如何进行《图形与几何》的概念教学
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
小学图形与几何的教案(热门8篇)本站作者为你精心整理了8篇《小学图形与几何的教案》的内容,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在本站搜索到更多与《小学图形与几何的教案》相关的内容。
篇1:《图形与几何》教案北师大版《图形与几何》教案教学目标:1.复习整本书所学过的图形与几何的知识,巩固加深对所学知识的理解,沟通各部分知识之间的内在联系。
2.提高学生解决问题的能力和空间想象能力。
3.感受数学与生活的紧密联系,培养学生喜爱数学的情感。
教学重点:复习整理“图形与几何”部分的知识,巩固对所学知识的理解,提高解决问题的能力。
教学难点:培养学生的空间观念和想象能力,提高解决问题的能力。
教学过程:一、导入师:同学们,今天我们要复习整理的内容与我们的日常生活联系非常密切,首先想一想,在“图形与几何”部分,我们学习了哪些知识?学生可能会说我们学过的平面图形有长方形、正方形、三角形、平行四边形和梯形等这些线段围成的图形,还有曲线围成的图——圆,圆形是轴对称图形,有无数条对称轴。
我知道了圆心决定圆的位置,半径决定圆的大小;圆有无数条直径,有无数条半径;同一圆中,所有的直径都相等,所有的半径都相等。
我们还进一步学习了观察物体,能画出从正面、左面和上面看到的图形形状,知道了观察的范围与距离有关。
……师:同学们说得很好,只要你留心观察、认真学习,相信你会有更多新的发现!【设计意图:引导学生回顾要整理复习的相关知识点,从而使学生形成对这部分内容的感性认识,能在头脑中呈现相关的表象,逐步构建知识系统。
】二、过程师:我们先来一起谈谈“圆”在生活中的应用吧。
生1:圆在生活中有很多应用。
车轮做成圆形的是因为圆心到圆上任意一点的距离都相等,这样车轮在平面上滚动比较平稳。
生2:人们观看表演会自动围成圆形,是因为这样每个观众(圆上的点)距离表演者(圆心)的距离相等。
……师:圆在生活中应用是很广泛的。
我们还学习了圆的周长和面积,你们还记得周长公式和面积是怎样得到的吗?在小组里跟同学说说公式的推导过程。
转化思想在小学数学“图形与几何”教学中的运用图形与几何是小学数学教学中非常重要的内容之一,它涉及到学生对形状的认知和理解能力,同时也对学生的空间想象力和创造力提出了较高的要求。
在教学中,如何让学生更好地理解和掌握这一知识点,一直是老师们关注的焦点。
近年来,转化思想对于数学教学的影响越来越受到重视,它提出了“由易到难”,“由表象到本质”等原则,与图形与几何的教学内容相结合,可以有效地提高学生的学习成绩和兴趣。
本文将探讨转化思想在小学数学“图形与几何”教学中的运用。
一、引入活动导入概念在教学《图形与几何》的课程中,老师可以通过一些生动有趣的活动引入,帮助学生建立对图形的初步认知。
通过环保袋里面摸东西,引入平面几何图形。
从中学生可以感受到圆的特征;将质地坚硬的物体放在一个素描纸上滚动,触摸感与纸的压印特征可以引出立体几何图形中圆柱、圆锥的特征。
这样的引入活动可以让学生在愉快的氛围中学习,提高学生对图形的兴趣和好奇心,为后续的学习打下基础。
二、联系生活,引导学生深入理解小学生的思维能力和抽象概念的理解能力有限,所以在教学图形与几何内容时,老师应该注重联系学生的生活实际,引导学生从生活中寻找图形,激发学生的好奇心和求知欲。
在教学正方形时,可以引导学生找到身边的一些例子,如手机屏幕、书桌等等,让学生在生活中身临其境地感受正方形,这样有助于学生更加深入地理解图形的特征和性质。
三、以易到难,由浅入深地展开教学在教学之初,老师应该根据学生的实际情况,以易到难的原则展开教学。
要从学生熟悉的图形开始,如圆、三角形、正方形等,渐进地展开。
要从图形的表象特征入手,逐步引导学生深入思考图形的本质特征。
当老师教学三角形时,先让学生观察三角形的外观特征:三条边、三个顶点等,然后根据转化思想的原则,逐步引导学生理解三角形的本质特征:三边连接成的封闭图形,三个内角相加等于180度等。
