2007-2008第二学期高等数学(II)期末考试试题B答案
- 格式:doc
- 大小:124.00 KB
- 文档页数:2
共 8 页 第 1 页07-08-3期末高数B 08.6.20一.填空题(本题共9小题,每小题4分,满分3 6分)1. 幂级数1(3)3nnn x n ∞=-⋅∑的收敛域为 ; 2. 设222()z y f x y =+-,其中()f u 可微, 则yzx x z y∂∂+∂∂= ; 3. 曲线224x y z z x y ++=⎧⎨=+⎩在点(1,1,2)处的法平面方程是 ; 4. 设C 为曲线22241x y z z z ⎧++=⎨=⎩,则曲线积分ds z y x c222++⎰= ;5. 交换二次积分的次序⎰⎰--xx x dy y x f 2222),(dx = ;6.三次积分12220d )d x y x y z z ++⎰⎰⎰的值是 ;7. 散度()3(2,0,)div cos(2)x y y z π+-+=i j k ;8. 已知第二型曲线积分4124(4)d (65)d Bn n Ax xy x x y y y -++-⎰与路径无关,则n = ;9.平面5431x y z ++=被椭圆柱面22491x y +=所截的有限部分的面积为 . 二. 计算下列各题(本题共4小题,每小题7分,满分28分)10.设(,)z z x y =是由方程1xy yz xz ++=所确定的隐函数,0x y +≠,试求2zx y∂∂∂.共 8 页 第 2 页11.计算二重积分2()d d Dx y x y +⎰⎰,其中区域{}22(,)24D x y y x y y =≤+≤.12.设立体Ω由曲面2221x y z +-=及平面0,z z ==围成,密度1ρ=,求它对z 轴的转动惯量.13. 计算曲面积分d S z ∑⎰⎰,∑为球面2222x y z R ++=上满足0h z R <≤≤的部分.共 8 页 第 3 页三(14).(本题满分8分)求函数22(,)f x y x x y =-- 在区域{}22(,)21D x y x y =+≤上的最大值和最小值.四(15)。
南昌大学 2007~2008学年第二学期期末考试试卷一、 填空题(每空 3 分,共 15 分)1. 设32,2,a i j k b i j k =--=+- 则(2)(3)a b -⋅=_____.2. 函数 2222ln[(25)(4)]z x y x y =--+- 的定义域是____________________________________. 3. 设函数(cos sin )x z e y x y =+, 则10x y dz ===_______.4.交换累次积分的次序(,)1dyf x y dx =⎰⎰________.5. 微分方程2'y y x=的通解为__________.二、 单项选择题 (每小题3分,共15分)1. 过点(3,0,1)-且与平面375120x y z -+-=平行的平面方程是( B ).(A) 3540x z --=. (B) 37540x y z -+-=. (C) 350x y z ++= (D) 75120x y z -+-=. 2.设 2uz v=, 而 2,2u x y v y x =-=+, 则z x∂=∂( A ).(A)()()()22232x y x yy x -++. (B) ()222x y y x-+.(C) ()()2232x y x y y x-+-+. (D)()()22222x y y x -+.3. 设可微函数(,)f x y 在点00(,)x y 取得极小值,则下列结论正确的是 ( B ). (A) 0(,)f x y 在0y y =处的导数大于零.(B) 0(,)f x y 在0y y =处的导数等于零. (C) 0(,)f x y 在0y y =处的导数小于零. . (D) 0(,)f x y 在0y y =处的导数不存在. 4.设L 为取正向的圆周224x y +=, 则曲线积分22()()Lx y dx x y dy ++-⎰ 之值为 ( A ).(A) 0. (B) 4π. (C) 4. (D) π. 5.函数()cos f x x =关于x 的幂级数展开式为 ( D ). (A) 2421(1)(11) n n x x x x -+-+-+-<<(B) 2421(11) n x x x x +++++-<<. (C) 21(11) n x x x x +++++-<<.(D) 2421(1)()2!4!(2)!nnxxxx n -+-+-+-∞<<+∞.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.求与两平面 43x z -= 和 251x y z --=的交线平行且过点(3,2,5)-的直线方程.2.设(,),z f u v =而,y u xy v e ==,且f 具有二阶连续偏导数,求z x y∂∂∂2.四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算曲线积分222(2)()y y L xe y dx x e y dy -+-⎰, 其中L 是由点(,0)A a 沿上半圆周22(0)x y ax a +=> 到点(0,0)O 的弧段.2、利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰,其中∑为上半球面z =的上侧。
2007数二真题答案详细解析年数学二的真题是高考数学题目中一道相对较难的题目。
本文将对这道题目进行详细解析,分析其解题思路和解题方法,帮助读者更好地理解和掌握数学常识。
本题属于数学二试卷中的选择题,题目如下:已知数列{a_n}的通项公式为:a_n=n(n-1)^2,(n=1,2,3,...)。
则有命题:S_n=a_1+a_2+...+a_n=(n^2-1)^2。
要判断该命题的真假,我们需要先对数列{a_n}进行分析。
观察数列的通项公式a_n=n(n-1)^2,我们可以发现n(n-1)^2是一个关于n 的三次多项式。
三次多项式的一般形式可以表示为:P(n) = an^3 + bn^2 + cn + d其中a、b、c、d是常数。
在这个问题中,我们需要验证命题S_n=(n^2-1)^2是否成立,也就是判断数列的前n项和等于(n^2-1)^2。
为了方便计算,我们将等式两边展开:S_n = a_1 + a_2 + ... + a_n = (1(1-1)^2) + (2(2-1)^2) + ... + (n(n-1)^2)= (1*0^2) + (2*1^2) + ... + (n(n-1)^2)= 0 + 2 + 8 + ... + n(n-1)^2现在我们需要找到这个数列的通项公式,这样才能求出前n项的和。
观察数列0, 2, 8, ... ,我们可以发现这个数列的通项与原数列{n(n-1)^2}相差一个常数。
因此,我们推测该数列的通项公式为:b_n = n(n-1)^2 + k其中k是常数。
为了求解该数列的通项公式,我们可以先求解数列0, 2, 8, ... 的通项公式,再进行适当的变换。
观察数列0, 2, 8, ... ,我们可以发现这个数列中的每一项均等于相应的n(n-1)^2的2倍。
