基于模糊控制的燃气锅炉智能控制系统设计
- 格式:pdf
- 大小:425.77 KB
- 文档页数:3
模糊控制在锅炉燃烧系统的应用研究
模糊控制是一种基于模糊集合和模糊逻辑的控制方法,它不需要精确的数学模型和精
确的控制规则,能够处理模糊和不确定的信息,并且具有良好的鲁棒性和适应性。
在锅炉
燃烧系统中,模糊控制可以用来控制燃烧的空气流量、燃料流量和燃烧温度。
模糊控制的关键步骤包括建立模糊化输入输出变量、定义模糊规则库、进行模糊推理、进行去模糊化计算和根据反馈调整模糊规则库。
在锅炉燃烧系统中,输入变量可以是炉膛
风量、燃料量和燃烧温度,输出变量可以是燃烧效率和废气排放浓度。
模糊规则库可以根
据经验和专家知识建立,通过对输入变量的模糊化和模糊规则库的推理,可以得到一个模
糊输出,然后进行去模糊化计算,得到实际的输出结果。
在实际应用中,还需要根据反馈
调整模糊规则库,以提高控制效果和系统稳定性。
模糊控制在锅炉燃烧系统中的应用有很多优点。
首先,它可以处理模糊和不确定的信息,能够适应不同的环境和工况。
其次,它对系统的建模要求较低,不需要精确的数学模型,能够快速实现控制。
最后,它具有好的适应性和鲁棒性,在实际应用中能够处理各种
复杂的工业控制问题。
然而,模糊控制在锅炉燃烧系统中的应用也存在一些限制和挑战。
首先,模糊控制依
赖于模糊化处理和模糊规则库的建立,这需要专业的知识和经验,并且难以精确地描述系
统的动态行为。
其次,需要针对不同的工况和环境来设计模糊规则库,这需要大量的实验
和测试工作,极大地增加了系统开发和调试的难度。
此外,模糊控制的响应速度相对较慢,不适合需要快速响应的应用场景。
《基于模糊PID控制的电锅炉温度控制系统的研究》篇一一、引言电锅炉温度控制系统作为工业生产、生活供暖等重要环节,其精确度和稳定性对于能源的有效利用及环境的舒适性有着重大影响。
传统的PID控制策略虽然能够在大多数情况下取得较好的控制效果,但面对非线性、时变、大时滞的电锅炉系统,其参数调整困难、抗干扰能力弱等问题日益突出。
为此,本文提出了一种基于模糊PID控制的电锅炉温度控制系统,旨在提高系统的响应速度和稳定性。
二、电锅炉温度控制系统概述电锅炉温度控制系统主要通过传感器检测锅炉内部温度,与设定温度进行比较后,通过控制器调整电锅炉的加热功率,实现对温度的精确控制。
由于系统存在非线性、时变等特性,传统的PID控制难以达到理想的控制效果。
因此,需要研究新的控制策略以提高系统的性能。
三、模糊PID控制策略研究模糊PID控制策略结合了模糊控制和PID控制的优点,通过引入模糊逻辑对PID参数进行在线调整,从而适应系统的非线性和时变性。
具体来说,该策略首先通过模糊推理系统对系统误差和误差变化率进行模糊化处理,然后根据模糊规则调整PID的三个参数(比例系数、积分系数和微分系数),最后通过解模糊化得到新的参数值。
四、电锅炉温度控制系统设计在电锅炉温度控制系统中,我们采用了基于模糊PID控制的策略。
首先,我们设计了模糊控制器,通过分析系统误差和误差变化率,得到合适的PID参数调整量。
然后,我们将模糊控制器与PID控制器相结合,形成模糊PID控制器。
该控制器能够根据系统的实时状态,自动调整PID参数,实现对电锅炉温度的精确控制。
五、系统实现与性能分析在电锅炉温度控制系统中实现了基于模糊PID控制的策略后,我们进行了性能测试。
测试结果表明,该系统具有以下优点:1. 响应速度快:系统能够在短时间内达到设定温度,并保持稳定。
2. 稳定性好:系统能够有效地抑制外界干扰,保持温度的稳定。
3. 抗干扰能力强:系统对参数变化和外界干扰具有较强的抵抗能力,能够保持稳定的控制效果。
燃气锅炉燃烧系统的智能PID控制器设计摘要:本文提出了能在线整定PID参数的智能PID控制算法,该控制算法是由智能控制算法和PID控制算法两部分组成,智能控制部分用于在线整定PID控制器的参数,以满足对被控对象的精确控制。
这样就出现了由计算机实现的智能PID控制器.关键词:燃烧控制系统;模糊自适应PID控制;遗传算法PID控制引言:锅炉是用来产生蒸汽的热交换设备。
它通过煤、石油或气体等燃料的燃烧释放出大量热能,同时通过传热设备把热量传递给水,水达到一定温度转变为过热蒸汽,最后过热蒸汽直接供给工业或生活生产中所需要的热能。
燃气锅炉燃烧系统是较难控制的对象,如何对燃气锅炉燃烧进行控制,保证锅炉安全、经济、稳定运行是能源与控制领域的重点课题。
1模糊自整定PID控制器的设计模糊自整定PID控制器的输入分别是和,能够满足各时刻和的要求。
根据模糊控制规则对PID的参数实现在线整定,就形成了模糊自整定PID控制器。
其原理框图如图4-3所示:图4-3 模糊自整定PID控制器原理图图4-4 E 和 EC的隶属度函数曲线依据以上隶属度函数,就能够得出 E和 EC的隶属度表,下表4-1所示。
