智能风扇设计
- 格式:doc
- 大小:338.00 KB
- 文档页数:38
基于单片机的智能风扇的设计智能风扇的设计是基于单片机的一种智能化家电产品,通过集成了传感器、单片机、通信模块和风扇控制电路等功能模块,能够实现自动感知环境温度、湿度等参数,并根据用户的需求自动调节风扇的转速和工作模式。
下面将详细介绍智能风扇的设计。
1.硬件设计智能风扇的硬件设计包括传感器模块、单片机模块、通信模块和控制电路模块。
传感器模块:智能风扇的传感器模块通常包括温度传感器和湿度传感器,用于感知环境的温度和湿度。
可以选择常见的数字温湿度传感器,如DHT系列传感器。
单片机模块:单片机模块是智能风扇的核心控制模块,可选择一款适合的单片机,如51单片机或STM32系列单片机,并结合开发板进行开发。
单片机模块负责读取传感器数据,并根据温度和湿度的变化进行风扇转速和工作模式的调节。
通信模块:通信模块用于实现智能风扇与其他设备的远程控制和数据传输功能。
可以选择Wi-Fi模块或蓝牙模块,实现与智能手机或其他智能设备的连接。
控制电路模块:控制电路模块包括电机驱动电路和电源电路。
电机驱动电路用于控制风扇电机的转速,可以选用H桥驱动芯片。
电源电路负责为各个模块供电,可以采用稳压模块和滤波电路,保证各个模块的正常运行。
2.软件设计智能风扇的软件设计主要包括数据采集、数据处理和控制策略。
数据采集:单片机模块通过传感器模块采集到温湿度数据,并将数据转换为数字信号以供程序识别。
数据处理:单片机模块通过算法处理采集到的温湿度数据,进一步计算出风扇应该运行的转速和工作模式。
可以根据不同的温湿度阈值设置不同的转速和工作模式,如低温低湿度下风扇停止运行,高温高湿度下风扇全速运行。
控制策略:单片机模块根据处理后的数据,通过控制电路模块控制风扇的转速和工作模式。
控制策略可以通过采用PID控制算法,根据环境温湿度的反馈信息进行动态调节,使风扇以最佳转速运行。
3.功能设计智能风扇可以通过通信模块与智能手机或其他智能设备连接,实现远程控制和数据传输的功能。
基于单片机的智能电风扇的设计
1. 系统设计思路:
智能电风扇系统由传感器、单片机以及电机驱动电路组成。
传感器检测环境温度、湿度和人体距离等参数,单片机根据这些参数控制电机的工作,并且可以根据预设程序自动调节电风扇的转速和运转模式。
2. 硬件设计:
(1) 传感器模块:
环境温湿度传感器模块和人体距离传感器模块分别采用DHT11和HC-SR501。
(2) 单片机模块:
根据项目需求,使用STM32F103ZET6单片机,主要处理传感器的读取和数据处理,并进行PWM波输出,控制电机转速。
(3) 电机驱动模块:
电机采用直流无刷电机,控制驱动电路采用L298N芯片。
3. 软件设计:
(1)初始化各个模块,包括传感器、GPIO等。
(2)读取传感器的数据,并根据不同温度、湿度和人体距离进行选择参数,设置不同的转速和运转模式。
(3)通过PWM波输出,控制电机的转速,实现电风扇的自动调节和控制。
4. 实现功能:
灵活的温湿度和人体距离检测,自动选择合适的电风扇运转模式和转速,节能环保,人性化的操作界面等。
总之,基于单片机的智能电风扇系统可以在提供便利的同时,达到节能环保的目的。
智能温控电风扇的设计随着科技的不断发展,智能化产品已经成为现代生活中不可或缺的一部分。
智能温控电风扇作为智能家居产品的一种,可以帮助用户实现智能控制风扇的温度和风速,体验更加舒适的生活。
本文将介绍智能温控电风扇的设计理念、功能特点和未来发展趋势。
一、设计理念智能温控电风扇的设计理念是基于用户体验和节能环保的理念。
通过传感器和智能芯片的技术应用,实现对室内温度的实时监测和智能调节。
结合智能手机App,用户可以随时随地通过手机对电风扇进行控制,搭配定时开关机功能,更加智能化的满足用户的需求。