因此,该数列的通项公式为:b_n = 2n(n-1)^2现在我们已经得到了数列{b_n}的通项公式,我们可以将其代入前面的求和公式中,得到:S_n = b_1 + b_2 + ... + b_n = 2(1(1-1)^2) + 2(2(2-1)^2) + ... + 2(n(n-1)^2)= 2(1*0^2) + 2(2*1^2) + ... + 2(n(n-1)^2)= 2(0 + 2 + 8 + ... + n(n-1)^2)= 2(0^3 + 1^3 + 2^3 + ... + (n-1)^3)现在我们需要求解数列0^3 + 1^3 + 2^3 + ... + (n-1)^3的和。
2007级高等数学Ⅱ-2B0809试卷参考答案一、填空题(每小题3分,共15分)1.设2cos z y x =,则z y∂=∂ 2c o s x 2.设arctan y z x =,则dz = 22ydx xdy x y-++ 3.微分方程440y y y '''-+=的通解为 212()x y e c c x =+4.幂级数211n n x n ∞=∑的收敛域为 []1,1- 5.交换二次积分100(,)y dy f x y dx ⎰⎰的积分次序为110(,)xdx f x y dy ⎰⎰ 二、计算题(每小题7分,共21分)1. 求过点(1,2,3)M -且垂直于直线3460:24310x y z L x y z -++=⎧⎨+--=⎩的平面方程. 解:平面的法向量为12134(7,11,10)243i j k n n n =⨯=-=--所求平面方程为7(1)11(2)10(3)0x y z -++-+-=,即71110590.x y z -++-=2. 设2(,32)z f x y x y =+-,f 具有二阶连续偏导数,求2,.z z x x y ∂∂∂∂∂ 解:12111221223,223(22).z z f f f y f f y f x y∂∂=+=⋅-+⋅-∂∂ 3. 求曲面22249x y z =+在点(6,12,5)处的切平面方程和法线方程. 解:令222(,,),49x y F x y z z =-+则2,,229x y z x y F F F z =-=-= 所以曲面在点(6,12,5)处的切平面的法向量为8(3,,10)3n =-- , 所以切平面方程为83(6)(12)10(5)0.3x y z ----+-=法线方程为6125.38310x y z ---==-- 三、计算题(每小题7分,共28分)1. 计算二重积分D xydxdy ⎰⎰,其中D 是由直线1,2y x ==及y x =所围成的平面区域. 解:22311119().28x D xydxdy dx xydy x x dx ==-=⎰⎰⎰⎰⎰ 2. 计算三重积分222()x y z dxdydz Ω++⎰⎰⎰,其中2222:5.x y z Ω++≤ 解: 2522222000()sin 2500.xy z dxdydz d d r r dr ππθϕϕπΩ++=⋅=⎰⎰⎰⎰⎰⎰3. 计算曲线积分22()Lx y ds +⎰,其中Γ为圆周222(0).x y a a +=> 解:圆的参数方程为cos ,sin ,02,x a t y a t t ds adt π==≤≤=2222210()2.n n n L xy ds a adt a ππ++=⋅=⎰⎰4. 计算曲面积分122222()()axdydz z a dxdy x y z ∑++++⎰⎰,其中∑为下半球面z =的上侧,a 为大于零的常数.解:作辅助平面12220:z x y a=⎧∑⎨+≤⎩,取下侧.则 122222()1()()axdydz z a dxdy axdydz z a dxdy a x y z ∑∑++=++++⎰⎰⎰⎰ 112211()()axdydz z a dxdy axdydz z a dxdy a a ∑+∑∑=++-++⎰⎰⎰⎰ 222211(22)x y a a z a dv a dxdy a a Ω+≤=-++-⎰⎰⎰⎰⎰ 2233001sin (32cos ).2a d d a r r dr a a a ππππθϕϕϕπ=-+-=-⎰⎰⎰四、计算题(每小题7分,共28分)1. 判断级数18!nn n ∞=∑的敛散性.解:118(1)!8lim lim lim 018!1n n n n n n na n a n n ρ++→∞→∞→∞+====<+,所以原级数收敛. 2. 将函数()ln f x x =展开成(3)x -的幂级数.解:3()ln ln(3(3))ln 3ln(1)3x f x x x -==+-=++ 111(3)ln 3(1),(0,6]3n n nn x x n ∞-=-=+-∈∑ 3. 求微分方程522(1)1dy y x dx x -=++的通解. 解:22532222(1)(1)(1)3dx dx y e C x e x C x -⎡⎤⎡⎤⎰⎰=++=+++⎢⎥⎢⎥⎣⎦⎣⎦⎰ 4. 求微分方程2x y y y xe '''--=的通解.解:原方程对应的齐次方程的特征方程为220r r --=,特征根为122, 1.r r ==- 所以对应的齐次方程的通解为212x x Y c e c e -=+又1λ=不是特征方程的根,所以原方程的特解可设为()x y ax b e *=+, 代入原方程可得11,24a b =-=-,即11().24x y x e *=-+ 故原方程的通解为21211().24x x x y c e c e x e -=+-+ 五、应用题(8分)求由方程22222880x y z xz z +++-+=所确定隐函数(,)z z x y =的极值.解:484,281281z x z z y x z x y z x ∂--∂-==∂+-∂+- 令0,0z z x y ∂∂==∂∂可解得2,0x z y =-=,代入原方程得2780z z +-=,从而解得1281,7z z ==-,于是驻点为16(2,0),(,0).7- 222(48)(281)8(2)(4)(281)z z x x z x x z z x z x ∂∂∂∂--+-+++∂=∂+- 2224(281)8(281)z y z x z y z x ∂∂-+-+∂=∂+-228(281)8(2)(281)z z y y z x x z z x y z x ∂∂∂∂-+-++∂=∂∂+- 在点(2,0)-处且1z =时,22222(,)(2,0)(,)(2,0)(,)(2,0)11144,0,,1515x y x y x y z z z z z z A B C x x y y =-=-=-===∂∂∂======∂∂∂∂且 20,0AC B A ->>,故(,)z z x y =在驻点(2,0)-处取得极小值 1.z = 同理可得(,)z z x y =在驻点16(,0)7处取得极大值87z =-.。