由该表将输入量的精确量通过量化因子转化为模糊论域元素后,就可根据隶属度函数算出它相应模糊子集的隶属度。
完成了精确量模糊化为模糊语言值。
表4-1 E和EC 的隶属度函数表4-1 的模糊控制规则表对PID控制器的参量进行在线调整的计算方法如下:2基于BP网络的PID控制器的设计传统的PID控制要调整好比例、积分、微分三个控制参数,才能达到很好的控制效果。
神经网络的任意非线性表达能力,能够帮助控制系统达到最优的控制参数组合。
通过BP网络,可以实现三参数自学习的PID控制器的设计。
基于BP网络的PID控制器结构如图4-5所示:图4-5 基于BP网络的PID控制器结构由图可以看出,控制器由两部分构成即:经典增量是数字PID控制器和BP网络。
摘要本文首先分析了影响汽包水位的各种干扰因素,并对汽包水位的动、静态特性进行分析。
介绍了传统的PID控制方式,由于锅炉汽包水位控制系统的调节器的输入端常加有三个不确定的输入量,极易引起水位控制偏差。
所以本文提出了两种消除水位偏差的方法:辅助信号自消方法和辅助信号对消方法。
采用辅助信号蒸汽流量和给水流量对消方法消除水位偏差,根据锅炉汽包水位控制实际要求,采用模糊PID控制,用MATLAB中的SIMULINK仿真工具箱设计了二输入单输出模糊控制器对锅炉汽包水位进行在给定值下仿真。
并用常规PID和模糊PIDF方法去控制汽包液位,对比两种控制策略下的防真图像,仿真图像表明后者的抗干扰能力和鲁棒性更好,可以保证水位的稳定,并且能有效解决用常规PID无法解决的“虚假液位”问题。
最后简单介绍几种由汽包水位测量方法及测量误差带来影响、及消除方法,通过现场实例解决了汽包水位测量不准的问题,减少了由于水位测量误差给汽包水位带来的不利影响。
关键词:汽包水位、虚假液位、PID控制、模糊PID控制、水位测量误差AbstractThis article first analyzes the impact of the drum water level of the various interfering factors,and drum water level of the dynamic and static analysis features.Introduced the traditional PID control,due to the boiler drum water level control system input regulator has three regular increase of the input uncertainty is very easy to control the deviation caused by the water level.Therefore,this paper two methods to eliminate the water level deviation: auxiliary signal from the elimination method and auxiliary signal cancellation method. The use of auxiliary steam flow signal and water flow rate on the elimination method to eliminate the water level deviation of the boiler drum water level control in accordance with practical requirements, the use of fuzzy PID control, the use of MATLAB simulation toolbox SIMULINK design two-input single-output fuzzy controller on the boiler drum the waterlevel to the next value in a given simulation. Using conventional PID and fuzzy control approach to PIDF drum level,compared to two control strategies of anti-real images,simulation images show that the latter's anti-interference ability and robustness better, can guarantee the stability of the water level, and can