这样一步步由易到难地展开教学,可以帮助学生更好地掌握图形与几何知识。
小学数学《图形与几何》教学研究《小学数学《图形与几何》教学研究》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!研修内容1.影响小学数学空间与图形领域中几何概念课堂教学有效性的因素分析。
影响小学数学空间与图形领域中几何概念课堂教学有效性的原因有好多种,通过对本课题的研究,找到影响小学数学空间与图形领域中几何概念课堂教学有效性的因素,然后进行针对性地矫正。
2.探究优化小学数学空间与图形领域中几何概念课堂教学的策略。
(1)有效的情境创设策略(2)有效的合作与交流策略(3)有效的课堂练习策略本。
3.如何界定和评估一节小学数学空间与图形领域中几何概念教学是否是有效教学,学生的学习是否是有效学习?本课题按照新课标要求,以小学数学《空间与图形》中位置、观察物体、图形与变换三个方面概念教学的有效性研究为重点,围绕“有效的几何概念课堂来自于教师的有效教学行为”、“有效的几何概念课堂关键看学生的学习状态和效果”等理论假设,通过文献研究法、调查法、个案研究法、比较分析法、经验总结法等多种研究方法,着力探索小学几何概念教育中优化教学策略、增强课堂效率、提高教学质量的有效途径。
一、课题立项研究背景。
我国过去的数学教学大纲、教材经历过数次改革,但从过往“几何”的课程内容和目标看,小学阶段主要侧重于长度、面积和体积的计算,较少涉及三维空间的内容。
同时,由于教学内容呈现方式比较单一,使学生的空间观念、空间想象力难以真正有效的发展。
又由于几何内容的过分抽象化和形式化,缺少与现实生活紧密联系,使直观优势没有得到充分发展,“空间与图形”(几何)的教育价值就不能得到全面、充分的体现。
因此,我国最新颁布的《数学课程标准》已把“几何”扩展为“空间与图形”,明确了“空间与图形”主要研究现实世界中的物体和几何图形的形状、大小、位置及其变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。
正因为位置与方向、观察物体,图形变换等知识多是新教材中的新增内容,不少教师对编排这些内容的重要意义认识不足,对这些教学内容缺乏研究,或者对新编内容的不适应而难以制定出合理的教学策略,使教学不能得心应手。
人教版数学四年级上册第9单元第4课时《图形与几何》教案一. 教材分析人教版数学四年级上册第9单元第4课时《图形与几何》主要让学生通过观察、操作、想象和推理等数学活动,进一步理解平移、旋转和轴对称现象,能够将这些现象与实际生活中的例子相结合,提高学生的空间想象能力和解决问题的能力。
二. 学情分析四年级的学生已经具备了一定的空间想象能力和观察能力,对于平移、旋转和轴对称现象有一定的了解。
但在实际应用中,可能还存在着一定的困难。
因此,在教学中,要注重引导学生通过实际操作和生活中的例子,加深对平移、旋转和轴对称现象的理解和应用。
三. 教学目标1.让学生通过实际操作和观察,进一步理解平移、旋转和轴对称现象。
2.培养学生将数学知识应用到实际生活中的能力,提高学生的空间想象能力。
3.培养学生的团队合作意识和交流表达能力。
四. 教学重难点1.重点:让学生能够理解和应用平移、旋转和轴对称现象。
2.难点:将平移、旋转和轴对称现象与实际生活中的例子相结合,解决实际问题。
五. 教学方法采用问题驱动法、合作交流法和实例分析法,引导学生通过实际操作和观察,理解平移、旋转和轴对称现象,提高学生的空间想象能力和解决问题的能力。
六. 教学准备1.教学课件和教学素材。
2.学生分组,准备小组活动。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张图片,让学生观察和描述平移、旋转和轴对称现象,引导学生进入本节课的主题。
2.呈现(10分钟)通过课件和实物展示,呈现平移、旋转和轴对称现象的定义和特点,让学生通过观察和操作,加深对这些概念的理解。
3.操练(10分钟)将学生分成小组,每组提供一个实例,要求学生通过实际操作,展示和解释平移、旋转和轴对称现象。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师提供几个实际生活中的问题,要求学生运用平移、旋转和轴对称现象的知识,解决这些问题。