智能温控电风扇还可以通过智能语音助手进行控制,提高了产品的人机交互体验。
二、功能特点1.实时温度监测:智能温控电风扇配备了高精度温度传感器,能够对室内温度进行实时监测,通过智能芯片进行数据分析和处理,实现精准的温度控制。
2.智能风速调节:根据室内温度的不同,智能温控电风扇可以智能调节风速,使风量和温度达到最舒适的状态。
3.手机App控制:用户可以通过手机App随时对电风扇进行控制,包括开关机、风速调节、定时功能等,让用户更加方便地使用电风扇。
4.智能语音控制:支持智能语音助手,用户可以通过语音指令实现对电风扇的控制,提高了产品的智能化水平。
5.节能环保:通过智能温控系统的应用,可以根据实际需要进行智能调节,避免不必要的能源浪费,达到节能环保的目的。
三、未来发展趋势随着智能家居市场的不断扩大,智能温控电风扇作为智能家居产品的一种,未来发展趋势将会更加智能化、个性化和智能互联。
在智能化方面,将会加强对传感器、智能控制芯片的技术研发,提高产品的智能化水平,让产品更加贴近用户的需求。
在个性化方面,根据用户的喜好和习惯,定制化智能温控电风扇的功能,让用户可以根据自己的需求定制个性化的使用体验。
在智能互联方面,智能温控电风扇将会与其他智能家居设备进行互联,在智能家居生态系统中扮演更加重要的角色,实现智能家居设备之间的联动,提高整体的智能化水平。
智能电风扇毕业设计智能电风扇毕业设计随着科技的不断进步和人们对生活品质的追求,智能家居产品越来越受到人们的关注和喜爱。
智能电风扇作为其中的一员,既能满足人们对舒适生活的需求,又能提升生活的便利性。
本文将介绍一种智能电风扇的毕业设计方案,希望能为相关专业的学生提供一些参考和灵感。
1. 设计目标在开始设计之前,首先需要明确设计的目标。
智能电风扇的设计目标应该包括以下几个方面:1.1. 舒适性:电风扇作为一种常见的降温设备,应该能够提供舒适的风速和风向调节功能,以满足不同人群的需求。
1.2. 节能环保:设计中应考虑到电风扇的能耗问题,尽量减少能源的消耗,并且使用环保材料制造,减少对环境的影响。
1.3. 智能化:智能电风扇应该具备远程控制、定时开关、温度感应等功能,以提升用户的使用体验和便利性。
2. 硬件设计2.1. 风速调节:通过设计不同档位的风速控制电路,实现电风扇的风速调节功能。
可以使用可变电阻或者按键开关来实现不同档位的切换。
2.2. 风向调节:设计一个可调节的风向装置,通过电机或者伺服电机的控制,实现电风扇风向的上下左右调节。
2.3. 温度感应:通过温度传感器来感知室内温度,并根据设定的温度范围来自动调节电风扇的风速和开关。
2.4. 远程控制:通过无线通信模块,实现电风扇的远程控制功能。
用户可以通过手机或者其他智能设备来控制电风扇的开关、风速和风向等参数。
3. 软件设计3.1. 应用程序开发:开发一个简洁易用的手机应用程序,用户可以通过该应用程序来控制电风扇的各项功能。
包括开关、风速、风向的调节,以及定时开关等功能。
3.2. 数据处理:通过手机应用程序收集用户的使用数据,进行数据分析和处理,以优化电风扇的使用效果和能耗。
3.3. 智能化算法:设计智能算法,根据用户的使用习惯和环境条件,自动调节电风扇的工作模式,提供最佳的舒适度和能效。
4. 原型制作与测试在完成硬件和软件设计后,需要制作一个电风扇的原型,并进行实际测试。
引言随着人们生活水平及科技水平的不断提高,现在家用电器在款式、功能等方面日益求精,并朝着健康、安全、多功能、节能等方向发展。
过去的电器不断的显露出其不足之处。
电风扇作为家用电器的一种,同样存在类似的问题。
现在电风扇的现状:大部分只有手动调速,再加上一个定时器,功能单一。
存在的隐患或不足:比如说人们常常离开后忘记关闭电风扇,浪费电且不说还容易引发火灾,长时间工作还容易损坏电器。
