数学动点问题[1]
- 格式:doc
- 大小:1.66 MB
- 文档页数:18
专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。
那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。
【知识点梳理】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求时间例1.如图在数轴上A 点表示数a ,B 点表示数b ,a 、b 满足|a +2|+|b ﹣8|=0(1)点A 表示的数为 ;点B 表示的数为 ;(2)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),①当t =1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t =5时,甲小球到原点的距离= ;乙小球到原点的距离= ;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.【答案】(1)-2,8;(2)①3,6;7,2;②可能,2秒或10秒【分析】(1)根据绝对值的非负性求解即可;(2)①首先求出甲、乙两球运动的路程,再根据它的初始位置求解即可;②分两种情况:乙球碰到挡板前和乙球碰到挡板后,分别建立方程求解即可.【详解】(1)∵|a +2|+|b ﹣8|=0,20,80a b \+=-=, 2,8a b \=-=,∴点A 表示的数为-2;点B 表示的数为8;(2)∵一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,∴当t =1时,甲小球运动的路程为111´=个单位,乙小球运动的路程为122´=个单位,∴当t =1时,甲小球到原点的距离为2133--=-=;乙小球到原点的距离为826-=;同理,当t =5时,甲小球运动的路程为155´=个单位,乙小球运动的路程为2510´=个单位,此时乙小球会碰到挡板而向相反的方向运动,∴当t =5时,甲小球到原点的距离为2577--=-=;乙小球到原点的距离为1082-=;②∵点B 表示的数为8,乙小球的速度为2个单位/秒,∴乙小球碰到挡板所用的时间为824¸=(秒),当运动时间小于等于4秒时,282t t +=-,解得2t =;当运动时间大于4秒时,228t t +=-,解得10t =,∴甲,乙两小球到原点的距离可能相等,甲,乙两小球到原点的距离相等时经历的时间为2秒或10秒.【变式训练1】如图,有两条线段,2AB =(单位长度),1CD =(单位长度)在数轴上,点A 在数轴上表示的数是-12,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是______,点C 在数轴上表示的数是______,线段BC 的长=______;(2)若线段AB 以1个单位长度秒的速度向右匀速运动,同时线段CD 以2个单位长度秒的速度向左匀速运动.当点B 与C 重合时,点B 与点C 在数轴上表示的数是多少?(3)若线段AB 以1个单位长度秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左匀速运动.设运动时间为t 秒,当t 为何值时,点B 与点C 之间的距离为1个单位长度?【答案】-10,14,24;(2) -2;(3) t =233或253【分析】(1)根据AB 、CD 的长度结合点A 、D 在数轴上表示的数,即可求出点B 、C 在数轴上表示的数,再根据两点间的距离公式求出线段BC 的长度;(2)设相遇时间为a,分别用a 表示出相遇时B 、C 两点所表示的数,让其相等即可求出;(3) 分线段AB 与线段CD 在相遇之前与相遇之后两种情况,利用两点间的距离公式结合BC =1,得出关于t 的的一元一次方程,解之即可得出结论;【详解】(1)∵AB =2,点A 在数轴上表示的数是-12,∴点B 在数轴上表示的数是-12+2=-10;∵CD =1,点D 在数轴上表示的数是15,∴点C 在数轴上表示的数是15-1=14.∴BC =14-(-10)=24.故答案为:-10,14,24;(2)设运动时间为a 秒时B 、C 相遇,此时点B 在数轴上表示的数为-10+a ,点C 在数轴上表示的数为14-2a∵B 、C 重合,∴-10+a =14-2a ,解得a =8此时点B 与点C 在数轴上表示的数是-10+a =-10+8=-2;故答案为:-2(3)当运动时间为t 秒时,点B 在数轴上表示的数为-10+t ,点C 在数轴上表示的数为14-2t∴BC =10(142)t t -+--=324t -∵BC =1,∴324t -=1,∴t 1=233,t 2=253,综上所述:当BC =1时,t =233或253;【点睛】本题考查了一元一次方程的应用,两点间的距离,数轴等知识,解题的关键是:根据点与点之间的位置关系求出点B 、C 在数轴上表示的数.【变式训练2】如图,A ,B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左侧,|a |=10,a +b =60,ab <0.(1)求出a ,b 的值;(2)现有一只蚂蚁P 从点A 出发,以每秒4个单位长度的速度向右运动,同时另一只蚂蚁Q 从点B 出发,以每秒2个单位长度的速度向右运动.①两只蚂蚁经过多长时间相遇?②设两只蚂蚁在数轴上的点C 处相遇,求点C 对应的数;③经过多长时间,两只蚂蚁在数轴上相距30个单位长度?【答案】(1)a =﹣10,b =70;(2)①两只蚂蚁经过40秒长时间相遇;②点C 对应的数为150;③经过25秒或55秒长时间,两只蚂蚁在数轴上相距30个单位长度.【分析】(1)根据两个数乘积小于0说明两数异号即可求解;(2)①根据相遇问题列一元一次方程即可求解;②根据路程=速度×时间,列出算式计算即可求解;③分两种情况讨论:相遇前相距和相遇后相距30个单位长度列一元一次方程即可求解.【详解】解:(1)∵|a |=10,∴a =10或﹣10,∵ab <0,∴a ,b 异号,∵a +b =60,当a =10时,b =50,不合题意,舍去.当a =﹣10时,b =70,符合题意.答:a =﹣10,b =70.(2)①设Q 从B 出发t 秒与P 相遇.根据题意得4t ﹣2t =80,解得t =40.故两只蚂蚁经过40秒长时间相遇;②设两只蚂蚁在数轴上的点C 处相遇,则点C 对应的数为70+40×2=150;③根据题意,得相遇前:4t ﹣2t =80﹣30,解得t =25;相遇后:4t ﹣2t =80+30,解得t =55.故经过25秒或55秒长时间,两只蚂蚁在数轴上相距30个单位长度.【点睛】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)利用绝对值的非负性,求出a ,b 的值;(2)找准等量关系,分情况讨论相遇前后的距离变化正确列出一元一次方程.【变式训练3】在数轴上,点A 表示的数为a ,点B 表示的数为b ,且|a +2|+(b ﹣3)2=0.(1)a = ,b = ;(2)在(1)的条件下,点A 以每秒0.5个单位长度沿数轴向左移动,点B 以每秒1个单位长度沿数轴向右移动,两点同时移动,当点A 运动到﹣4所在的点处时,求A 、B 两点间距离;(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A 、B 两点相距3个单位长度?【答案】(1)2,3-;(2)11;(3)经过8或14时,A 、B 两点相距3个单位长度【分析】(1)利用非负性即可求解;(2)设t 秒时,点A 运动到4-,求出所需时间4t =,4秒后,点B 运动到3417+´=,即求出两点间距离;(3)分两种情况进行讨论,即点B 需要运动到1-或7-处.【详解】解:(1)根据绝对值与平方的非负性得,20,30a b +=-=,2,3a b \=-=,故答案是:2,3-;(2)设t 秒时,点A 运动到4-,则20.54t --=-,解得:4t =,4秒后,点B 运动到3417+´=,7(4)11\--=,即,A B 两点间的距离为11;(3),A B Q 分别位于4,7-,要使A 、B 两点相距3个单位长度,则点B 需要运动到1-或7-处,设经过t 秒,当71t -=-,解得:8t =,当77t -=-,解得:14t =,\经过8或14秒,A 、B 两点相距3个单位长度.【点睛】本题考查了绝对值和完全平方公式的非负性、数轴上的动点问题、数轴上两点间的距离问题,解题的关键是利用数形结合的思想进行解答.类型二、求距离或对应点例.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?【答案】(1)-6,见解析;(2)经过4秒或6秒点P与点A的距离是2个单位长度;(3)经过103秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.【分析】(1)根据数轴上两点间的距离为10,计算后即可得到结论;(2)根据题意可由点P在A点的左侧和右侧可列方程,求解后即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)10-4=6,∵点B位于点A的左侧,∴点B表示的数是-6,故答案为:-6.在数轴上将点B表示如图所示:(2)设经过t秒点P与点A的距离是2个单位长度,∴当点P在A点左侧时,可得2t+2=10,则t=4,当点P在A点右侧时,可得2t-2=10,则t=6,∴经过4秒或6秒点P与点A的距离是2个单位长度;(3)设经过t秒,点Q到点B的距离是点P到点A的距离的2倍,∴当点P在A点左侧时,可得2(10-2t)=10-t,则t=103,当点P在A点右侧时,可得2(2t-10)=|10-t|,则t=6或t=103(舍),∴经过103秒或6秒,点Q到点B的距离是点P到点A的距离的2倍.【点睛】本题考查了一元一次方程的应用、数轴等知识,根据数量关系得到一元一次方程是解题的关键.【变式训练1】(知识储备)(1)数轴上点A 表示的数为a ,若向右移动m 个长度单位后表示的数是;若向左移动n 个长度单位后表示的数是 .