教师选取部分学生的问题进行讲解和讨论。
5.拓展(10分钟)让学生思考和讨论平移、旋转和轴对称现象在实际生活中的应用,如设计图案、建筑物的布局等,引导学生将数学知识应用到实际生活中。
人教版小学五年级数学下册第3课时《图形与几何(1)》教案一. 教材分析人教版小学五年级数学下册第3课时《图形与几何(1)》主要包括了平行四边形的性质、矩形的性质、菱形的性质以及正方形的性质。
这些内容为学生提供了丰富的探究材料,让学生在探究中发现图形的性质,培养学生的观察能力、操作能力和推理能力。
二. 学情分析五年级的学生已经学习了平面图形的初步知识,对平行四边形、矩形、菱形、正方形有了初步的认识。
但是,对于这些图形的性质,学生可能还不是很清楚。
因此,在教学过程中,教师需要引导学生观察、操作、推理,从而发现图形的性质。
三. 教学目标1.让学生掌握平行四边形、矩形、菱形、正方形的性质。
2.培养学生的观察能力、操作能力和推理能力。
3.培养学生的合作意识,提高学生的数学素养。
四. 教学重难点1.重点:掌握平行四边形、矩形、菱形、正方形的性质。
2.难点:发现并证明矩形、菱形、正方形的性质。
五. 教学方法1.采用问题驱动法,引导学生观察、操作、推理,发现图形的性质。
2.利用小组合作学习,培养学生的合作意识。
3.运用数形结合思想,帮助学生理解图形的性质。
六. 教学准备1.准备相关的图形卡片、课件等教学资源。
2.准备矩形、菱形、正方形的实物模型。
3.准备黑板、粉笔等教学工具。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实际问题,如停车场的设计、房间布置等,引导学生观察其中的平行四边形、矩形、菱形、正方形,激发学生的学习兴趣。
呈现(10分钟)教师展示矩形、菱形、正方形的实物模型,引导学生观察这些图形的特征,并与平行四边形进行对比,找出它们的共同点和不同点。
操练(15分钟)教师提出一些有关平行四边形、矩形、菱形、正方形性质的问题,如“平行四边形的对角相等吗?”“矩形的四个角都是直角吗?”等,让学生分组讨论,并进行操作验证。
巩固(10分钟)教师学生进行小组竞赛,看哪个小组能更快地判断出给定图形的性质。
同时,教师引导学生总结平行四边形、矩形、菱形、正方形的性质。
如何进行小学数学“图形与几何”领域的教学莫绍龙、冯忠贞一、解读图形与几何图形与几何是帮助学生生存并促进其发展的重要基础,是帮助学生形成创新意识、发展数学思维所必须的土壤。
《数学课程标准》中“图形与几何”内容结构以“立体——平面——立体”为主线,以“图形的认识”“测量”“图形与位置”“图形与变换”四条线索展开,遵循学生的认知特点,逐学段层层推进。
《数学课程标准》中空间与图形”的四条线索部以图形为载体,以培养观念、几何直觉推理能力以及更好的认识和把握我们生存的空间为目标不仅着眼于学生理解和掌握一些必要的几何事,而且强调学生经历自主探索和合作交流的过程形成积极的学习态度和情。
如,一年纽的第一学期的新教材,让学生首先认识的是立体图形,然后在以后的学习中认识和学习平面图形,最后进一步学习和认识立体图形。
《教学课程标准》呈现内容的结构形式,提倡以“问题情境——建立模型——解释、应用——拓展、反思”的基本模式展现内容,让学生经历“数学化”和再创造的过程。
这与以往几何教材主要采取”定义——性质——例题——习题”的结构形式有较大的区别。
《数学课程标准》呈现内容的处理方式,与以往的大纲相比,改变了以线段、面积、体积、测量、相交平行、三角形和四边形”呈现几何内容的处理方式,而是以“观察、实际动手操作、测量、计算、变换和简单推理”为具体处理方式。
如,画出从学校到家的路线示意图并注明方向及主要参照物。
《数学课程标准》中图形与几何的内容有相当一部分是直观几何、实验几何.这部分内容是有趣的、充满想像和富有意义的推理活动。
《教学课程标准)中“图形与几何内容安排的思路是:不把小学的几何内容作为初中几何的基础侧重于有关图形数量的计算,而在初中阶段把研究对全拓展到相似形和圆,侧重于以演绎推理为主要形式的论证。