再比如说前半夜温度高电风扇调的风速较高,但到了后半夜气温下降,风速不会随着气温变化,容易着凉。
之所以会产生这些隐患的根本原因是:缺乏对环境的检测。
如果能使电风扇具有对环境进行检测的功能,当房间里面没有人时能自动的关闭电风扇;当温度下降时能自动的减小风速甚至关闭风扇,这样一来就避免了上述的不足。
本次设计就是围绕这两点对现有电风扇进行改进。
1.总体方案设计及功能描述本设计是以AT89C51单片机控制中心,主要通过提取热释电红外传感器感应到的人体红外线信息和温度传感器DS18B20得到的温度以及内部定时器设定时间长短来控制电风扇的开关及转速的变化。
功能描述:电风扇工作在四种状态:手动调速状态、自动调速状态、定时状态、停止状态。
手动状态时可以手动调节速度;自动状态时通过温度高低自动调节速度,如果出现手动现象则变为手动状态;定时状态时可以调节定时时间,并设定是否启动定时,之后可以手动退出,也可以在不操作6秒后自动退出进入手动状态;停止状态时可以被唤醒并进入自动状态。
当没有检测到人体存在超过3分钟或定时完毕时进入停止状态。
在数码管显示方面,当没有定时时,只显示气温,当定时启动时气温和定时剩余时间以3秒的速度交替显示。
系统方框图如下图所示,主要包括:输入、控制、输出三大部分8个功能模块。
图1-1系统方框图2.功能模块硬件简介与实现2.1键盘输入电路由于设计中用到的按键数目不多,所以可以直接用AT89C51的通用IO 端口且选用AT89C51的P1口(内部有上拉电阻)作为键盘接口。
智能风扇毕业设计智能风扇——舒适与便捷的结合随着科技的不断进步,智能家居产品逐渐走入人们的生活,为我们的日常生活带来了诸多便利。
智能风扇作为智能家居产品的一种,以其独特的功能和设计,成为了人们追逐舒适生活的选择之一。
在这篇文章中,我们将探讨智能风扇的设计与应用,以及它在毕业设计中的潜在应用。
一、智能风扇的设计与功能智能风扇的设计注重舒适度和便捷性。
它采用了先进的传感技术,可以根据室内温度和湿度自动调节风速和风向,使人们在不同的环境中都能享受到舒适的风。
同时,智能风扇还具备远程控制的功能,通过手机APP或遥控器,用户可以轻松地调整风扇的各项参数,实现个性化的风速和风向设置。
除了基本的风速和风向调节功能,智能风扇还可以与其他智能家居设备进行联动。
例如,当室内温度超过设定值时,智能风扇可以自动与空调系统进行通信,协同工作,提供更加舒适的环境。
此外,智能风扇还可以与智能音箱、智能灯具等设备进行连接,实现智能化的家居体验。
二、智能风扇在毕业设计中的应用智能风扇的设计与功能使其在毕业设计中有着广泛的应用前景。
以下是几个可能的应用方向:1. 智能风扇与健康关怀随着人们对健康的关注不断增加,智能风扇可以与健康关怀相结合,为用户提供更加舒适和健康的环境。
例如,智能风扇可以通过传感器检测室内空气质量,并根据检测结果自动调整风速和风向,帮助净化室内空气,改善用户的生活质量。
2. 智能风扇与节能环保智能风扇的智能化设计可以使其更加节能环保。
通过与室内温度、湿度等参数的联动,智能风扇可以实现精确的风速控制,避免不必要的能源浪费。
此外,智能风扇还可以与太阳能充电系统相结合,利用太阳能为风扇供电,进一步降低能源消耗,减少对环境的负担。
3. 智能风扇与智能家居系统智能风扇可以与智能家居系统相连接,实现更加智能化的家居体验。
例如,智能风扇可以与智能家居中心相连,通过语音控制或手机APP控制,实现一键开关、定时启动等功能。
同时,智能风扇还可以与其他智能设备联动,如智能窗帘、智能照明等,共同为用户提供舒适便捷的居住环境。
智能温控风扇毕业设计智能温控风扇毕业设计题目:智能温控风扇一、概述本次毕业设计关于智能温控风扇,它和一般的风扇有一个最大的不同,它可以根据环境温度自动调整自身的风速,无需任何操作即可实现自动温度控制。