高等数学二期末复习题及答案_28171462418361700(共19页) -本页仅作为预览文档封面,使用时请删除本页-《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI x y dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( )(A) 2240ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C) 223023ad r dr a πθπ=⎰⎰(D) 2240012a d r rdr a πθπ=⎰⎰4、设的弧段为:230,1≤≤=y x L ,则=⎰Lds 6 ( ) (A )9 (B) 6 (C )3 (D)23 5、级数∑∞=-11)1(n nn的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim ),(σηξσλ中的λ代表的是( )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d (D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( )(A )抛物面 (B )柱面 (C )圆锥面 (D )椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( )(A) 0 (B) 2π (C) π (D)4π11、若级数1n n a ∞=∑收敛,则下列结论错误的是 ( )(A)12n n a ∞=∑收敛 (B) 1(2)n n a ∞=+∑收敛 (C)100nn a∞=∑收敛 (D) 13n n a ∞=∑收敛 12、二重积分的值与 ( )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
中国石油大学高数(2-2)历年期末试题参考答案2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上.1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π. 2. 函数22y xz +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分22()f x y dv+⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz.5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的(D)37 .10. 曲面积分2z dxdy ⎰⎰∑在数值上等于( C ).(A) 流速场iz v 2=穿过曲面Σ指定侧的流量;(B) 密度为2z =ρ的曲面片Σ的质量;(C) 向量场kz F 2=穿过曲面Σ指定侧的通量;(D) 向量场k z F 2=沿Σ边界所做的功.11.若级数1(2)nn n c x ∞=+∑在 4x =- 处是收敛的,则此级数在1x = 处 ( D )(A)发散; (B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 12.级数121(1)n pn n -∞=-∑的敛散性为 ( A )(A) 当12p >时,绝对收敛; (B )当12p >时,条件收敛;(C) 当102p <≤时,绝对收敛; (D )当102p <≤时,发散.三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13. (本题满分6分)设()x y z x y z e -++++=确定(,)z z x y =,求全微分dz .解:两边同取微分 ()(1)()x y z dx dy dz e dx dy dz -++++=⋅-⋅++ , 整理得 dz dx dy =--.14. (本题满分8分)求曲线2223023540xy z x x y z ⎧++-=⎨-+-=⎩ 在点(1,1,1)处的切线与法平面方程. 解:两边同时关于x 求导22232350dy dz x y z dx dx dy dz dx dx ⎧+⋅+⋅=⎪⎪⎨⎪-+=⎪⎩,解得(1,1,1)(1,1,1)9474dy dx dz dx ⎧=⎪⎪⎨⎪=-⎪⎩,所以切向量为:91{1,,}1616T =-, 切线方程为: 1111691x y z ---==-;法平面方程为:16(1)9(1)(1)0x y z -+---=,即169240x y z +--=. 15.(本题满分8分)求幂级数0(21)nn n x ∞=+∑的和函数.解:求得此幂级数的收敛域为(1,1)-,0(21)nn n x ∞=+∑02∞==+∑nn nx 0∞=∑nn x ,10122∞∞-===∑∑nn n n nxx nx,设11()∞-==∑n n A x nx ,则10011(),(11);1∞∞-=====-<<-∑∑⎰⎰xxn nn n x A x dx nx dx x x x 21(),1(1)'⎛⎫∴== ⎪--⎝⎭x A x x x即20222()(1)∞===-∑nn x nx xA x x ,0(21)∞=∴+∑n n n x 02∞==+∑nn nx 0∞=∑n n x 22211,(11)(1)1(1)+=+=-<<---x x x x x x .16.(本题满分6分)计算()∑=++⎰⎰I x y z dS ,其中∑为曲面5+=y z 被柱面2225+=xy 所截下的有限部分.解:()∑=++⎰⎰I x y z dS (5)∑=+⎰⎰x dS∑=⎰⎰xdS(∑关于yoz 平面对称,被积函数x 是x 的奇函数)5∑+⎰⎰dS05∑=+⎰⎰dS 222552+≤=⎰⎰x y dxdy 52251252π==.17.(本题满分8分)计算积分222(24)(2)=++-⎰LI xxy dx x y dy,其中L 为曲线22355()()222-+-=x y 上从点(1,1)A 到(2,4)B 沿逆时针方向的一段有向弧.解:4∂∂==∂∂Q P x x y,∴积分与路径无关,选折线AC +CB 为积分路径,其中(2,1)C ,,12:,1,0=≤≤⎧⎨==⎩x x x AC y dy 2,:.,14==⎧⎨=≤≤⎩x dx CB y y y222(24)(2)∴=++-⎰LI x xy dx x y dy222(24)(2)=++-⎰ACx xy dx x y dy 222(24)(2)+++-⎰CBx xy dx x y dy 24221141(24)(8).3=++-=⎰⎰x x dx y dy18.(本题满分8分)计算22()∑=+++⎰⎰I yzdydz y xz dzdx xydxdy,∑是由曲面224-=+y x z与平面0=y 围成的有界闭区域Ω的表面外侧.解:2222,(),,,∂∂∂==+=++=+∂∂∂P Q R P yz Q y x z R xy x z x y z由高斯公式, 22()∑=+++⎰⎰I yzdydz y x z dzdx xydxdy 22()Ω=+⎰⎰⎰x z dxdydz(利用柱面坐标变换cos sin ,θθ=⎧⎪=⎨⎪=⎩z x y y 则2:02,02,04.θπΩ≤≤≤≤≤≤-r y r )2224200032.3ππθ-==⎰⎰⎰r d rdr r dy19.(本题满分8分)在第Ⅰ卦限内作椭球面1222222=++cz b y a x 的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.