(数学课程标准)将“空间与图形”的内容分别安排在三个学段,后一学殿是前一学段的螺旋式上升和自然发展。
二、教学建议1、教学一定要关注学生的生活经验。
复习-图形与几何(教案)2023-2024学年数学四年级上册北师大版一、教学目标1. 让学生掌握图形与几何的基本概念,如点、线、面、体等。
2. 培养学生的空间想象能力和逻辑思维能力。
3. 提高学生运用图形与几何知识解决实际问题的能力。
4. 培养学生合作学习、探究学习的能力。
二、教学内容1. 图形的基本概念:点、线、面、体2. 几何图形的分类:平面图形、立体图形3. 几何图形的性质:对称性、相似性、全等性4. 几何图形的度量:长度、面积、体积5. 几何图形的变换:平移、旋转、翻转三、教学重点与难点1. 教学重点:图形与几何的基本概念,几何图形的分类和性质,几何图形的度量。
2. 教学难点:几何图形的变换,空间想象能力的培养。
四、教学策略1. 采用启发式教学,引导学生主动探究,培养学生的自主学习能力。
2. 利用多媒体教学手段,直观展示几何图形,提高学生的空间想象能力。
3. 组织学生进行小组讨论,培养学生的合作学习能力和交流表达能力。
4. 设计富有启发性的练习题,巩固所学知识,提高学生的解题能力。
五、教学过程1. 导入新课通过展示生活中的几何图形,引导学生回顾已学的图形与几何知识,为新课的学习做好铺垫。
2. 探究新知(1)图形的基本概念:点、线、面、体引导学生认识图形的基本概念,通过实例讲解,让学生理解点、线、面、体之间的关系。
(2)几何图形的分类:平面图形、立体图形引导学生根据图形的特点进行分类,掌握平面图形和立体图形的概念。
(3)几何图形的性质:对称性、相似性、全等性通过实例分析,让学生理解几何图形的性质,并能运用性质解决实际问题。
(4)几何图形的度量:长度、面积、体积讲解几何图形的度量方法,让学生掌握长度、面积、体积的计算公式。
(5)几何图形的变换:平移、旋转、翻转通过实际操作,让学生掌握几何图形的变换方法,培养学生的空间想象能力。
3. 巩固练习设计富有启发性的练习题,让学生运用所学知识解决问题,巩固所学内容。
《图形与几何》教案设计一、教学目标1.让学生掌握平面几何的基本概念、性质和定理。
2.培养学生运用几何知识解决实际问题的能力。
3.激发学生对图形与几何的兴趣,提高学生的空间想象力和逻辑思维能力。
二、教学内容1.平面几何的基本概念:点、线、面、角2.几何图形的性质和定理:三角形、四边形、圆3.几何图形的相互关系:平行、垂直、相交4.几何图形的变换:平移、旋转、对称三、教学重点与难点1.教学重点:平面几何的基本概念、性质和定理,几何图形的相互关系及变换。
2.教学难点:几何图形的性质和定理的证明,几何图形的变换方法。
四、教学过程1.导入(1)通过多媒体展示一些生活中常见的几何图形,让学生初步认识平面几何。
(2)引导学生回顾小学阶段学过的几何知识,为新课学习做好铺垫。
2.授课(1)讲解平面几何的基本概念:点、线、面、角(2)讲解几何图形的性质和定理:三角形、四边形、圆(3)讲解几何图形的相互关系:平行、垂直、相交(4)讲解几何图形的变换:平移、旋转、对称3.练习(1)让学生在纸上画出一些几何图形,如三角形、四边形、圆等,并标出相关性质和定理。
(2)让学生互相交流,分享自己画图的经验和心得。
4.小组讨论(1)将学生分成小组,每组选一个组长。
1.如何证明一个三角形是等边三角形?2.如何判断两个几何图形是否相似?3.如何进行几何图形的平移、旋转、对称变换?(1)请小组代表发言,分享讨论成果。
6.作业布置(1)让学生回家后,复习本节课所学内容。
(2)完成课后练习题,巩固所学知识。
五、教学反思本节课通过生动的实例和丰富的练习,让学生掌握了平面几何的基本概念、性质和定理,以及几何图形的相互关系和变换。
在教学过程中,注重学生的参与和互动,激发学生的学习兴趣。
但在教学过程中,也发现了一些问题,如部分学生对几何图形的性质和定理掌握不够熟练,需要加强巩固。
在今后的教学中,我将针对这些问题,调整教学方法,提高教学效果。
