光纤传感器

  • 格式:doc
  • 大小:1.04 MB
  • 文档页数:7

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

一、引言 (4)

二、光导纤维的结构与分类 (4)

三、光纤传感器的原理 (5)

2、光纤的传光原理 (5)

3、光纤传感器基本原理 (5)

四、光纤传感器在检测技术中的应用 (6)

1、光纤传感器用于检测的基本结构 (6)

2、光纤传感器对位移、振动频率和转速的测量 (7)

[1]光纤传感器测量位移 (7)

[2]光纤传感器测量振动频率 (7)

[3]光纤传感器测量速度 (7)

五、总结 (8)

一、引言

光纤传感器技术是伴随着光导纤维和光纤通信技术发展而形成的一门崭新的传感技术。光纤传感器的传感灵敏度要比传统传感器高许多倍,而且它可以在高电压、大噪声、高温、强腐蚀性等很多特殊情况下正常工作,还可以与光纤遥感、遥测技术配合,形成光纤遥感系统和光线遥测系统。光纤传感技术是许多经济、军事强国争相研究的高新技术,它可以应用于国民经济的很多领域。

光(导)纤(维)是20世纪70年代的重要发明之一,它与激光器、半导体探测器一起构成了新的光学技术,创造了光电子学的新天地。光纤的出现产生了光纤通信技术,特别是光纤在有线通信方面的优势越来越突出,它为人类21世纪的通信基础——信息高速公路奠定了基础,为多媒体通信提供了实现的必需条件。由于光纤具有许多新的特性,所以不仅在通信方面,在传感器等方面也获得了应用。

二、光导纤维的结构与分类

光导纤维,简称光纤,光纤是用光透射率高的电介质(如石英、玻璃、塑料等)构成的光通路。光线的结构如图1所示,

图1 图2

它由折射率n1较大(光密介质)的纤芯,和折射率n2较小(光疏介质)的包层构成的双层同心圆结构。如图2

光纤是一种多层介质结构的对称圆柱体,是用比头发丝还细的石英玻璃丝制成的,包括纤芯、包层和涂敷层,光纤的导光能力取决于纤芯和包层的性质,机械强度取决于塑料保护外套。它的外形与结构(如图3)

纤芯材料的主体是二氧化硅,里面掺入很微量的其他材料(如二氧化锗、五氧化二磷),掺杂其他材料的目的是为了提高材料的光折射率。纤芯的直径是5~75μm。纤芯外面为包层,可以是一层、二层或者(内外包层)更多层结构,总直径为100~200μm。包层的材料一般

用二氧化硅,为了降低包层对光的折射率,也可掺入其他微量元素。外层材料对光纤起保护作用,并增加机械强度;外层加装不同颜色的塑料套管,除起保护作用外,还可以方便的辨认不同的光纤型号。

图3 图4

光纤传感器的基本组成:光纤传感器主要包括光导纤维、光源、光探测器三个重要部件。

①光源分为相干光源(各种激光器)和非相干光源(白炽光、发光二极管)。实际中,一般要求光源的尺寸小、发光面积大、波长合适、足够亮、稳定性好、噪声小、寿命长、安装方便等。

②光探测器包括光敏二极管、光敏三极管、光电倍增管、光电池等。光探测器在光纤传感器中有着十分重要的地位,它的灵敏度、带宽等参数将直接影响传感器的总体性能。三、光纤传感器的原理

当光线由光密媒质(折射率n1)射入光疏媒质(折射率n2,n1>n2)时,若入射角大于等于临界角Φ=sin-1(n2/n1),在媒质界面上会发生全反射现象(如图1)。

光在光纤中传播的基本原理可用光线或光波的概念来描述。光线的概念是一个简便、近似方法,可用来导出一些重要概念,如全反射的概念、光线截留的概念等。然而,要进一步研究光的传播理论,将光看作射线就不够了,必须借助波动理论。即需要考虑到光是电磁波动现象以及光纤是圆柱形介质波导等,才能研究光在圆柱形波导中允许存在的传播模式,并导出经常要提到的波导参数(V值)等概念。

以阶跃型多模光纤为例,在子午面内光线从空气(折射率n0)射入光纤端面,与轴线的夹角为θ0,若入射角小于某一值θc,光线在纤芯和包层的界面上将发生全反射,光线射不出纤芯,从而能够从光纤的一端传播到另一端,这就是光纤传光的基本原理。如图2 由Snell(斯涅尔)定律得

若要使入射光线在纤芯和包层的界面上发生全反射,由临界角定义,应满足

代入:

能是光线在光纤内全反射的最大入射角θc可由上式求得,

式中,NA称为光纤的数值孔径,它表示当入射光从外部介质射入光纤时,只有入射角小于θc的光才能在光纤中传播。NA与光纤的几何尺寸无关,仅与纤芯和包层的折射率有关,纤芯和包层的折射率差别越大,数孔直径就越大,光纤的集光能力就越强。石英光纤的NA=~。

四、光纤传感器在检测技术中的应用

1.光纤传感器用于检测的基本结构

图5 图6

光纤传感器大致分为两类:第一类是利用光纤的性质随被测物理量而变化(如图7);第二类是利用光线进行传输的传感器(如图8、9、10)。

如将光纤置于声场中,则光纤芯线的折射率随声压而变化。将这种折射率的变化作为穿过光纤中的光的相位变化检出,根据所检出的相位变化,能过知道声场的强度。

在图8中设置了一个光的穿透性或光的反射性随被测物理量而变化的元件,通过该元件进行物理量的测量与另一条光纤进行传输。

图7 图8

图9为在光纤的一端安置物理量-光变换器,也有安装照明器用光纤的情况。

图10为光纤仅作为传输线路用的情况。

2.光纤传感器对位移、振动频率和转速的测量

[1]光纤传感器测量位移

光纤传感器测量位移的原理如图11,工作过程:光源发出的光耦合导入射光纤,光在光纤中传输到光纤另一端并发射出去,光在千分尺侧量端端面被发射回来并由反射光纤照射到光电晶体管上,光电晶体管将光量变成电量输出,将放大显示到数字电压表或示波器上。输出量的大小与反射光量大小成正比,而反射光量的大小又与光纤出射端面距千分尺测量端面远近成正比。

图11 图12

[2]光纤传感器测量振动频率

光纤传感器测量振动频率的装置如图12,它由Y形光纤光源光电探测器振动机构等部分组成。这个装置对工作时光量传输过程与前面位移测量基本相同,不同的是镜面与光纤传感器端面间距离变化手振动机构控制。在振幅不变情况下,改变振动频率,在数字电压表上可以得到一系列与振动频率相对应的电压值。

[3]光纤传感器测量速度

光纤传感器测量速度的原理图如图13。光源发出的光由入射光纤传输并投射到转盘的