effectively solution can not be resolved with conventional PID "false level" problem.Finally, a brief introduction by the drum water level of several measurement methods and about the impact of measurement error, and the elimination method, through on-site example of the drum water level measurement solution to the problem of not allowed to reduce measurement error due to the water level to the negative drum water level impact.Key words: Drum water level、PID control、fuzzy PID control,、water level measurement error第一章绪论1.1 课题背景与意义目前,我国现有工业锅炉几十万台,各种工业炉窑十万余台。
摘要火力发电是当今电力生产中重要生产形式之一。
在现代电力企业中,由于平安性、节耗性、提高劳动生产率等多方面要求,计算机控制系统如今广泛应用于电站控制。
但在实际运行中,经常受到内部和外部的干扰,锅炉燃烧是一个多输入多输出的被控对象,而且变量间相互耦合严重,并具有多参数,非线性,不确定时滞和时变的特点,传统的 PID 控制效果往往不够理想。
必须采用先进控制算法。
本文首先分析了火电厂锅炉燃烧控制系统的动态特性,确定了被控对像的传递函数。
然后对锅炉燃烧系统单模糊控制器进展总体设计。
主要输入量的模糊化,模糊控制规则的形成,输出量的模糊化。
最后通过应用MATLAB中的SIMULINK对系统进展仿真,比照模糊控制与常规PID控制的控制性能。
通过仿真结果比照得出:模糊控制器的控制性能总体优于常规PID控制器,它不仅具有良好的动态特性,还具有良好的环境适应能力。
关键词:火电厂;燃烧控制系统;模糊控制;SIMULINK仿真第一章绪论1.1 研究背景和课题来源及意义1.1.1 研究背景电能是现代社会的必需品,假设没有电能人类的生活生产将面临巨大的困难。
电能作为最清洁的能源,其使用方法简单,运送方便,容易转换。
电力工业的开展水平实际上是工农业开展、人民生活水平和科技与国防现代化的重要标志。
常见的电力生产有如水力发电,核能发电,火力发电,太阳能发电、风能发和地热能发电等方法。
目前电能主要由火力发电厂、水力发电厂和核能发电厂产生。
在我国,火力发电是生产电力的主要方式,截止到 2009年 12 月底,全国发电量为36506 亿千瓦时,其中火力发电量为 29814.22 亿千瓦时,占总发电量的81.67%,表 1-1 是最近几年我国火力发电情况统计表煤是火力发电的主要燃料,中国每年消耗的煤炭用于发电占全国煤炭产量约一半的工业用煤总量,比例高达80%,为了节约资源,保护环境,应为了提高煤炭的燃烧效率。
锅炉设备是火力发电过程中最重要的设备,其工作直接影响到整个电厂的运行状态。
基于模糊控制算法的锅炉燃烧控制系统的研究摘要模糊控制是一种以模糊集合论、模糊语言变量以及模糊逻辑推理为数学基础的新型计算机控制方法。
由于它不依赖于被控对象的精确数学模型,而是模拟人的思维方式来实施控制,因而对于锅炉燃烧的控制就具有了传统PID控制所无法比拟的自适应能力。
本文以2台50t/h燃煤锅炉的燃烧控制为课题,以改进原有PID控制为目的,以当前发展比较迅速的模糊控制理论为手段,提出了采用8051单片机控制变频器改变给煤机、引风机和送风机转速的设计方案,实现了燃烧过程的计算机控制。
系统对锅炉燃烧进行监控,通过传感器采样信号,计算是否达到最佳含氧量、最佳风煤比,来控制给煤量、引风量和送风量,使燃烧达到最佳热效率和提高锅炉运行的经济效益。
用MATLAB对应用模糊自整定PID控制器的锅炉燃烧控制系统模型进行仿真研究。
针对锅炉这种具有非线性、参数不稳定、难以建立精确数学模型的控制对象,采用传统的PID控制,效果不佳。
结合模糊控制理论和PID控制,本文提出用模糊自整定控制器实现对锅炉的控制。
并利用MATLAB仿真工具对模糊自整定PID控制器的性能作了初步研究。
仿真结果表明,明显优于传统PID控制,具有超调量小、过渡时间短、稳定性好、适应性强等特点,能够达到预期的控制效果。