解:设切点坐标为),,(0z y x ,则切平面的法向量为000222222{,,}x y z a b c, 切平面方程为0)()()(02020020=-+-+-z z c z y y b y x x a x ,即1202020=++czz b y y a x x ,则切平面与三个坐标面所围成的四面体体积为 22200016a b cV x y z=⋅, 令)1(ln ln ln ),,,(220220220000000-+++++=czb y a x z y x z y x L λλ解方程组⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=+=+=+1021021021220220222002020c z b y ax c z z b y y a x x λλλ,得30a x =,30b y =,3c z=,故切点坐标为)3,3,3(c b a .20. (本题满分6分)设(),()f x g x 均在[,]a b 上连续,试证明柯西不等式:22[()][()]bbaaf x dxg x dx ⎰⎰2[()()].baf xg x dx ≥⎰证:设:,.D a x b a y b ≤≤≤≤则22[()][()]bba af x dxg x dx ⎰⎰22()()Df xg y dxdy =⎰⎰(D关于y x=对称)22()()Df yg x dxdy =⎰⎰221[()()2D f x g y dxdy =+⎰⎰22()()]Df yg x dxdy ⎰⎰22221[()()()()]2Df xg y f y g x dxdy =+⎰⎰1[2()()()()]2Df xg x f y g y dxdy ≥⋅⎰⎰[()()()()]Df xg x f y g y dxdy =⋅⎰⎰()()()()b b aaf xg x dx f y g y dy =⎰⎰2[()()]baf xg x dx =⎰.2008—2009学年第二学期 高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1. 设三向量,,a b c 满足关系式a b a c ⨯=⨯,则( D ). (A )必有0a =; (B )必有0b c -=; (C )当0a ≠时,必有b c =; (D )必有()a b c λ=- (λ为常数).2. 直线34273x y z++==--与平面4223x y z --=的关系是( A ). (A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直.3. 二元函数225,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( A )(A) 不连续,偏导数存在 (B) 连续,偏导数不存在(C) 连续,偏导数存在 (D) 不连续,偏导数不存在4. 已知2()()x ay dx ydyx y +++为某二元函数的全微分,则=a ( D ).(A )1-; (B )0; (C )1; (D )2.5. 设()f u 是连续函数,平面区域2:11,01D x y x -≤≤≤≤-,则22()Df x y dxdy +=⎰⎰( C ).(A )21122()x dx f x y dy-+⎰⎰; (B )211220()y dy f x y dx-+⎰⎰;(C )12()d f r rdr ⎰⎰πθ; (D )120()d f r dr⎰⎰πθ.6. 设a 为常数,则级数1(1)(1cos )nn a n∞=--∑( B ).(A )发散 ; (B )绝对收敛; (C )条件收敛; (D )收敛性与a 的值有关.二.填空题(本题共6小题,每小题4分,满分24分).1. 设函数222(,,)161218x y zu x y z =+++,向量{1,1,1}n =,点0(1,2,3)P , 则03.3P u n∂=∂2. 若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数5.a =-3. L 为圆221x y +=的一周,则22()0.Lx y ds -=⎰4. 设1lim 2n n naa +→∞=,级数211n n n a x ∞-=∑的收敛半径为2.25. 设221()x y f x e dy-=⎰,则111()(1).4xf x dx e -=-⎰6. 设()f x 是以2为周期的周期函数,它在区间(1,1]-上的定义为32,10(),01x f x x x -<≤⎧=⎨<≤⎩, 则()f x 的以2为周期的傅里叶级数在1x =处收敛于3.2三.解答下列各题(本题共7小题,满分44分).1.(本小题6分)设()f u 是可微函数,(y z f =,求2z z x y x y ∂∂+∂∂. 解题过程是:令yu =,则()y zf u x ∂'=∂,()2zf u y x y∂'=∂,20.z zxy x y∂∂∴+=∂∂2. (本小题6分)计算二重积分2211Dxy dxdy x y +++⎰⎰,其中22{,)1,0}D x y x y x =+≤≥.解题过程是:D 关于x 轴对称,被积函数221xy x y ++关于y 是奇函数,221Dxy dxdy x y∴=++⎰⎰,故2211D xy dxdy x y +++⎰⎰221D xy dxdy x y =++⎰⎰221Ddxdy x y +++⎰⎰122020ln 2.12rdr d r -=+=+⎰⎰πππθ3. (本小题6分) 设曲面(,)z z x y =是由方程31x y xz +=所确定,求该曲面在点0(1,2,1)M -处的切平面方程及全微分(1,2)dz .解题过程是:令3(,,)1F x y z x y xz =+-,23x F x y z '=+,3y F x '=,zF x '=,则所求切平面的法向量为:0{,,}{5,1,1}x y zM n F F F '''==,切平面方程为:560.x y z ++-=23x zF z x y z x F x '∂+=-=-'∂,2y zF zx y F '∂=-=-'∂,0(1,2)5.M M z z dzdx dy dx dy x y ∂∂∴=+=--∂∂ 4. (本小题6分) 计算三重积分22x y dxdydzΩ+,其中Ω是由柱面21y x =-0,0y z ==,4x y z ++=所围成的空间区域. 解题过程是:利用柱面坐标变换,22x y dxdydz Ω+⎰⎰⎰14(cos sin )2000r d r dr dz -+=⎰⎰⎰πθθθ 12300[4(cos sin )]d r r dr =-+⎰⎰πθθθ04141[(cos sin )].3432d =-+=-⎰ππθθθ5. (本小题6分)求(2)x z dydz zdxdy ∑++⎰⎰,其中∑为曲面22(01)z x y z =+≤≤,方向取下侧.解题过程是:补2211,(,){1}.z x y D x y ∑=∈=+≤上:∑与1∑上所围立体为20201, 1.r r z Ω≤≤≤≤≤≤:,θπ 由高斯公式,得1(2)(201)x z dydz zdxdy dxdydz Ω∑+∑++=++⎰⎰⎰⎰⎰上下2211332r d rdr dz ππθ==⎰⎰⎰, (2)x z dydz zdxdy ∑∴++=⎰⎰13(2)2x z dydz zdxdy π∑-++⎰⎰上3012Ddxdy π=--⎰⎰3.22πππ=-=6. (本小题7分) 求幂级数211nn n x n∞=+∑的收敛域及和函数.解题过程是:因为1lim nn n a R a →∞+=2211lim 1(1)1n n n n n →∞++==++,故收敛区间为(1,1)-; 1±=x 时,极限21lim 0n n n→∞+≠,级数均是发散的;于是收敛域为(1,1)-,211()n n n S x x n ∞=+=∑1n n nx ∞==∑1nn x n∞=+∑10011n x x n n n x x nx dx dxn ∞∞-==''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑⎰⎰0111x x x dx x x '⎛⎫=+ ⎪--⎝⎭⎰2ln(1),(1,1).