(2)在数轴上A 点表示数a ,B 点示数b ,A 在B 的右边,A 、B 两点间的距离等于a -b .(解决问题)已知数轴上两点A 、B 对应的数分别为﹣3、1,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为10?若存在,请求出x 的值;若不存在,说明理由;(3)现在点A 、点B 分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P 以6个单位长度/秒的速度同时从原点向左运动.当点A 与点B 之间的距离为3个单位长度时,求点P 所对应的数是多少?【答案】【知识储备】(1)a +m ;a-n ;【解决问题】(1)点P 对应的数-1;(2)存在,x 的值为4或-6;(3)点P 所对应的数是-4或-28.【详解】解:知识储备(1)根据向右移为加,向左移为减,得:a +m ;a-n ;解决问题(1)如图:∵点P 到点A 、点B 的距离相等,∴AP BP = ,∵()33AP x x =--=+ (点P 在点A 右边),1BP x =- (点B 在点P 右边),∴31x x +=- ,解得:1x =- ,∴点P 对应的数为1- .解决问题(2)如图:点P 到点A 的距离为PA ,点P 到点B 的距离为PB ,依题意:10PA PB += ,∵点P 在点A 和点B 之间时410PA PB +=¹ ,∴点P 不在点A 和点B 之间,当点P 在点A 左边时:()()313122PA PB x x x x x +=--+-=--+-=-- ,∵10PA PB +=,∴2210x --=,解得:6x =- ,当点P 在点B 右边时:()()()313122PA PB x x x x x +=--+-=++-=+ ,∵10PA PB +=,∴2210x += ,解得:4x = .综上,存在点P ,使点P 到点A 、点B 的距离之和为10.4x =或6x =-.解决问题(3)设经过t 秒,点A 与点B 之间的距离为3个单位长度,此时点A 运动到点A ¢,点B 运动到B ¢,点P 运动到P ¢ ,∴经过t 秒,2AA t ¢= ,此时A ¢的对应的数为23t - ,0.5BB t ¢= ,此时B ¢的对应的数为0.51t + ,6PP t ¢= ,此时P ¢对应的数为6t - ,∵t 秒后点A 与点B 之间的距离为3个单位长度,∴3A B ¢¢= ,当B ¢在A ¢右边时:∴()()0.5123 1.54A B t t t ¢¢=+--=-+ ,∴ 1.543t -+= ,∴23t =,∵26643t -=-´=-,∴P 所对应的数为4- .当点A ¢在点B ¢ 右边时:∴()()230.51 1.54B A t t t ¢¢=--+=- ,∴1.543t -= ,∴143t =,∵1466283t -=-´=- ,∴P 所对应的数为28-,综上,点P 对应的数为4-或28-.【点睛】本题考查的是列代数式,数轴的定义及数轴上两点之间的距离公式,弄清题意并列式是解本题的关键.【变式训练2】我们知道,在数轴上,|a |表示数a 表示的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A 、B ,分别用a ,b 表示,那么A 、B 两点之间的距离为:AB =|a ﹣b |.利用此结论,回答以下问题:(1)数轴上表示1和4的两点的距离是 ,数轴上表示﹣1和﹣4的两点之间的距离是 .(2)|a ﹣1|=2,则a = ,|a ﹣1|+|a +3|=6,则a = .(3)当|a ﹣1|+|a +3|取最小值时,此时符合条件的非负整数a 是 .(4)如图,已知A ,B 分别为数轴上的两点,点A 表示的数是﹣30,点B 表示的数是50;现有一只蚂蚁P 从点B 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设t 秒后两只蚂蚁相距10个单位长度,求此时点P 表示的数是多少?【答案】(1)3,3;(2)3或-1,2或-4;(3)0和1;(4)8或-4.【分析】(1)利用两点之间的距离公式列式计算即可;(2)利用绝对值定义知12a -=±,分别求解即可,由136a a -++=,分3a £-和1a ³两种情况进行讨论即可求出答案;(3)13a a -++表示数轴到表示1和表示3-的点的距离之和,由两点之间线段最短可知:当31a -££时,13a a -++有最小值,最小值为4,即可得符合条件的非负整数a 的值 ;(4)分情况讨论:相遇前两只蚂蚁所走总路程等于50(30)10---,相遇后两只蚂蚁所走总路程等于50(30)10--+,求出所用时间t ,在进行求解即可.【详解】解:(1)数轴上表示1和4的两点的距离为143-=,数轴上表示1-和4-的两点之间的距离为1(4)3---=;(2)∵1=2a -,∴12a -=±,∴3a =或1a =-,即a 为3或1-;∵136a a -++=,∴当3a £-时,136a a ---=,4a =-,当1a ³时,136a a -++=,2a =,∴a 为2或4-;(3)当a 在数轴上表示1和3-之间时,此时13a a -++的最小值为4,此时31a -££,∴符合条件的非负整数a 是0和1;(4)①相遇前两只蚂蚁相距10个单位长度时,得:3250(30)10t t +=---,解得:14t =,∴501438-´=,∴点P 表示的数是8;②相遇后两只蚂蚁相距10个单位长度时,得:3250(30)10t t +=--+,解得:18t =;∴501834-´=-,∴点P 表示的数是4-;综上所述:此时点P 表示的数是8或4-;【点睛】此题考查了数轴,涉及绝对值、解方程的知识点,解题的关键是对绝对值意义的掌握.类型三、求定值例.已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b +.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t -+-+=-,点N 表示的数为()8233322t t +-+=+,∴MN =333222t t æö+--ç÷èø=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练1】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是 ;动点M 对应的数是 (用含x 的代数式表示);动点N 对应的数是 ;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NB RM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON , ∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=, ∴MB ﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,N 与M 相遇前,x <3s 时,62|3|MB NB x RM x --=-=623x x--=2,N 与M 相遇后,x >3s 时,MB NB RM -=62|3|x x --=623x x --=﹣2,综上所述MB NB RM-的值为2或﹣2.故答案为:(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【变式训练2】已知:b 是最小的正整数,且a 、b 满足()250c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值:a = ,b = ,c = .(2)在(1)的条件下数a ,b ,c 分别在数轴上对应的点A ,C 有两只电子蚂蚁甲、乙分别从A ,C 两点同时出发相向而行,甲的速度为2个单位/秒,乙的速度为4个单位/秒点,当两只电子蚂蚁在数轴上点M 处相遇时,求点M 表示的数.(3)在(1)的条件下,点a ,b ,c 分别对应点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动.同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)﹣1;1;5;(2)1;(3)不变,2【分析】(1)先根据b 是最小的正整数,求出b ,再根据2(5)||0c a b -++=,即可求出a 、c ;(2)设经过x 秒,甲,乙在数轴上点M 处相遇,根据题意表示出甲,乙分别走的路程,根据路程之和等于AC 列出方程,解方程即可.(3)先求出BC =3t +4,AB =3t +2,从而得出BC ﹣AB =2.【详解】解:(1)∵b 是最小的正整数,∴b =1.∵(c ﹣5)2+|a +b |=0,∴a =﹣1,c =5;故答案为﹣1;1;5;(2)设经过x 秒,甲,乙在数轴上点M 处相遇,则()2451x x +=--,解得1x =则甲蚂蚁经过1秒到达M 点,\M 点表示的数为:1211-+´=(3)BC ﹣AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =3t +4,AB =3t +2,∴BC ﹣AB =(3t +4)﹣(3t +2)=2.【点睛】本题考查了数轴与整式的加减,数形结合是解题的关键.课后训练1.数学实验室:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是 ;(2)数轴上若点A 表示的数是x ,点B 表示的数是-2,若AB =2,那么x 为; (3)当x 是 时,代数式|2||1|5x x ++-=;(4)若点A 表示的数-1,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度,求运动几秒后,PQ =1(请写出必要的求解过程)【答案】(1)3,4;(2)0或-4;(3)-3或2;(4)4.5或5.5【分析】(1)直接利用题干两点的距离公式计算即可;(2)根据题意可列出关于x 的绝对值方程,解出x 即可.