关键词:锅炉;模糊自整定控制;单片机;系统仿真Research On The Boiler Burning Control System Based On Fuzzy Control AlgorithmAbstractFuzzy control is a fuzzy set theory,fuzzy linguistic variables and fuzzy logic mathematical basis of the new computer-controlled method. Because it does not rely on accurate mathematical model of the controlled object,but simulate human thinking to implement a control,thus for boiler combustion control is having the adaptability of traditional PID control can’t match.In this paper,two 50t/h coal-fired boilers’ burning control system was studied as its thesis,the primary PID controller was improved as its purpose,and fuzzy control theory developed rapidly at Present was applied as its means. The design scheme is that controlling transducers change rotate speed of supplying coal electromotor,fan,and blower using 8051 micro-controller. It realized computer control of burning process. This system finished supervisory control of boiler burning,sampled signals through sensor and calculated the signals whether reached the best content of oxygen and the best wind-coal ratio. Using it controls the quantity of coal,entering wind and sending wing for reaching the best thermal efficiency of burning and improving economy benefit of boiler running. Simulation of boiler burning control system was also performed to study the controller’s self-adaptive fuzzy control by MATLAB.Aiming at the nonlinear object of boiler with instability parameter and difficult building math model,using traditional PID controller can’t reach the best effect. Combining fuzzy control theory and PID control,an adaptive controller to control boiler is proposed in this paper. And the capability of the self-adaptive fuzzy controller was studied using MATLAB simulation. Simulation result shows Fuzzy-PID is better thanPID controller. Fuzzy-PID has many characteristics,such as small exceeded value,short transition,better stability and strong adaptability etc,and can reach anticipative control effect.Keywords:boiler;self-adaptive fuzzy controller;SCM;simulation目录摘要 .................................................................................................................................. I Abstract .............................................................................................................................. I I 第1章绪论 .. (1)1.1引言 (1)1.2国内外研究现状 (2)1.3研究对象及设计内容 (2)第2章链条燃煤锅炉的控制 (4)2.1 链条燃煤锅炉系统的简介 (4)2.1.1 燃煤链条锅炉的结构 (4)2.1.2 锅炉工作过程 (5)2.1.3 锅炉的主要控制系统 (6)2.2 锅炉燃烧系统的动态特性 (6)2.2.1 燃料传送过程 (6)2.2.2 燃料燃烧过程 (7)2.2.3 蒸汽形成过程 (7)2.3 锅炉供暖系统的控制要求 (7)2.4 锅炉燃烧控制系统框图 (9)2.4.1 给煤调节系统的设计 (9)2.4.2 送风调节系统的设计 (12)2.4.3 引风调节系统的设计 (13)2.4.4 炉膛负压调节系统 (14)2.5 计算机控制系统 (14)2.5.1 计算机控制系统一般概念 (14)2.5.2 计算机控制系统设计原理 (15)第3章控制算法 (16)3.1 引言 (16)3.2 PID控制 (16)3.3 模糊控制 (18)3.3.1 模糊控制器 (18)3.3.2 模糊控制系统原理框图 (20)3.4 模糊—PID复合控制 (20)3.4.1 PID参数模糊自整定控制原理 (21)3.4.2 PID参数Fuzzy整定模型 (22)3.4.3 模糊自整定PID控制器 (23)3.5 简化的模糊—PID控制 (24)3.5.1 二维模糊控制 (25)3.5.2 三维模糊控制 (26)3.6 链条锅炉燃烧控制方案 (27)第4章系统硬件设计 (29)4.1 硬件结构 (29)4.2 系统功能 (30)4.3 硬件配置 (31)第5章软件设计 (35)5.1 软件设计原则 (35)5.2 软件实现功能 (35)5.3 主程序流程图 (36)5.4 锅炉点火子程序 (37)5.5 A/D采样子程序流程图 (38)5.6控制算法子程序流程图 (39)第6章系统仿真 (40)6.1 仿真工具介绍 (40)6.2 供暖锅炉燃烧控制系统仿真 (40)第7章结论 (43)7.1 设计完成的主要工作 (43)7.2 尚待完善的工作 (43)参考文献 (44)谢辞 (45)第1章绪论1.1引言随着城市建设的迅速发展,北方地区冬季供热面积的不断扩大,如何科学有效的控制和管理供热系统,提高供热的经济效益和社会效益,成为当前急需解决的重要课题。
智能锅炉控制系统的设计与实现随着科技的发展和人们生活水平的提高,家居设备的智能化成为了一种趋势。
在众多的智能家居设备中,智能锅炉是一种比较受欢迎的设备。
它可以通过智能控制系统实现远程控制、节能、安全等多种功能。
本文将介绍智能锅炉控制系统的设计与实现。
一、控制系统结构一个智能锅炉控制系统主要由以下部分组成:1.硬件部分:包括传感器、执行器、控制器、显示器等硬件设备。
2.软件部分:主要由控制算法和界面设计组成,控制算法是程序员根据控制需求编写的程序,界面设计则用于方便用户操作和管理。
3.远程通信组件:包括网络通信硬件和软件,实现远程控制和监控等功能。
二、传感器与执行器的选择为了实现智能控制,必须使用传感器来获取锅炉的状态信息,并使用执行器来控制锅炉的运行状态。
在传感器的选择上,应该选择具有高精度、快速响应、耐高温等优点的传感器。
例如,温度传感器应该选用高精度、线性度好、响应速度快、温度范围广的PTC热敏电阻或热电偶传感器。
在执行器的选择上,应该选择具有高精度、稳定可靠性、结构紧凑、响应速度快等优点的执行器。
三、控制器的设计与实现控制器是智能锅炉控制系统的核心,它主要完成控制算法的实现和与硬件设备的通讯。
控制器可以采用嵌入式控制系统、单片机、FPGA等硬件以及VC、VB、C++等软件开发工具进行设计和实现。
在控制方案的设计实现时,要结合锅炉的物理特性和工作状态,运用现代控制理论设计PID算法、模糊控制算法、神经网络控制算法等多种控制算法。
四、界面设计与人机交互一个好的界面设计可以让用户方便快捷地进行操作和管理。
界面设计可以采用电脑、手机APP、微信等多种形态,主要通过图形化的方式将控制参数和系统状态进行直观化显示。
在人机交互方面,可以使用语音、手势等更加便利的交互方式,以提高用户的操作效率和便利性。
五、远程通信组件的设计与实现远程通信组件是实现远程控制的关键,它主要通过网络实现用户对锅炉的远程控制和监控。