(1)x x x x =--∈--7. (本小题7分)例1 计算22()I xy dS∑=+⎰⎰,∑为立体221x y z +≤≤的边界. 解题过程是: 设12∑=∑+∑,其中1∑为锥面22,01z x y z =+≤≤,2∑为221,1z xy =+≤部分,12,∑∑在xoy 面的投影为:D 221x y +≤.22112z z dS dxdy dxdyx y ⎛⎫∂∂⎛⎫=++= ⎪ ⎪∂∂⎝⎭⎝⎭,2dS dxdy=,22()I x y dS ∑∴=+⎰⎰122()x y dS ∑=++⎰⎰222()xy dS ∑+⎰⎰22()2Dx y dxdy =+⎰⎰22()Dx y dxdy++⎰⎰22(21)()Dx y dxdy =+⎰⎰2130(21)(21).2d r dr ππθ==⎰⎰四.证明题(8分).设函数(,)f x y 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221()[()1]Ly f xy x y f xy I dx dy y y+-=+⎰, (1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.证明: (1)记21()(,)y f xy P x y y +=,22[()1](,)x yf xy Q x y y -=,;1)()()](]1)([);(1)()](1[])()(2[22322222y xy f xy xy f y xy f y x xy f y x Q xy f xy y xy f y xy f y y x xy f y xy yf y P -'+='⋅+-=∂∂'+-=+-⋅'+=∂∂P Q y x∂∂∴=∂∂成立,积分I 与路径L 无关.(2)由于积分与路径无关,选取折线路径,由点(,)a b 起至点(,)c b ,再至终点(,)c d ,则(,)(,)(,)(,)(,)(,)c b c d a b c b I P x y dx Q x y dy =+⎰⎰21[()][()]cda ccbf bx dx cf cy dy b y=++-⎰⎰ ()()cb cd ab cb c a c c f t dt f t dt b d b -=+++-⎰⎰()().cd ab c a c af t dt ab cd d b d b=-+==-⎰2009—2010学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题(6530⨯=分分)1. 若向量,,a b c 两两互相垂直,且5,12,13a b c ===,则132.a b c ++=2.设函数22sin y z xy x=,求2.z z x y zx y∂∂+=∂∂3. 设函数(,)f x y 为连续函数, 改变下列二次积分的积分顺序:2221212201(,)(,)(,).y xx y dy f x y dx dx f x y dy f x y dy --=+⎰⎰⎰⎰⎰⎰ 4. 计算(1,2)2(0,0)7()(2).2y y I e x dx xe y dy e =++-=-⎰5. 幂级数213nnn nx ∞=∑(3,3).-6. 设函数2()()f x x x x πππ=+-<< 的傅里叶级数为:01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数32.3bπ=二、选择题(4520⨯=分分)1.直线11321x y z --==-与平面342x y z +-=的位置关系是( A )(A) 直线在平面内; (B) 垂直; (C) 平行; (D) 相交但不垂直.2.设函数22(,)4()f x y x y x y =---, 则(,)f x y ( C )(A) 在原点有极小值; (B) 在原点有极大值;(C) 在(2,2)-点有极大值; (D) 无极值.3. 设L 是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L 的方向为逆时针方向,则22Lxdy ydxx y-=+⎰( C ) (A) 0; (B)π; (C) 2π; (D) 2π-.4. 设a 为常数,则级数21sin n nan n ∞=⎛ ⎝∑( B )(A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a 值有关.三、计算题 (7+7+7+7+6+8=42分)1. 设224,(,)(0,0),(,)0,(,)(0,0).xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩讨论(,)f x y 在原点(0,0)处是否连续,并求出两个偏导数(0,0)xf '和(0,0)yf '. (7分) 解:令422442,lim (,)lim 1y y ky k x ky f ky y k y y k →→===++,随k 的取值不同,其极限值不同,00lim (,)x y f x y →→∴不存在,故(,)f x y 在原点不连续;00(0,0)(0,0)00(0,0)limlim 0x x x f x f f xx ∆→∆→+∆--'===∆∆, 00(0,0)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→+∆--'===∆∆.2. 计算222I x y z dxdydzΩ=++其中Ω是由上半球面222z x y =--和锥面22z x y =+所围成的立体 . (7分) 解:作球面坐标变换:sin cos ,sin sin ,cos .x y z ρϕθρϕθρϕ=== 则2sin dxdydz d d d ρϕθϕρ=, :02,0,02.4πθπϕρΩ≤≤≤≤≤≤222I x y z dxdydz Ω=++2234000sin (22).d d d ππθϕϕρπ==-⎰⎰⎰3. 求锥面22z x y =+被柱面222x y x +=所割下部分的曲面面积 .(7分)解:锥面∑:22,(,)xy z x y x y D =+∈=22{2}.x y x +≤22xz x y'=+22yz x y '=+ 22122.xyxyx y D D S dS z z dxdy dxdy ∑''∴==++==⎰⎰4. 计算曲面积分222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰,其中∑是由22z x y =+,221xy +=,0,0,0x y z ===围在第一卦限的立体的外侧表面 . (7分)解:设Ω为∑所围立体,222,,,P z x Q x y R y z ===222,P Q R x y z x y z∂∂∂++=++∂∂∂由Gauss 公式,222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰222()xy z dxdydzΩ=++⎰⎰⎰作柱面坐标变换:cos ,sin ,.x r y r z z θθ=== 则dxdydz rd drdzθ=,2:0,01,0.2r z r πθΩ≤≤≤≤≤≤ 2122205().48r I d rdr r z dz πθπ∴=+=⎰⎰⎰5.