(3)分类讨论①当2x <-时;②当21x -£<时;③当1³x 时,去绝对值,解出方程即可.(4)设运动x 秒后,PQ =1,分类讨论:①当点P 未超过点Q 时;②当点P 超过点Q 时,根据数轴列出方程,解出x 即可.【详解】(1)根据题意可知数轴上表示2和5的两点之间的距离是253-=,数轴上表示1和-3的两点之间的距离是1(3)4--=;故答案为:3,4.(2)由题意可知:22AB x =--=∴22x --=±解得:0x =或4x =-;故答案为:0或-4.(3)∵215x x ++-=,即可表示为点A (表示有理数x )到点B (表示有理数-2)的距离与点A 到点C (表示有理数1)的距离的和是5,如图:故分类讨论:①当点A 在点B 左侧时,即2x <-,此时有215x x ---+=,解得:3x =-,符合题意;②当点A 在点B 和点C 中间时,即21x -£<,此时有215x x ++-=,方程无解;当点A 在点C 右侧时,即1³x ,此时有215x x ++-=,解得:2x =,符合题意;综上,3x =-或2x =,故答案为:-3或2.(4)设运动x 秒后,PQ =1,分类讨论:①当点P 未超过点Q 时,根据数轴可列方程:3(101)x x =+-解得: 4.5x =②当当点P 超过点Q 时,根据数轴可列方程:3(101)x x =++,解得: 5.5x =故运动4.5或5.5秒后,PQ =1.【点睛】本题考查一元一次方程的实际应用,实数与数轴,数轴上两点之间的距离.利用分类讨论和数形结合的思想是解答本题的关键.2.已知数轴上A 、B 两点表示的数分别为a ,b ,且a ,b 满足|a +20|+(b -13)2=0,点C 表示的数为16,点D 表示的数为-7.(1)A ,C 两点之间的距离为__________;(2)已知|m -n |可理解为数轴上表示数m 、n 的两点之间的距离.若点P 在数轴上表示的数为x ,则满足|x +2|+|x -3|=5的所有的整数x 的和为_______________;满足|x +2|+|x -3|=9的x 值为______________.(3)点A ,B 从起始位置同时出发相向匀速运动,点A 的速度为6个单位长度/秒,点B 的速度为2个单位长度/秒,当点A 运动到点C 时,迅速以原来的速度返回,到达出发点后,又折返向点C 运动,点B 运动至点D 后停止运动,当点B 停止运动时,点A 也停止运动,求在此运动过程中,求A ,B 两点同时到达的点在数轴上表示的数.【答案】(1)36;(2)3,5或-4;(3)194,132-【分析】(1)根据|a +20|+(b -13)2=0,求出a 和b 的值,即可得出A ,C 两点之间的距离;(2)根据题意可得|x +2|+|x -3|=5表示的是x 到-2的距离和到3的距离和为5,即可求出所有的整数x 的值,然后求和即可;根据题意可得|x +2|+|x -3|=9表示的是x 到-2的距离和到3的距离和为9,分x 在-2左边和x 在3右边两种情况讨论,列出方程求解即可;(3)根据题意表示出A 点从A 到C 的过程和C 到A 的过程到达的点,表示出B 点从B 到D 的过程到达的点,然后根据A ,B 两点同时到达时分别列出方程求解即可.【详解】解:(1)∵|a +20|+(b -13)2=0,∴200130a b +=-=,,∴2013a b =-=,,∴A 点表示的数是-20,又∵点C 表示的数为16,∴A ,C 两点之间的距离=16-(-20)=36;(2)∵|m -n |可理解为数轴上表示数m 、n 的两点之间的距离,∴|x +2|+|x -3|=5表示的是x 到-2的距离和到3的距离和为5,∴23x -££,又∵x 是整数,∴x 的值可以是-2,-1,0,1,2,3,∴-2-1+0+1+2+3=3,∴满足|x +2|+|x -3|=5的所有的整数x 的和为3;同理|x +2|+|x -3|=9表示的是x 到-2的距离和到3的距离和为9,∴当x 在-2左边时,-2-x +3-x =9,解得:x =-4,当x 在3右边时,x -(-2)+x -3=9,解得:x =5,综上所述,满足|x +2|+|x -3|=9的x 值为5或-4;(3)设两点运动的时间为t ,A 点:A 到C 的过程:()20606x t t =-+££,C 到A 的过程:()()1666526610x t t t =--=-£<,B 点:B 到D 的过程:()132010x t t =-££,第一次相遇时,由题意得:206132t t -+=-,解得:338t =,此时x =194;第二次相遇时,由题意得:526132t t -=-,解得:394t =,此时x =132-;综上所述,A ,B 两点同时到达的点在数轴上表示的数为194,132-.【点睛】此题考查了绝对值的几何意义的运用,动点问题的求解,解题的关键是熟练掌握绝对值的几何意义.。
等边三角形中的动点问题1、已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设点P 的运动时间为(s ),那么t 为何值时,△PBC 是直角三角形?2、已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),那么t 为何值时,△PBQ 是直角三角形?3、已知,如图△ABC 是边长3cm 的等边三角形. 动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.设运动时间为t (s ),那么 当t 为何值时,△DCQ 是等腰三角形?4、已知,如图△ABC 是边长3cm 的等边三角形.动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发. 设运动时间为t (s ),连接PC. 请探究:在点P 、Q 的运动过程中△PCD 和△QCD 的面积是否相等? CQBP AQDBCPA DPA BCP A5、已知等边三角形△ABC ,(1)动点P 从点A 出发,沿线段AB 向点B 运动,动点Q 从点B 出发,沿线段BC 向点C 运动,连接CP 、AQ 交于M ,如果动点P 、Q 都以相同的速度同时出发, 则∠AMP=___度。
(2)若动点P 、Q 继续运动,分别沿射线AB 、BC 方向运动,(1)题中的结论还成立吗?6.在等边ABC ∆的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D,E 处,请问:(1)在爬行过程中,CD 和BE 始终相等吗?(2)若蜗牛沿着AB 和CA 的延长线爬行,EB 与CD 交于点Q ,其他条件不变,所示,蜗牛爬行过程中CQE ∠ 的大小条件不变,求证:︒=∠60CQE(3)如图。
例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
分析:如图1,易求得14,20,34⑴设x秒后,甲到A、B、C的距离和为40个单位。
此时甲表示的数为—24+4x。
①甲在之间时,甲到A、B的距离和为14甲到C的距离为10—(—24+4x)=34—4x依题意,14+(34—4x)=40,解得2②甲在之间时,甲到B、C的距离和为20,甲到A的距离为4x依题意,20+4x)=40,解得5即2秒或5秒,甲到A、B、C的距离和为40个单位。
⑵是一个相向而行的相遇问题。
设运动t秒相遇。
依题意有,4634,解得3.4相遇点表示的数为—24+4×3.4=—10.4 (或:10—6×3.4=—10.4)⑶甲到A、B、C的距离和为40个单位时,甲调头返回。
而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。
设y秒后与乙相遇。
此时甲、乙表示在数轴上为同一点,所表示的数相同。
甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y依题意有,—24+4×2—410—6×2—6y,解得7相遇点表示的数为:—24+4×2—4—44 (或:10—6×2—6—44)②甲从A向右运动5秒时返回。
设y秒后与乙相遇。
甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y依意有,—24+4×5—410—6×5—6y,解得—8(不合题意,舍去)即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。
1. 分析动点的运动轨迹。
- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。
例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。
2. 用含时间t(或其他变量)的代数式表示相关线段的长度。
- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。
- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。
对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。
3. 根据题目中的等量关系列方程求解。
- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。
例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。
二、题目及解析。
1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。
- 若点P到点A、点B的距离相等,求点P对应的数x。
- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。
当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。
- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。
- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。
初中数学动点问题大全动点问题一直是中考热点题型,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数值、线段或面积的最值问题等,下面就此问题的常见题型作简单介绍。
题型一动点形成的面积问题1.面积公式:三角形面积用12S ah =来表示,利用未知数的代数式来表示底和高。
2.面积比等于相似比的平方:面积无法用底和高表示时,利用相似三角形的面积比等于相似比的平方来求解,只需要知道相似比和另一个三角形面积即可表示。
3.相似三角形:当面积公式和面积比等于相似比的平方不能有效解题时,利用相似三角形的比例关系求解。
角度1:利用公式法解决动点面积问题例题1:在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点30A (,)和23B (,).过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC ADC S S ∆∆=时,求点D 的坐标.变式1:如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线O 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且//AB x 轴,//AC y 轴.(1)当点P 横坐标为6,求直线AO 的表达式;(2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP S S ∆∆的值;如果变化,请说明理由.O x y (备用图)O xy解析:(1)∵反比例函数12y x=的图像经过横坐标为6的点P ,∴点P 的坐标为(6,2).设直线AO 的表达式为y kx =(0k ≠).将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,得4x =.∴B 坐标为(4,3).∵AB =BO ,∴224(40)(30)a -=-+-9a =.∴点A 坐标为(9,3).(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.∵点C 坐标为(a ,12a ).∴6CEO S ∆=,同理6BDO S ∆=,∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.同理ACP ACO S AP S AO ∆∆=.∴1ABP ACP S S ∆∆=.即当a 变化时,ABP ACPS S ∆∆的值不变,且恒为1变式2:如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作//PM BC 交射线AC 于点M ,联结CP ,若CPM ∆的面积为2,则请求出点P 的坐标;解析:(1)设这条抛物线的解析式为2(0)y ax bx c a =++≠它的顶点坐标为16(1,)3(2)过点P 作PH AC ⊥,垂足为H .∵P 点在x 轴的正半轴上,∴设0P x (,).∵A )0,1(-,∴1PA x =+.∵在Rt AOC ∆中,222OA OC AC +=;又∵14OA OC ==,∴17AC =90sin 117PH PH PHA CAO AP x ∠=︒∴∠===+ 17PH =//BP CM PM BC AB AC ∴= ;300B P x (,),(,)1点P 在点B 的左侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)12217x -=解得110x .P =∴(,)2点P 在点B 的右侧时,3BP x =-,∴3417x -=17(3)x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)122417x -=解得11x =+,21x =-(不合题意,舍去)∴P(1+0).综上所述,P 的坐标为(1,0)或(1+0)角度2:利用面积比等于相似比的平方解决动点面积问题例题2:如图,已知在梯形ABCD 中,//AD BC ,5AB DC ==,4AD =.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且//ME DN ,//MF AN ,联结EF .(1)如图1,如果//EF BC ,求EF 的长;(2)如果四边形MENF 的面积是ADN ∆的面积的38,求AM 的长;解析:(1)∵AD //BC ,EF //BC ,∴EF //A D .又∵ME //DN ,∴四边形EF DM 是平行四边形.∴EF =DM .同理可证,EF =AM .∴AM =DM .∵AD =4,∴122EF AM AD ===.(2)∵38ADN MENF S S ∆=四边形,∴58AME DMF ADN S S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.∵ME //DN ,∴△AME ∽△AN D .∴22AME ADN S AM S AD∆∆=.同理可证,△DM F ∽△DN A .即得22DMF ADN S DM S AD ∆∆=.设AM =x ,则4DM AD AM x =-=-.∴22(4)516168x x -+=.即得2430x x -+=.解得11x =,23x =.∴AM 的长为1或3.A B CD M N EF (图1)AB C D M N E F变式3:已知直线1l 、2l ,12//l l ,点A 是1l 上的点,B 、C 是2l 上的点,AC BC ⊥,60ABC ∠=︒,4AB =,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合.(1)如图1,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图2,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.解析:变式4:如图1,在梯形ABCD 中,//AD BC ,对角线BC AC ⊥,4AD =cm ,︒=∠45D ,3=BC cm .(1)求B ∠cos 的值;(2)点E 为BC 延长线上的动点,点F 在线段CD 上(点F 与点C 不重合),且满足ADE AFC ∠=∠,如图2,设x BE =,y DF =,求y 关于x 的函数解析式,并写出函数的定义域;(3)点E 为射线BC 上的动点,点F 在射线CD 上,仍然满足ADE AFC ∠=∠,当AFD ∆的面积为2cm 2时,求BE 的长.解析:(1)∵//AD BC ,∴ACB DAC ∠=∠.∵AC BC ⊥,∴90ACB ∠=︒.∴90DAC ∠=︒.∵45D ∠=︒,∴45ACD ∠=︒.∴AD AC =.∵4AD =,∴4AC =.∵3=BC ,∴5AB ==.∴3cos 5BC B AB ∠==.(2)∵//AD BC ,∴ADF DCE ∠=∠.∵AFC FDA FAD ∠=∠+∠,ADE FDA EDC ∠=∠+∠,又AFC ADE ∠=∠,∴FAD EDC ∠=∠.∴ADF DCE ∆~∆.∴AD DF DC CE =.在Rt ADC ∆中,222AC AD DC +=,又4==AC AD ,∴24=DC .∵x BE =,∴3-=x CE .y DF =,∴3244-=x y .22322-=x y .定义域为113<<x .(3)当点E 在BC 的延长线上,由(2)可得:ADF DCE ∆~∆,∴2(DC AD S S DCE ADF =∆∆.∵2AFD S ∆=,4=AD ,24=DC ,∴4=∆DCE S .∵AC CE S DCE ⨯⨯=∆21,∴44)3(21=⨯-⨯BE ,∴5BE =.当点E 在线段BC 上,同理可得:44)3(21=⨯-⨯BE .∴1BE =.所以BE 的长为5或1.角度3:利用锐角三角比法解决动点面积问题例题3:已知在平面直角坐标系xoy (如图)中,抛物线212y x bx c =++经过点(4,0)A 、点(0,4)C -,点B 与点A 关于这条抛物线的对称轴对称;(1)用配方法求这条抛物线的顶点坐标;(2)联结AC 、BC ,求ACB ∠的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为(0)m m >,过点P 作y 轴的垂线PQ ,垂足为Q ,如果QPO BCO ∠=∠,求m 的值;解析:变式5:已知在平面直角坐标系xoy 中,抛物线2(0)y ax bx c a =++>与x 轴相交于(1,0),(3,0)A B -两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12.(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.解析:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =∵90ACD ∠=︒,1tan 2ADC ∠=,∴4CD =,∵0a >,∴()1,4D -(2)设()214y a x =--将1,0x y =-=代入上式,得,1a =所以,这条抛物线的表达为223y x x =--(3)过点F 作FH x ⊥轴,垂足为点H设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==∵223FH x x =--,1AH x =+,∴223112x x x --=+解得172x =,21x =-(舍),∴79,24F ⎛⎫ ⎪⎝⎭巩固1:如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且OBC OAB ∠=∠,3AC =.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF OA ⊥,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 的坐标.