设计思路为:利用单片机控制风扇,实现程序控制和自动温度控制。
二、实现方法1、硬件结构:(1) 单片机:采用的单片机型号为AT89C51,其具有单片机外设、软硬件接口、数据处理分析能力等优点,它是一款多功能的低功耗单片机,适用于各种智能化系统的控制,可实现变频控制,并提供温度控制功能。
(2) 温度传感器:采用的是DS18B20数字温度传感器,它具有耐高温绝对精度和长期稳定性,对温度范围有较高的灵敏度,同时它具有抗干扰性强,操作简单,耗电量小等优点,可以对环境温度进行详细的采集和分析。
(3) 风扇:系统采用的风扇为一款普通的电扇,该风扇具有较强的吸力,可以有效地扩大风扇的输出范围,改善电扇的散热性能,从而实现自动温度控制。
(4) 仪表注意事项:由于风扇的电压为直流电,需要注意电压范围,以免出现超载现象。
同时,由于风扇的电动机速度很高,需要注意防止出现短路现象。
2、实现过程:(1) 单片机程序编程:程序的主要任务是监测环境温度变化,并相应地控制风扇的转速,以保证环境温度在一定范围内,并且满足设定的温度调节范围。
(2) 温度采集:该系统采用DS18B20数字温度传感器采集环境温度,将结果通过单片机提取出来,然后根据设定的温度范围调节风扇的转速。
(3) 温度控制:根据环境的温度变化来调节风扇的转速,以实现自动温度控制,保证环境温度在一定范围内,并且满足温度调节范围。
三、结论本次毕业设计介绍了一款智能温控风扇的设计,它可以根据环境温度自动调整自身的风速,从而实现自动温度控制,具有节能、节省能源和环保的特点,具有一定的实用价值。
基于物联网的智能家用风扇控制系统设计1. 引言1.1 研究背景智能家居是指利用物联网技术实现各种家用设备的互联互通,实现智能化控制和管理。
随着物联网技术的不断发展和普及,智能家居已经逐渐走进人们的生活中,使人们的生活更加便利和舒适。
在智能家居设备中,智能风扇作为日常生活中常用的家电之一,其智能化控制是一个值得研究的课题。
传统的家用风扇只能通过按钮或遥控器控制,操作不够方便,无法实现智能化的定时、温度调节等功能。
基于物联网技术的智能家用风扇控制系统的设计具有重要的实际意义和研究价值。
本文旨在通过深入研究物联网技术的应用,设计一种智能家用风扇控制系统,实现风扇的智能化控制和管理,提高用户的使用体验和生活质量。
通过对系统功能的实现和性能评估,探讨智能家用风扇控制系统的优势和不足之处,为今后智能家居设备的研究和发展提供参考和借鉴。
1.2 研究目的本研究的目的在于设计、实现一种基于物联网技术的智能家用风扇控制系统,旨在提高家庭生活的舒适度和便利性。
具体目的包括:1. 提供用户便捷、智能化的风扇控制方式,实现远程控制和定时开关等功能,提升用户体验;2. 探索物联网技术在家用设备领域的应用,拓展物联网技术在智能家居领域的发展空间;3. 分析智能风扇控制系统对节能环保的影响,探讨智能化技术在家庭节能方面的潜力;4. 为智能家居产品的发展提供参考和启示,推动智能化生活方式的普及和推广。
通过本研究,将为智能家居行业的发展和智能化生活方式的推广提供有益的参考和支持。
1.3 研究意义智能家居风扇控制系统是近年来物联网技术在家庭生活中的应用之一,具有重要的研究意义。
智能家用风扇控制系统可以提高家庭生活的舒适度和便利性,通过智能化的控制方式可以根据用户需求实现风扇的调节,节省了用户的时间和精力。
智能家用风扇控制系统可以实现电能的节约和环保效果,通过智能控制系统可以有效监控和调节风扇的使用情况,降低不必要的能耗,减少能源浪费,保护环境。
智能温控电风扇的设计一、外观设计智能温控电风扇的外观设计具有简约、流线型的特点,整体造型时尚、精致。
外观材质主要采用高品质塑料或金属材料,经过精细的加工工艺,表面光滑、手感舒适。