六、教学资源1.多媒体课件2.教学视频3.练习题库4.课后辅导资料七、教学时间1课时八、教学评价1.课堂表现:观察学生在课堂上的参与度、发言积极性和学习态度。
小学数学结构化教学策略研究——以《图形与几何》教学为例目前的小学数学知识体系完善、教学流程安排合理、教学作业布置恰当。
此背景下,教师有必要从整体的角度分析教学内容,并根据小学生的认知特点设计富有逻辑、结构明显的教学方案,使学生在教师的组织、引导下关联建构知识体系,发展数学能力,形成数学思维。
一、衔接环节:构建结构化的教学流程“不知则问,不能则学,虽能必不让,然后为德。
”“闻之而不见,虽博必谬;见之而不知,虽识不妄;知之而不行,虽敦必困。
”古代先贤荀况的这两句名言为小学数学结构化教学提供了启发[1]。
实际教学中,教师应认识到学生的“不知”与“不能”,根据其具体学情有序提出问题、导入新知、组织讨论,促进学生化“不知”为“知”,化“不能”为“能”,使学生在结构化的教学流程中提升自身的数学能力。
以苏教版三年级数学上册《长方形和正方形》的教学为例,分析构建结构化教学流程的方法:(一)旧知导入,串联教学内容学习该部分内容之前,学生在一年级下学期的《认识图形(二)》一课中已经初步学过长方形和正方形,在该部分内容之后,教师会陆续教学长方形和正方形的面积,三角形、平行四边形和梯形的认识,圆的认识等知识点。
其中,直观地认识长方形、正方形可作为本课教学内容的起点,教师通过导入旧知唤醒学生对过去知识的记忆,使其凭借已有的学习经验对未知的数学知识进行探索,拉近学生与新知的距离,促进其对新、旧知识点的关联、建构[2]。
导入环节,使用多媒体出示教室立体图,引导学生回忆过去的知识:数学知识无处不在,今天你能不能找出藏在教室图片中的数学知识?有哪些物体的面是长方形,哪些物体的面是正方形?在学生用手沿着图片描边,用纸、笔将黑板、墙面、窗框等物体中蕴藏的长方形、正方形画出后,教师将旧知识与新课内容串联起来,揭示课题:生活中这样的案例还有很多,可见长方形、正方形都是常见的图形。
它们都有各自的特点,今天这节课就以研究长方形和正方形的特征为主要教学内容。
如何进行《图形与几何》的概念教学
李朝辉
《数学课程标准》指出:使学生逐步形成简单的几何形体的形状、大小和相互位置关系的表象,能够识别所学的几何形体,并能根据几何形体的名称再现它们的表象,培养初步的空间观念。
学生在学习几何知识的过程中,重视对物体的原有感知,逐步掌物物体的形状、特征、大小和相互位置关系,并以此为材料进行思维,将图形、表象进行加工、组合,逐步培养和发展空间观念。
因此,学会这部分教材对于学生培养空间观念,发展思维力、想象力,有着十分重要的意义。
它同时也为学生以后学习几何知识打下扎实的基础。
但是,在概念教学中往往存在以下两个问题:一是忽视概念的形成过程,教师往往把
一个新的概念和盘托出,让学生死记硬背法则、定义;二是忽视概念间的联系,把许多本来有联系的概念,拆散成一粒粒散落的珠子,分散、孤立地保存在学生的脑海里,没能将珠子串成项链,概念不成系统,不能帮助学生形成良好的认知结构。
要改变这些问题,我觉得应该以锻炼和发展学生的“思”为主线,把“看”、“动”、“练”、“理”有机地串联成一个思维体系,从而顺利达到“通”的目的。
具体来讲就是:
看—全面观察。
实践证明:儿童接触事物,探究事物的本质属性,经常是从观察开始和发现的。
在现实生活中,学生对简单图形已有初步了解,如书的封面是长方形,红领巾是三角形,文具盒是长方体……,但他们对此的了解往往是表面的、模糊的,还不能说出其本质特征,往往是口欲言而无声。
所以教学时,我因势利导,结合教学内容,充分利用实物、模型和多媒体等教学手段,丰富学生表象。
引导学生用眼看、用手摸,做到上下、左右、前后和正反进行全面、仔细地观察,以此加强直观教学,加深学生对物体的初步认识,使他们由具体物体的形状在大脑中形成表象,继而上升为概念,初步培养或形成空间观念。
动—动手操作。
杨振宇博士说:“中国的儿童不如欧洲和美国的儿童动手兴趣浓,主要原因是没有动手的机会。
”其实动手操作是把书本等外在知识内化为自己知识的桥梁。