解析:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=a a x ,∴OC =1,OA =OC +AC =4,∴点A (4,0).∵∠OBC =∠OAB ,∴tan ∠OAB =tan ∠OBC ,∴OBOC OA OB =,∴OB OB 14=,∴OB =2,∴点B (0,2),∴⎩⎨⎧+-==,8160,2c a a c ∴⎪⎩⎪⎨⎧=-=.2,41c a ∴此抛物线的表达式为221412++-=x x y .(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,设m OF =,得m AF -=4,221412++-=m m DF ,由FG //OB ,得OA AF OB FG =,∴24m FG -=,∴2:524:)22141(2=-++-m m m ,∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45)巩固2:如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD DAF ∆∆∽;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒A C BO yx∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,∴BCD ∆∽DAF∆(2)∵BCD ∆∽DAF ∆,∴BC CD AD AF=∵1BC =,设CD x =,AF y =,∴11x x y=-,∴()201y x x x =-<<(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∴BE BF BC BD=,∵BE BD =,1BC =,∴2BE BF =∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,∴279BE BF ==,∴29AF =∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCDS BE S BC ∆∆==∵1BC =,BE BD =,∴279BD =过点B 作BH AC ⊥于点H ,∵60C ∠=︒,∴BH =16DH =,12CH =当点D 在线段CH 上时,111263CD CH DH =-=-=当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=综上所述,当13x =或23时,79BEF BCD S S ∆∆=.巩固3:在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上一动点,将三角板直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断EAP ∆与PDC ∆一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是EAP ∆周长等于PDC ∆周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.解析:(1)△EAP ∽△PDC①当P 在AD 边上时,如图(1):∵矩形ABCD ,==90D A ∠∠ ,∴1+2=90∠∠据题意=90CPE ∠ ∴3+2=90∠∠ ,∴1=3∠∠,∴△EAP ∽△PDC②当P 在AD 边上时,如图(2):同理可得△EAP ∽△PDC(2)若点P 在边AD 上,据题意:PD x =6PA x =-4DC =AE y =又∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴22613442x x y x x -==-+()06x <<若点P 在边DA 延长线上时,据题意PD x =,则6PA x =-,4DC =,AE y =,∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴()2664x x y x -=>(3)假如存在这样的点P ,使△EAP 周长等于PDC ∆的2倍①若点P 在边AD 上∵△EAP ∽△PDC ∴():6:4EAP PDC C C x =- ,∴()6:42x -=,∴2x =-不合题意舍去;②若点P 在边DA 延长线上,同理得()6:42x -=,∴14x =综上所述:存在这样的点P 满足题意,此时14PD =巩固4:如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.解析:(1)∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C ∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴这个抛物线的解析式为:2142y x x =--顶点为9(1,)2-(2)如图:取OA 的中点,记为点N ∵OA =OC =4,∠AOC =90°∴∠ACB =45°∵点N 是OA 的中点∴ON =2又∵OB =2∴OB =ON又∵∠BON =90°∴∠ONB =45°∴∠ACB =∠ONB∵∠OMB +∠OAB =∠ACB ∠NBA +∠OAB =∠ONB ∴∠OMB =∠NBA1°当点M 在点N 的上方时,记为M 1∵∠BAN =∠M 1AB ,∠NBA =∠OM 1B ,∴△ABN ∽△AM 1B ∴1AN AB AB AM =又∵AN =2,AB =∴110AM =又∵A (0,—4)∴1(0,6)M 2°当点M 在点N 的下方时,记为M 2,点M 1与点M 2关于x 轴对称,∴2(0,6)M -综上所述,点M 的坐标为(0,6)或(0,6)-题型二动点形成的相切问题1.直线和圆相切:圆心到直线距离等于半径构造直角三角形,利用三角比、勾股定理等来表示圆心到直线距离及半径,建立等量关系2.圆和圆相切:两圆半径和等于圆心距.利用平行线分线段成比例、勾股定理、三角比、相似等表示相关线段,建立等量关系角度4:直线与圆相切问题例题4:如图,在ABC ∆中,10,12,AB AC BC ===点E F 、分别在边BC AC 、上(点F 不与点A 、C 重合)//EF AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设FC x =.(1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE DF 、分别交AB 于M 、N ,若MN y =,求y 关于x 的函数关系式并写出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的E 与边AC 1没有公共点时,求x 的取值范围.2一个公共点时,求x 的取值范围.3两个公共点时,求x 的取值范围.AE CB FA B D GC EF变式6:已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AFG AB x S y ∆==,,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.解析:(1)∵点F 为AD 中点,且AD =BC =6,∴AF =3∵矩形ABCD 中,∠ABC =90°,BG ⊥AC 于点E ,∴∠ABE +∠EBC =90°,∠AC ∠EBC =90°∴∠ABE =∠ACB ,∴△ABF ∽△BCF ,∴AB AF BC AB =∴AB =23(2)由(1)可得△ABF ∽△BCF ∴AB AF BC AB =∵AB =x ,BC =6∴AF =62x ;同理可得:CG =x36①当F 点在线段AD 上时DG =CG -CD =x x x x 23636-=-∴S ⊿AFG =1236213x x CG AF -=⋅。
数学中的动点问题嘿,数学里的动点问题可太有趣啦,就像一群调皮的小豆子在几何图形里跑来跑去呢。
我记得有一次做一道动点问题的题,那题目是在一个长方形里有个动点。
这长方形就像一个大操场,动点呢,就像是操场上的一个小运动员。
题目说这个动点从长方形的一个顶点出发,沿着边以一定的速度移动。
这就好比小运动员在操场的跑道上按照规定速度跑步。
我们得找出这个动点在不同时刻的位置,就像我们要知道小运动员在某个时间点跑到哪儿了。
有时候,它会在长方形的长边上跑,这时候我们就得根据它的速度和跑的时间算出它离起点有多远。
比如说,速度是每秒 2 厘米,跑了 5 秒,那它就在长边上跑了 10 厘米啦。
这就像小运动员一步一个脚印地在跑道上留下自己的痕迹。
而且啊,这个动点问题经常还会和其他的条件结合起来。
比如在长方形里还有一些三角形,这个动点和三角形的某些边或者角会有特殊的关系。
就像操场里除了跑道,还有一些小的训练区域。
当动点跑到和三角形相关的位置时,我们可能要计算三角形的面积变化。
这面积变化可就像操场里不同区域的功能变化一样。
如果动点到了某个位置,三角形的高或者底会随着动点的位置改变,那面积也会跟着变。
我当时就拿着笔,在纸上写写画画,一会儿盯着动点的运动路线,一会儿看看三角形的边和角,感觉就像在玩一个寻宝游戏,要找到动点和三角形面积之间的秘密联系。
还有的时候,动点问题会更复杂,不止一个动点呢。
这就像操场上有好几个小运动员在同时跑,他们的路线还可能相互影响。
我们要同时考虑他们的位置、速度和相互之间的距离关系。
这就需要我们更细心啦,就像要同时关注几个调皮孩子的动向一样,不能让任何一个动点从我们的眼皮子底下“溜走”。
数学里的动点问题虽然有点烧脑,但是当你找到答案的时候,那种感觉就像抓住了所有调皮的小豆子,可过瘾啦!。