考虑到产品的安全性和稳定性,底座部分设计专为加大稳定度,防止产品在使用过程中出现晃动或倾倒等安全隐患。
在外观颜色方面,智能温控电风扇通常可根据消费者喜好提供多种选择,如简约的白色、灰色,或是时尚的黑色、金色等。
产品面板可设计为触摸式操作,提升使用便捷性和美观性。
二、智能温控技术智能温控电风扇内置先进的温度传感器,能够根据环境温度实时感知并做出相应的风速调节。
当环境温度过高时,电风扇会自动调节为高速风,快速降温;当室内温度适中时,风速自动调节为中速;当温度较低时,电风扇会停止工作,避免过度降温引起不适。
智能温控电风扇在运行过程中,还可根据室内湿度感应适时调节风速,为用户打造一个更加舒适的室内环境。
用户还可以通过手机APP或遥控器等智能设备进行远程控制,方便实用。
三、节能环保智能温控电风扇在设计之初就考虑到了节能与环保的问题。
产品采用高效节能的电机,运行时功耗低,降低了对能源的消耗;在制造过程中采用环保材料,减少了对环境的污染。
产品还设置了定时功能和睡眠模式,可以根据用户需求智能调节工作时间,达到节能的效果。
四、安全性设计在智能温控电风扇的设计中,安全性是一项非常重要的考虑因素。
产品在设计时应当符合国家标准,采用防护网及叶片设计,防止儿童或宠物误伤。
产品应具备过载、过热保护功能,当电风扇运行过程中出现异常情况,能够自动停机,以保障用户的人身安全。
五、静音设计在使用电风扇的时候,用户都会希望它的运行时噪音尽可能的小。
智能温控电风扇在设计时应当采用噪音低于50分贝的静音电机,并且在叶片设计上进行优化,以减少运行时的噪音。
产品还可以设计静音模式,在用户需要安静的环境中使用时,提供更加舒适的体验。
六、用户体验智能温控电风扇的设计大多还需要兼顾到用户体验。
智能电风扇控制系统设计分解一、引言随着科技的发展,智能家居设备逐渐走进人们的生活。
智能电风扇作为其中的一种,能够通过智能控制系统实现更加便捷和个性化的使用体验。
本文将对智能电风扇控制系统进行设计分解,包括硬件设计和软件设计两个方面。
二、硬件设计1.电机驱动模块2.温湿度传感器模块为了提供更好的使用体验,智能电风扇需要能够自动感知周围环境的温度和湿度。
设计一个温湿度传感器模块,能够实时采集环境温湿度数据,并与其他模块进行数据交互。
3.红外遥控模块为了方便用户的无线操作,设计一个红外遥控模块,使用户能够通过遥控器对智能电风扇进行远程控制。
该模块需要能够接收红外信号并解码,将用户的控制指令传递给电机驱动模块。
4.触摸模块除了通过红外遥控进行控制,智能电风扇还应该具备一定的自主操作能力。
设计一个触摸模块,用于实现电风扇的开关、调速和定时等功能。
该模块需要具备触摸感应功能,并与其他模块进行数据交互。
5.显示屏模块为了更方便地了解电风扇的当前运行状态,设计一个显示屏模块,能够实时显示电风扇的温度、湿度和转速等信息。
该模块需要具备显示功能,并与其他模块进行数据交互。
三、软件设计1.控制算法设计电风扇的控制算法,根据用户的控制指令和环境温湿度数据,自动调整电风扇的转速。
可以根据用户的需要,设计多种操作模式和风速档位。
2.用户界面设计设计一个用户界面,能够让用户通过触摸模块或红外遥控器操作电风扇。
用户界面需要直观易用,并且能够实时显示电风扇的运行状态和环境数据。
3.通信模块设计设计一个通信模块,用于与智能家居系统或手机APP进行数据交互。
通过无线通信技术,用户可以实现对电风扇的远程控制和监测。
4.定时开关机功能设计一个定时开关机功能,可以设置电风扇在一定时间内自动开关机,提高能源利用效率。
四、总结本文对智能电风扇控制系统进行了设计分解,包括硬件设计和软件设计两个方面。
通过设计合理的硬件模块和软件算法,智能电风扇可以实现更加智能化和个性化的使用体验。