讨论级数312ln n n n∞=∑的敛散性. (6分)解:543124ln ln lim lim0,n n n nn nn→∞→∞⋅==312ln n nn ∞=∴∑收敛 .6. 把级数121211(1)(21)!2n n n n xn -∞--=--∑的和函数展成1x -的幂级数.(8分)解:设级数的和函数为()S x ,则 121211(1)()(21)!2n n n n S x x n -∞--=-=-∑2111(1)sin (21)!22n n n x x n --∞=-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑,(,).x ∈-∞+∞即111111()sin sin sin cos cos sin2222222x x x x S x ---⎛⎫⎛⎫==+=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭201(1)1sin 2(2)!2n n n x n ∞=--⎛⎫=⋅ ⎪⎝⎭∑2101(1)1cos 2(21)!2n n n x n +∞=--⎛⎫+⋅ ⎪+⎝⎭∑2201(1)sin (1)2(2)!2nnnn x n ∞=-=⋅-⋅∑212101(1)cos (1),(,).2(21)!2n n n n x x n ∞++=-+⋅-∈-∞+∞+⋅∑四、 设曲线L 是逆时针方向圆周22()()1,()x a y a x ϕ-+-=是连续的正函数,证明:()2()Lxdy y x dx y ϕπϕ-≥⎰. (8分)证明:设22:()()1,D x a y a -+-≤由Green 公式, ()()()LDxdy Q P y x dx dxdy y x y ϕϕ∂∂-=-∂∂⎰⎰⎰1(())()Dx dxdy y ϕϕ=+⎰⎰(而D 关于y x =对称)1(())()Dx dxdy x ϕϕ=+⎰⎰1[2()]22.()D Dx dxdy dxdy x ϕπϕ≥⋅==⎰⎰⎰⎰即 ()2()Lxdyy x dx y ϕπϕ-≥⎰.2010-1011学年第二学期高等数学(2-2)期末考试A 卷参考答案一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),yz xe x y dz =++=设则dy dx +3 .2.设xy y x y x f sin ),(+-=,则dx x x f dy y⎰⎰11 0),(=)1cos 1(21-.3.设函数21cos ,0()1,0xx f x xx x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-= 212π+ .4.设曲线C 为圆周222R y x =+,则曲线积分ds x y x C⎰+)—(322=32R π . 二.选择题(共4小题,每小题4分,共计16分)1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( C ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直 2.设有空间区域2222:x y z R Ω++≤,则222x y z dvΩ++等于( B ).(A) 432R π (B) 4R π (C) 434R π (D) 42R π 3.下列级数中,收敛的级数是( C ).(A)∑∞=+-1)1()1(n nnn n (B) ∑∞=+-+11)1(n nn n(C) nn e n -∞=∑13(D)∑∞=+1)11ln(n n nn4. 设∑∞=1n na 是正项级数,则下列结论中错误的是( D )(A ) 若∑∞=1n na 收敛,则∑∞=12n na 也收敛 (B )若∑∞=1n na 收敛,则11+∞=∑n n na a 也收敛(C )若∑∞=1n na 收敛,则部分和nS 有界 (D )若∑∞=1n na 收敛,则1lim 1<=+∞→ρnn n a a 三.计算题(共8小题,每小题8分,共计64分) 1.设函数f 具有二阶连续偏导数,),(2y x y xf u +=,求yx u ∂∂∂2.解:212f xyf xu+=∂∂)()(22222121211212f f x f f x xy xf yx u++++=∂∂∂221221131)2(22f f x xy yf x xf++++=2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数.解:曲线⎩⎨⎧+==1:2x y xx L 在点(1,2)处的切向量)2,1(=T ,)2,1(51=T52cos ,51cos ==βα13|)16(|,11|)13(|)2,1()2,1()2,1(2)2,1(=+=∂∂=-=∂∂xy yzy x z 函数在点(1,2)沿)2,1(=T 方向的方向导数为5375213511|)2,1(=⨯+=∂T3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y xy x D .解dxdy xy dxdy y xdxdy y x y x y x D⎰⎰⎰⎰⎰⎰≤+≤+++=+4422222222)()(223000d r dr πθ=+⎰⎰ =π84. 设立体Ω由锥面22z x y =+及半球面2211z x y =+--围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量. 解:由题意知密度函数||),,(z k z y x =ρ 法1:⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωϕπϕπθcos 204020r :质量M =⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z k dxdydz z y x ||),,(ρk =drr r d d ϕϕϕθϕππsin cos 2cos 204020⎰⎰⎰ 76kπ= . 法2:222222:1,:11D x y x y z x y ⎧+≤⎪Ω⎨+≤≤--⎪⎩(,,)||M x y z dxdydz k z dxdydzρΩΩ==⎰⎰⎰⎰⎰⎰22111076r rkk d dr ππθ+-==⎰⎰⎰.法3:1222017||(1(1)).6kM k z dxdydz z z dz z z dz πππΩ==+--=⎰⎰⎰⎰⎰5.计算曲线积分⎰+++-=Cyx dyx y dx y x I 22)()(,其中C 是曲线122=+y x 沿逆时针方向一周.解:⎰++-=Cdyx y dx y x I 1)()(dxdy y Px Q y x ⎰⎰≤+∂∂-∂∂=122)(π2])1(1[122=--=⎰⎰≤+dxdy y x .6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面1222=++z y x的外侧.解:利用高斯公式,dxdydz x x yz dxdy zx xydxdz xyzdydz ⎰⎰⎰⎰⎰Ω∑++=++)()(22dxdydz x yz ⎰⎰⎰Ω+=)(dxdydz x ⎰⎰⎰Ω+2dxdydzz y x ⎰⎰⎰Ω+++=)(310222.154sin 31104020πϕϕθππ==⎰⎰⎰dr r d d 7.