初一数学动点问题集锦1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米,∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =.又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. (4分) ②∵P Qv v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘米/秒.(7分)(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =秒.∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. (12分) 2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解(1)A (8,0)B (0,6) 1分 (2)86OA OB ==,10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) 1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = 1分当P 在线段BA 上运动(或38t <≤)时,61021O Q tA P t t==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, 1分21324255S OQ PD t t∴=⨯=-+ 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, 3分3如图,在平面直角坐标系中,直线l :y=-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P.(1)连结PA ,若PA=PB ,试判断⊙P 与x 轴的位置关系,并说明理由;(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.∵直线y=-2x -8与x 轴交于A (4,0), 与y 轴交于B (0,-8), ∴OA=4,OB=8. 由题意,OP=-k , ∴PB=PA=8+k.在Rt △AOP 中,k2+42=(8+k)2, ∴k=-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE ⊥CD 于E.∵△PCD 为正三角形,∴DE=12CD=32,PD=3,∴.∵∠AOB=∠PEB=90°, ∠ABO=∠PBE , ∴△AOB ∽△PEB ,∴2,AO PE AB PB PB =,∴PB∴8PO BO PB =-=-∴8)P -,∴8k -.当圆心P 在线段OB 延长线上时,同理可得P(0,-8),∴k=-8,∴当-8或k=-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.4(09哈尔滨) 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP= t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==,得45QF t =.∴45QF t=.∴14(3)25S t t=-⋅, 即22655S t t=-+. (3)能.①当DE ∥QB 时,如图4.P图4∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC ,得AQ APAC AB =,即335t t-=. 解得98t =.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=,即353t t-=. 解得158t =.(4)52t =或4514t =.①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】P图56如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解(1)①30,1;②60,1.5; ……………………4分(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴. ∴AO=12AC. ………………(备用图)……8分在Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形, ∴四边形EDBC是菱形 ……………………10分7如图,在梯形ABCD中,354245A D B CAD C A BB====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. 1分在Rt ABK △中,sin 454AK AB =︒==CM2cos 45424BK AB =︒== 2分在Rt CDH △中,由勾股定理得,3HC = ∴43310BC BK KH HC =++=++= 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= 4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△(图①)ADCBK H(图②)ADCBG MN∴CN CMCD CG = 5分 即10257t t -=解得,5017t =6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t-= 解得258t =8分解法二:ADCBMN(图③)(图④)AD CBM NH E∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t =8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MCHC DC =即1102235tt-= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 9分(图⑤)ADCBH NMF8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPNM(第25题)解(1)如图1,过点E 作EG BC ⊥于点G . 1分 ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. 2分∴112BG BE EG ====,即点E 到BC3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG == 同理4MN AB ==. 4分如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN ===∴PMN △的周长=4PM PN MN ++=. 6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC△恒为等边三角形.图1A D EBF CG图2A D E BFCPNMG H当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. 7分∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=. 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形. 10分9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.解:(1)Q (1,0) 1分点P 运动速度每秒钟1个单位长度. 2分(2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==.∴1046AF =-=. 在Rt △AFB中,10AB =过点C 作CG ⊥x 轴于点G ,与FB ∵90,ABC AB BC ∠=︒=∴△ABF ≌△BCH .∴6,8BH AF CH BF ====.∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MPAB AF BF ==.1068t A M M P∴==.∴3455AM t PM t==,.∴3410,55PN OM t ON PM t==-==. 设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大.6分此时P的坐标为(9415,5310). 7分(4) 当 53t =或29513t =时,OP 与PQ 相等. 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFGB 图1ADF GB 图2 ADFC GB图3解:(1)正确. (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). (5分)AE EF ∴=. (6分)(2)正确. (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . (8分)BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形,AD BE ∴∥. DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). (10分) AE EF ∴=. (11分)A D F CGBM ADFGBN11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.解(Ⅰ)如图①,折叠后点B 与点A 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =.∴点C 的坐标为302⎛⎫ ⎪⎝⎭,. 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+, 即2128y x =-+6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求. ∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤.7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△.