智能风扇控制系统设计案例范本一、项目背景随着人们对生活品质要求的提高,智能家居逐渐成为人们生活中不可或缺的一部分。
智能风扇作为智能家居的重要组成部分,其控制系统的设计对于用户的使用体验和智能家居的发展具有重要的意义。
二、项目目标本项目旨在设计一款智能风扇控制系统,满足以下要求:1.实现远程控制:用户可通过手机或电脑远程控制智能风扇的开关、风速、定时等功能。
2.智能化控制:智能风扇能够通过传感器感知室内温度、湿度等环境参数,自动调节风速和风向,达到最佳的舒适度。
3.节能环保:智能风扇能够根据室内环境参数自动调节风速和风向,减少能源的浪费,实现节能环保。
三、项目方案1.硬件方案智能风扇控制系统的硬件方案主要包括以下部分:(1)主控板:采用STM32F103C8T6微控制器,具有较高的性能和稳定性。
(2)通信模块:采用ESP8266模块,可实现Wi-Fi通信功能,支持远程控制。
(3)传感器模块:采用DHT11温湿度传感器和光敏电阻,能够感知室内环境参数。
(4)电机驱动模块:采用L298N电机驱动模块,支持直流电机的驱动。
(5)风扇模块:采用直流电机驱动风扇,可实现多档风速和风向的调节。
2.软件方案智能风扇控制系统的软件方案主要包括以下部分:(1)远程控制程序:实现用户通过手机或电脑远程控制智能风扇的开关、风速、定时等功能。
(2)智能化控制程序:根据传感器感知的室内环境参数,自动调节风速和风向,达到最佳的舒适度。
(3)节能环保程序:根据室内环境参数自动调节风速和风向,减少能源的浪费,实现节能环保。
四、项目效果本项目实现了智能风扇控制系统的设计,可以通过手机或电脑远程控制智能风扇的开关、风速、定时等功能。
同时,智能风扇能够通过传感器感知室内温度、湿度等环境参数,自动调节风速和风向,达到最佳的舒适度。
此外,智能风扇能够根据室内环境参数自动调节风速和风向,减少能源的浪费,实现节能环保。
智能电风扇的设计毕业设计智能电风扇的设计毕业设计一、引言随着科技的不断进步和人们对舒适生活的追求,智能家居产品逐渐走进人们的生活。
智能电风扇作为其中的一种,以其便捷、高效和节能的特点,受到了越来越多人的青睐。
本文将探讨智能电风扇的设计,包括其功能、外观和用户体验等方面。
二、功能设计1. 温度感应:智能电风扇应具备温度感应功能,可以根据环境温度自动调节风速。
当室温较高时,电风扇会自动增加风速,以提供更好的降温效果。
当室温适宜时,电风扇会自动降低风速,以节省能源。
2. 智能控制:智能电风扇应具备远程控制功能,用户可以通过手机APP或遥控器来控制电风扇的开关、风速和定时功能。
这样,即使用户不在家,也可以随时调节电风扇的工作状态。
3. 空气净化:智能电风扇可以配备空气净化器功能,通过滤网和负离子发生器,可以净化空气中的有害物质,提供更加健康的室内环境。
三、外观设计1. 简约时尚:智能电风扇的外观设计应简约时尚,符合现代家居的审美要求。
可采用金属或塑料材质,搭配简洁的线条和流线型造型,给人一种高端大气的感觉。
2. 多样化颜色:智能电风扇可以提供多种颜色选择,以满足不同用户的个性化需求。
比如,提供经典的黑白色系,或者鲜艳的红黄蓝等色系,让用户可以根据自己的喜好来选择。
3. 可调节高度:智能电风扇的高度应可调节,以适应不同场景和使用需求。
用户可以根据自己的身高和使用环境,自由调节电风扇的高度,提供更好的使用体验。
四、用户体验设计1. 噪音控制:智能电风扇应尽量降低噪音,以提供一个安静的环境。
采用静音电机和优化的叶片设计,可以有效减少噪音产生,让用户在享受凉爽的同时不受干扰。
2. 舒适风速:智能电风扇应提供多档风速调节,以满足用户不同的需求。
用户可以根据自己的感受选择合适的风速,既可以享受凉爽的风,又不会感到过于寒冷。