由于小学生生性喜欢动手操
作,而且抽象思维依赖于动作思维或形象思维展开,因此动手操作对小学生掌握知识、技能,培养动手能力,提高学习兴趣积极性等都有一定的实践意义。
所以教学时,我尽量组织学生开展“剪”“拼”“量”“摆”“数”“做”等的实践活动,引导学生自己动手做出物体模型,学会对图形或模型进行分解、组合、平移、翻转等转化方法,使他们在动眼、动手、动脑、动口等亲身体验中加深对几何形体的感化方法,进一步理解掌握其本质特征,初步掌握几何图形面积的计算方法和转化方法,同时也更进一步培养学生的空间观念和想象能力。
如教学《圆柱体的侧面积》一课时,我让学生拿出自己的侧面裱有彩纸(或自己在侧面糊纸)的圆柱体,边看边摸说出其侧面特征后提问:“你能用转化的方法自己求出侧面的面积吗?”学生通过讨论、操作,有的学生说:“我沿着一条高剪开,侧面积转化成一个长方形,长方形的长相当于侧面积的周长(底面周长),长方形的宽相当于侧面的高,因为长方形的面积=长×宽,所以侧面的面积侧面=底面周长×高。
”有的同学说:“我沿着一条斜线剪开,侧面转化成一个平行四边形,平行四边形的底相当于侧面的周长,平行四边形的高相当于侧面的高,因为平行四边形的面积=底×高,所以侧面的面积=底面周长×高。
”。
有的同学说:“我沿着高剪开,侧面转化成一个正方形,同样得到侧面的面积=底×高。
”通过操作,学生不但发现了展开后的特例(正方形是特殊的长方形),丰富了侧面的表象,而且通过眼、手、口、脑多种感官协调作用,学生主动、直观地掌握圆柱体侧面积的推导方法和计算方法,同时也潜移默化地交给学生一把开启面积计算方法的钥匙。
实践证明:让学生用多种感官协调作用于同一事物,使具体事物的形象,在头脑中得到全面的反映,就学习的学习性和主动性,增强学生学习的参与意识,激发学习兴趣,活跃课常气氛,使学生以饱满高涨的热情投入学习,取得最佳的学习效果。
练—巩固训练。
通过全面观察和动手操作,学生对几何知识初步理解和掌握后,为了把知识转化成技能,形成能力,教师必须精心设计习题进行巩固训练。
教学时教师要注重精讲多练,注意数形紧密联系,逐步做到“物体——图形——表象——物体”的循环,使学生看到图形名称就想象出物体形状、特征和计算方法等,并能解决一些实
际问题,不断开拓思路,增强思维的灵活性,增强空间观念及其理解应用能力。
如:圆柱体体积习题的设计,首先我说圆柱体,让学生闭眼想象各种形状的异同和计算方法,再根据具体图形说出图形名称和所需数据后计算,使学生能依据直观图形帮助分析理解,然后逐步过渡到只根据图形名称和数据计算,使他们能再现图形的表象来帮助分析、理解题目,然后只出示图名称和数据间的关系让学生独立解题。
最后出示圆柱体或实际生活中的问题,要求学生量出所需数据再计算。
这样通过分层练习,逐步培养学生的空间观念及其理解、应用能力。
理—系统梳理。
实践证明:学生对于散乱、零碎的知识容易遗忘或发生混淆。
因此在一定阶段的学习之后,我及时对知识进行归纳、整理,串点成线,举一反三,扩线成面,形成网络,并使之根植于学生原有的知识体统中,使学生更进一步理解和掌握几何图形的本质特征和相互之间的联系与区别,进一步增强空间观念及其理解、应用能力。
通—触类旁通。
为了促进事物的整体形象在头脑中得到全面深刻的反映,使学生更深刻地认识几何图形的本质特征,促进空间观念的形成,教师要注意沟通几何图形的内在联系,注意知识的综合运用,使学生能由此及彼、触类旁通。
因此教学时,我充分结合学生的认识规律,由浅入深,由易到难,适时归纳出图形的本质特征,及时沟通知识间的内在联系,帮助学生分辨异同,达到沟通、同化知识,增强理解及其应用的能力。
如:教学完长方体、正方体、圆柱体体积的计算公式后,我及时沟通同化三者间的内在联系,即都可以用V=sh来计算。
V长方体=abh 当a=b=h时,v正方体=a³
V长方体=abh=sh V正方体=a³=sh
V圆柱体=πr²h=sh
这样使学生在解答某一习题时,能在头脑中迅浮现出这类习题的方法,锻炼了学习思维的广阔性。
总之,我通过紧扣“思”这条主线,全面贯穿“看”“动”“练”“理”,从而顺利达到“通”的目的。
以此培养和增强学生的空间观念,取得较好的教学效果。