有OB OCOA OB ''=,得2OC OB ''=. 9分在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. 10分12问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n =(n 为整数),则AMBN 的值等方法指导:为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2 图(1)A BCDEFMN于 .(用含n 的式子表示)联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E(不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)解:方法一:如图(1-1),连接BM EM BE ,,.图(2)ABCD EF MN 图(1-1)A BCEFM由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. 1分 ∵四边形ABCD是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =.3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+.5分设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =.6分 ∴15AM BN =. 7分 方法二:同方法一,54BN =.3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .A DFMG∵AD BC ∥,∴四边形GDCN 是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,.在BCE △与NGM △中90E B CM N G B CN G C N G M ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,.5分∵114AM AG MG AM =--=5,=.4 6分 ∴15AM BN =. 7分 类比归纳25(或410);917; ()2211n n -+ 10分联系拓广2222211n m n n m -++ 12分。
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念数轴上的动点问题离不开数轴上两点之间的距离.主要涉及以下几个概念:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数—左边点表示的数.2.两点中点公式:线段AB中点坐标=(a+b)÷2.3.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度.这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a,向左运动b 个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b.4.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系.二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示).2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示).3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似1、已知数轴上A、B两点对应数为-2、4,P为数轴上一动点,对应的数为x.-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2、已知:b是最小的正整数,且a、b、c满足(c-5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________ (2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5|.(3)若点A、点C分别以每秒1个单位和2个单位长度的速度向左运动,请问几秒时,A,C之间的距离为1个单位长度?(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2.如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a,b满足|a+2|+(b-1)2=0.(1)求线段AB的长;(2)点C在数轴上对应的数为x,且x是方程2x-1=12x+2的根,在数轴上是否存在点P,使P A+PB=PC,若存在,求出点P对应的数;若不存在,说明理由.(3)若P是A左侧的一点,P A的中点为M,PB的中点为N,当P点在A点左侧运动时,有两个结论:①PM+PN的值不变;②PN-PM的值不变,其中只有一个结论正确,请判断正确结论,并求出其值.3、如图,在射线OM 上有三点A 、B 、C ,满足OA =20cm,AB =60cm ,BC =10cm (如图所示),点P 从点O 出发,沿OM 方向以1cm/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发.(1)当P A =2PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 运动的速度;(2)若点Q 运动的速度为3cm/s,经过多长时间P 、Q 两点相距70cm ;(3)当点P 运动到线段AB 上时,取OP 和AB 的中点E 、F ,求EFAP OB 的值.。
动点问题专题训练1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒. ··················································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒.∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ···················································· (12分) 2、(09齐齐哈尔)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解(1)A (8,0)B (0,6)····················· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) ··· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ······································································································································ 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······································ 1分 21324255S OQ PD t t ∴=⨯=-+ ························································································· 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ····················································································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·································································· 3分3(09深圳)如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .(1)连结PA ,若PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3,∴PE . ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE ,∴△AOB ∽△PEB ,∴2,AO PE AB PB PB=,∴PB =∴8PO BO PB =-=,∴8)P -,∴8k =-.当圆心P 在线段OB 延长线上时,同理可得P (0,8),∴k =8,∴当k 8或k =8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.4(09哈尔滨) 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.解:5(09河北)在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.图16图4P图5(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6(09河南))如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形E D B C 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形E D B C 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC∴AO =12AC……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2.