3. 定时功能:智能电风扇应具备定时功能,用户可以设定电风扇的工作时间,以便在睡觉或离开家时自动关闭,节省能源。
本设计主要介绍了一种智能电风扇的设计方案。
该系统以AT89C51芯片的单片机为核心,应用通用的温度传感器来实现对环境温度的监控,同时系统跟随环境温度的变化来改变电机的运行状态。
本设计采用的温度智能控制,使风扇可以感知环境的温度,以调节风扇的转速,达到更好的工作效果。
用户可以选择这种智能调速的方式,也可以选择手动设定方式来控制转速;同时用户也可以使用遥控器来控制风扇的运行状态。
当选择手动设定方式时,该功能不发挥作用。
而定时工作功能可以让用户自己定制风扇工作时间的长短,以提供更人性化的服务。
LED显示功能使用液晶屏显示当前室温度,风扇的转速,风扇的工作模式,当前时间,风扇工作时间等参数,美观大方。
关键词:智能,电风扇,温度传感器,定时器,无极调速,显示摘要 (I)1 绪言 (1)1.1 课题背景 (1)1.2 课题研究的目的和意义 (1)2 系统的控制特点与性能要求 (3)3 本设计用到的元器件简介 (4)3.1 Inter公司AT89C51单片机简介 (4)3.2、AT89C2051芯片简介 (5)3.3 DS18B20温度传感器 (5)4 硬件设计 (7)4.1 总体硬件设计 (7)4.2 直流稳压电源的设计 (7)4.2.1 单相桥式整流电路 (8)4.2.2 滤波电路 (9)4.2.3 稳压电路 (10)4.3 电机调速模块 (10)4.3.1 电机调速原理 (10)4.3.2 电机控制模块硬件设计 (10)4.4 温度显示与控制模块设计 (11)4.4.1 温度检测硬件模块设计 (11)4.4.2 温度显示硬件模块设计 (12)4.5红外收/发电路 (13)4.5.1 红外线遥控器发射电路 (13)4.5.2红外接收电路 (16)5 软件设计 (18)5.1 数字温度传感器模块程序流程图 (20)5.2电机控制模块 (20)5.3 人机接口 (22)5.4 红外收/发模块 (24)6 总结与展望 (26)7 致谢 (27)参考文献 (28)附录1 (29)附图1 (43)1 绪言本章主要阐述了智能电风扇的研究背景,现状,发展方向,明确的指出了制作智能电风扇所用到的元器件,以及各个元器件的功能描述。
智能风扇毕业设计智能风扇毕业设计近年来,随着科技的飞速发展,智能家居成为了人们生活中的一部分。
智能家居产品的普及,不仅为人们的生活带来了便利,也为工程师们提供了更多的创新空间。
在这个背景下,我选择了智能风扇作为我的毕业设计主题。
智能风扇不仅仅是传统风扇的升级版,它将传统风扇与智能技术相结合,使得风扇的使用更加方便、智能化。
通过智能风扇,用户可以通过手机APP或者语音控制来调节风扇的速度、角度等参数,实现真正的智能化控制。
同时,智能风扇还可以通过传感器感知室内温度和湿度等环境参数,并根据用户的习惯和需求进行智能调节,提供更加舒适的使用体验。
在设计智能风扇时,我首先考虑了用户的需求和使用习惯。
通过市场调研和用户反馈,我了解到用户对于风扇最关注的是风速和噪音。
因此,在我的设计中,我将重点放在了提高风扇的性能和降低噪音上。
为了提高风扇的性能,我采用了先进的永磁无刷直流电机技术。
相比传统的交流电机,无刷直流电机具有功率密度高、效率高、噪音低等优点,可以提供更强劲的风力。
同时,我还在风扇叶片的设计上进行了优化,使得风扇在转速较高时风力更加均匀,减少了风力的不稳定性。
为了降低风扇的噪音,我采用了噪音控制技术。
首先,我在电机的设计上进行了优化,减少了电机本身的噪音。
其次,我在风扇的结构上进行了改进,减少了风扇与空气之间的摩擦噪音。
最后,我还在风扇的控制系统上加入了噪音控制算法,通过智能调节风扇的转速和叶片角度,降低了风扇的噪音。
除了提高性能和降低噪音,我还在智能风扇的设计中加入了一些创新的功能。
