100 0 阀压/kPa 阀 开度(%) 20 60 100 0 阀压/kPaB 阀 阀 开 度 (%) 100 B 阀 A 阀A 阀例6.1 图6-24所示是间歇反应器的温度分程控制系统。
当例6.2为使这些采用氮封技术的要求是,要始终保持贮罐内的氮气压呈微量 正压。
当贮罐内贮存物料量增减时,将引起罐顶压力的升降,应及时进行控制,否则将使贮罐变形,甚至破裂,造成浪费或引起燃烧、爆炸危险。
因此,当贮罐内液面上升时,应停止继续补充氮气,并将压缩的氮气适量排出。
反之,当液面下降时,应停止放出氮气而需补充氮气。
为满足工艺这种要求,设计了图6.26所示的分程控制系统。
分程控制本质上是简单控制系统,有关控制器控制规律的选择及其参数整定可参照简单控制系统处理。
但由于两只控制阀两个控制通道特性不同,可能引起广义对象特性的改变,所以控制器参数整定只能兼顾两种情况,选取一组比较合适的参数。
1000.020.06 0.1“B ” “A ” 0 MPa气 关 阀 气 开 阀 阀 开度 (%)。