(备用图)∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7(09济南)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK是矩形∴3KH AD ==. ······································································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 45424BK AB =︒== ·········································································· 2分 在Rt CDH △中,由勾股定理得,3HC∴43310BC BK KH HC =++=++= ······························································ 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△C M(图①) A D C B K H (图②)A D CB G MN∴CN CMCD CG = ·········································································································· 5分 即10257t t -= 解得,5017t = ·········································································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·················································································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ·············································································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC = 即553t t -= ∴258t = ·················································································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)A DCB M N (图③) (图④) A D CB M NH E132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC = 即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ···················· 9分8(09江西)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.(图⑤)A DCBH N MFA D E F ADE F A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPN M(第25题)解(1)如图1,过点E 作EG BC ⊥于点G . ··························· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ·············· 2分∴112BG BE EG ====,即点E 到BC··············································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ······································································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN == ∴PMN △的周长=4PM PN MN ++=. ················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==. ········································································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ············································· 8分图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图1A D E BF CG图2A D EBF CPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ·························· 10分9(09兰州)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)Q (1,0) ·············································································································· 1分 点P 运动速度每秒钟1个单位长度. ····································································································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH .∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t A M M P∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ······························································ 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ································ 6分 此时P 的坐标为(9415,5310) . ························································································ 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ······························································ 9分10(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFC GE B图1ADF C GE B 图2 ADFGE B图3解:(1)正确. ·································································· (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ···················································································· (5分) AE EF ∴=. ················································································································ (6分) (2)正确. ··································································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ············································ (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ··················································································· (10分) AE EF ∴=. ·············································································································· (11分)11(09天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标. AD F C G B M A D F C G B N。