求幂级数nn x n ∑∞=+111的和函数 .解:幂级数的收敛半径1=R ,收敛域为)1,1[-0≠x 时,1111)(+∞=∑+=n n x n x xS =01x nn x dx ∞=∑⎰01x n n x dx ∞==∑⎰0ln(1)1xxdx x x x==----⎰0=x 时,0)0(=S ,⎪⎩⎪⎨⎧=⋃-∈---=∴00)1,0()0,1[)1ln(1)(x x xx x S四.证明题(本题4分)证明下列不等式成立:π≥⎰⎰Dx y dxdy ee ,其中}1|),{(D 22≤+=y x y x .证明:因为积分区域关于直线x y =对称, ⎰⎰⎰⎰=DDyxxy dxdy e edxdy e e⎰⎰=∴D x y dxdy e e 21)(⎰⎰⎰⎰+D D y xxy dxdy ee dxdy e e =π=≥+⎰⎰⎰⎰dxdy dxdy e e e e D y xx y 221(21)五.应用题(本题8分)设有一小山,取它的底面所在平面为xoy 坐标面,其底部所占的区域为},75:),{(22≤-+=xy y x y x D 小山的高度函数为.75),(22xy y x y x h +--= (1)设),(0y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(0y x g ,试写出),(0y x g 的表达式。
对外经济贸易大学2007─2008学年第二学期《微积分(二)》期末考试试卷(B )一、单项选择题:(每题2分,共14分) 得分1.设()f x 是连续函数, ()(),xa F x f t dt =⎰则下列结论正确的是 ( )(A )若()f x 是偶函数,则()F x 必为奇函数(B )若()f x 是奇函数,则()F x 必为偶函数(C )若()0f x >,则()F x 必大于零(D )若()f x 是周期函数,则()F x 也是周期函数2.设()f x 是连续函数, ln 1()(),xx F x f t dt =⎰ 则()F x '等于 ( )(A )2111(ln )()f x f x x x + (B ) 1(ln )()f x f x+ (C )2111(ln )()f x f x x x - (D )1(ln )()f x f x - 3.广义积分⎰∞+=+1)1(1dx x x ( )(A ) 2π (B ) π (C ) 2π (D ) 4π 4.考虑二元函数),(y x f 的下面4条性质:①),(y x f 在点),(00y x 处连续。
②),(y x f 在点),(00y x 处的两个偏导数连续。
③),(y x f 在点),(00y x 处可微。
④),(y x f 在点),(00y x 处的两个偏导数存在。
用P Q ⇒“”表示可由性质P 推出Q ,则有 ( )(A )②⇒③⇒① (B )③⇒②⇒①(C )③⇒④⇒① (D )③⇒①⇒④5.对于函数(,)f x y =0,0)是 ( )(A )驻点 (B )驻点是极值点(C )不是驻点,但是极大值点 (D )不是驻点,但是极小值点6.设有幂级数211n nn na x ∞+=∑,若11lim 4n n n a a →+∞+=,则该幂级数的收敛开区间为 ( ) (A )(11,22-) (B )()2,2- (C )(11,44-) (D )()4,4- 7. 具有通解2121,()cos sin (C C x C x C e y x +=为任意常数)的二阶常系数齐次线性微分方程是 ( )(A )0=+'-''y y y (B )022=+'-''y y y(C ) 0=+''y y (D )02=+'-''y y y二、填空题:(每题3分,共21分) 得分1.设()f x 是连续函数,且221()2()f x x f x dx =+⎰,则()f x =______________.2. 由曲线,x x y e y e -==和直线1x =所围图形的面积是______________.3.函数arcsin x z y=在点(3,5)处的全微分dz =______________. 4.设(),z z x y =是由方程sin 1z z xy ++=确定的隐函数,则(1,1,0)z x ∂=∂______________. 5.二重积分()10,I dy f x y dx =⎰交换积分次序后的形式是______________. 6.设级数∑∞=-12)1(n n n na 收敛,则级数∑∞=1n n a 的敛散性是 ______________.7. 设)(1x y 是方程)()(x Q y x P y =+'的一个特解,C 是任意常数,则该方程的通解是______________.三、计算题:(1-6每题6分,第7题7分,共43分) 得分1.方程(,)0z z F x y y x ++=确定了函数(,),z f x y =其中F 为可微函数,求,z z x y∂∂∂∂。
《高等数学(二)》期末考试试卷考试形式:闭卷考试 考试时间:120分钟一、选择题(单选题,每题4分,共28分)1、0lim =∞→n n u 是∑∞=1n n u 收敛的( B )A .充分而非必要条件 B. 必要而非充分条件C.充要条件D. 既非充分也非必要条件2、若级数∑∞=1n n u 收敛,则下列命题( B )正确(其中∑==ni i n u s 1)A .0lim =∞→s n n B. s n n lim ∞→存在C. s n n lim ∞→ 可能不存在 D. {}为单调数列s n 3、设∑∞=1n n u 与∑∞=1n n v 都是正项级数,且n n v u ≤ ,2,1(=n )则下列命题正确的是( C )A .若∑∞=1n n u 收敛,则∑∞=1n n v 收敛 B. 若∑∞=1n n u 收敛,则∑∞=1n n v 发散C.若∑∞=1n n v 发散,则∑∞=1n n u 发散D.若∑∞=1n n v 收敛,则∑∞=1n n u 收敛4、下列级数中条件收敛的是( B )A .1)1(1+-∑∞=n n n nB. n n n 1)1(1∑∞=-C. 211)1(n n n ∑∞=-D. n n n ∑∞=-1)1( 5、幂级数∑∞=-12)2(n nn x 的收敛区间为( B ) A.(1,3) B.[]3,1 C.[)3,1 D.(]3,16、幂级数∑∞=1!n nn x 的收敛半径为( C )A. 0B. 1C. +∞D. 37、点A (-3,1,2)与B (1,-2,4)间的距离是( A ) A. 29 B. 23 C. 29 D. 23二、填空题(每题4分,共16分)1、球心在点(1,-2,3),半径为3的球面方程为 9)3()2()1(222=-+++-z y x2、方程0222222=-+-++z x z y x 表示的图形是圆心在(1,0,-1),半径为2的球面. .3、二元函数229y x z --=的定义域是{}9:),(22≤+y x y x4、y x y x y x F --=22),(,则)3,1(F = 5 . 5、幂级数1nn x n∞=∑的收敛半径为是 1 .三、计算题1、求函数的一阶偏导数(1))ln(222y x x z += (2)xy e u =223222)ln(2y x x y x x x z +++=∂∂ xy ye xu =∂∂ 2222y x y x y z +=∂∂ xy xe yu =∂∂2、求函数32y x z =,当01.0,02.0,1,2-=∆=∆-==y x y x 的全微分32xy xz =∂∂ 223y x y z =∂∂ 2.0)1,2()1,2(-=∆-+∆-=y f x f dy y x3,y x z 2)31(+=,求x z ∂∂,yz ∂∂ 216(13)y z y x x-∂=+∂)31ln()31(22x x yz y ++=∂∂4、设方程0sin 2=-+xy e y x 确定的一个隐函数,求dxdy 0).2(.cos 2='+-+'y xy y e y y x 22cos x e y y xy y-'=-5、求函数22)(4),(y x y x y x f ---=的极值(1)x f x 24-= y f y 24--=(2)令0,0==y x f f 得:2,2-==y x(3)2,0,2-==-=yy xy xx f f f 故2,0,2-==-=C B A 0,02<<-A AC B 有极大值.8)2,2(f =-=极大y6、计算积分⎰⎰Dxydxdy ,其中D 由3,x y x y ==在第一象限内所围成.161103==⎰⎰⎰⎰D x x ydy xdx xydxdy四、应用题1、建造容积为V 的开顶长方形水池,长、宽、高各应为多少时,才能使表面积最小?(10分) 长为32v x = 宽32v y = 高3221v z =2、把正数a 分成三个正数之和,使它们的乘积为最大,求这三个数.(7分) 3a z y x ===。
07-08B一.填空题(每空2分,本大题满分30分)1.设,则____________,____________.2.已知具有二阶连续偏导数,且,则__________________,__________________.3.曲面在点处的法向量______________,切平面方程为__________________________________.4.点的直角坐标与柱面坐标的关系为________________________________________.在柱面坐标下,体积元素__________________.5.设为曲线弧,则,________.6.在区间内,写出下列幂级数的和函数:(1) __________;(2) __________.7.若级数条件收敛,则幂级数的收敛区间为_______.8.微分方程的通解为________________________,微分方程的通解为_______________________.二.解答下列各题(每小题8分,本大题满分16分)1.写出函数的定义域,并求函数的全微分.2.已知是由方程确定的隐函数,求和.三.解答下列各题(每小题8分,本大题满分16分)1.计算,其中是由直线及所围成的闭区域.2.设为正向圆周,计算.四.解答下列各题(每小题6分,本大题满分12分)1.判别级数的收敛性.2.求幂级数的收敛域.五.解答下列各题(每小题8分,本大题满分16分)1.求微分方程的通解.2.求一曲线的方程,这曲线经过原点,并且它在点处的切线斜率等于.六.(本大题满分10分)设满足条件:,,且.求的极值.。
云南财经大学期末考试 高等数学(II ) 课程 B 卷试题答案及评分标准2007-2008学年第二学期B
一、填空题(本题共10小题,每小题2分,满分20分. 把正确答案填在题中横线上) 1. ()()n y P x y Q x y '+=;2. 1,,x x k x e xe x e λλλ- ;3. 0;4. 3
π
θ=
;5. x 2+y 2≤1;
6. 2(1)(2)6(3)0x y z ---+-=;
7. {}2(,):0,0,x y x y x y ≥≥≥;
8. ;),(2
11
1dy y x f dx x
x ⎰⎰-+-9. 1
1
(1)
21
n n a
n ++-+;10. 1q <。
二、选择题(本题共10小题,每小题2分,满分20分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
1. B ;
2. D ;
3. A ;
4.C ;
5. A ;
6. B ;
7. C ;
8. B ;
9.C ;10.B 。
三、解答题(本题满分10分。
解答应写出文字说明、证明过程或演算步骤) 解:
2
'
1
'22yf
xf
x
z +=∂∂;
11
'
'2
4xyf
y
x z =∂∂∂+2
'
22
'
'12
'
'2224)(4f
xyf
f
y x +++
…………………10分 四、解答题(本题满分10分。
解答应写出文字说明、证明过程或演算步骤) 解:因为2
y
e
dy -⎰无法用初等函数表示,所以积分时必须考虑次序
⎰⎰
-D
y
dxdy e
x 2
2⎰⎰
-=
y
y
dx e
x dy 0
21
2
dy y
e
y
⎰
⋅
=
-1
3
3
2
2
1
2
6
2
dy
y
e
y
⎰
⋅
=
-).21(6
1e
-
=
…………………10分
五、解答题(本题满分10分。
解答应写出文字说明、证明过程或演算步骤)
解:将Ω投影到zox 平面得:xz D 12
2≤+z x ,先对y 积分,再求xz D 上二重积分,
1
xz
D ydy Ω
=
⎰⎰⎰⎰⎰
⎰
dz z x x
dx x
x
2
12
21
1
112
2
2
+-=
⎰⎰
----dx z
z x x x
x
22
113
2
1
1
2|
)3
(1----+
-=
⎰
⎰
--+=
1
1
4
2
)21(3
1dx x x .45
28=
…………………10分
六、解答题(本题满分10分。
解答应写出文字说明、证明过程或演算步骤)
解: 记()ln(1)f x x =+,则
11()()
(1)11()
n
n n
n n f x x x x
x ∞
∞
=='=
==
-=-+--∑∑, (1,1)x ∈- 从而所求幂级数展开式为
1
1
1
(1)
(1)ln(1)()(1)1
n n n
n
n n
n n n x f x dx x
dx x
x n n
-∞
∞
∞
+===--'+=
=
-=
=
+∑∑
∑
⎰
⎰, (1,1)x ∈-
…………………5分
当1x =-时,级数1
11
(1)1(1)n n
n n n
n
-∞
∞
==--=-∑
∑
发散;
当1x =时,级数1
1
1
1
(1)(1)1n n n
n n n
n
--∞
∞
==--⋅=∑
∑
是莱布尼兹级数,收敛。
所以所求幂级数展开式成立的区间为(1,1]-. …………………10分
七、解答题(本题满分10分。
解答应写出文字说明、证明过程或演算步骤) 解: 方程两边同除以)10
1(y y -
,再积分得(1)
10
dy dx y y =-
⎰
⎰,两边积分得
1ln
ln ln ln 10x
x
y x c e c ce y
=+=+=-
10x
y ce y
=-
让c 可取负值,则
10x
y ce y
=-
…………………10分
八、解答题(本题满分10分。
解答应写出文字说明、证明过程或演算步骤)
解:将方程变形为
,cos sin 2cos y y y x dy
dx =+因y y P cos )(=,y y y Q cos sin 2)(=,
故由线性方程的通解公式
)
1(sin 2 )
cos sin 2(sin cos
cos -+=+⎰⎰=--⎰y Ce
C dy e y y e x y
dy
y dy
y
…………………10分。