例如,我在风扇上加入了空气质量传感器,可以检测室内空气的质量,并根据检测结果自动调节风扇的工作状态,提供更加健康的室内环境。
此外,我还加入了人体感应传感器,可以感知人体的存在并自动调节风扇的工作状态,提供更加智能化的使用体验。
在实现智能风扇的功能时,我选择了嵌入式系统作为控制核心。
通过嵌入式系统的高性能和低功耗,可以实现风扇的智能控制和数据处理。
智能风扇控制系统设计智能风扇控制系统设计随着科技的发展,越来越多的智能家居产品出现在我们的生活中,其中智能风扇控制系统是最受人关注的之一。
智能风扇控制系统是一种可以通过智能手机或其他智能设备控制的设备,它可以自动调节风速和风向,使用户在不同的场景下得到最舒适的体验。
在这篇文章中,我们将介绍智能风扇控制系统的设计与实现。
1、系统硬件设计智能风扇控制系统的硬件设计涉及到多方面的考虑,包括硬件组成、控制逻辑、传感器的选择和安装等等。
下面我们将逐一介绍。
1.1 硬件组成智能风扇控制系统的硬件组成主要包括以下几个部分:(1)控制中心:智能风扇控制系统的核心,主要由微处理器、通信模块和存储设备组成,负责处理控制指令、接收传感器数据和存储相关信息。
(2)电机驱动器:用于控制风扇的转速和转向,通常采用功率较小的直流电机驱动器。
(3)传感器:用于感知环境参数,包括温度、湿度、CO2浓度等,不同的传感器用于不同的场景。
(4)UI接口:用于显示当前环境参数,包括温度、湿度、CO2浓度等,可选用OLED显示屏或其他形式的显示器。
(5)电源:提供系统所需的电能,采用注入式电池或外置电源均可。
1.2 控制逻辑智能风扇控制系统的控制逻辑是指在不同的场景下如何控制风扇的转速和转向。
控制逻辑通常分为静态和动态两种。
(1)静态控制逻辑静态控制逻辑是指在特定的场景下,系统会根据环境参数进行预先设定的风速和转向控制。
例如,在夏天炎热的天气中,系统可以设定为自动开启风扇并调节为高速状态,以提供最佳降温效果;在有人进入房间时,系统可以自动开启风扇并调节为中速状态,以提供适度的空气流动。
(2)动态控制逻辑动态控制逻辑是指在特定的场景下,系统会根据实时的环境参数自动调节风速和转向,以保持最佳状态。
例如,当室外温度逐渐升高时,系统可以自动调节风扇为高速状态,以确保室内温度的稳定;当室内CO2浓度超过预设值时,系统可以自动开启排风功能并调节风扇为中速状态,以提高空气质量。
智能电风扇控制系统的设计整个系统由以下几个主要模块组成:电风扇控制模块、传感器模块、用户交互模块、通信模块和智能算法模块。
电风扇控制模块是整个系统的核心,负责控制电风扇的运转状态和速度等参数。
该模块通过接收传感器模块采集的环境信息,根据智能算法模块的处理结果,实现自动调节电风扇风速、风向等功能。
传感器模块负责采集环境信息,如温度、湿度等数据。
通过与电风扇控制模块的通信,将采集的数据传输给电风扇控制模块,以便做出相应的调节。
用户交互模块为用户提供与电风扇交互的接口,一般包括按键、遥控器或手机APP等形式。
用户可以通过该模块对电风扇的运行状态、风速等进行设定和控制。
通信模块用于实现电风扇与其他设备的通信,如与智能家居系统对接、与手机APP通信等。
该模块可以采用蓝牙、WIFI等通信方式,以便实现远程控制、云端存储等功能。
智能算法模块是系统的核心部分,负责对传感器模块采集到的数据进行处理和分析,从而实现电风扇的智能调节。
例如,通过温度传感器采集到的数据,智能算法可以根据预设的温度范围和用户设定的温度值,自动控制电风扇的风速调节,使室内温度保持在舒适的范围。
在智能电风扇控制系统的设计中,通信协议也是一个重要的因素。
通信协议需要确保电风扇与其他设备之间的数据传输安全可靠。
常用的通信协议包括蓝牙协议、WIFI协议等,在系统设计中需要根据实际需求选择合适的通信协议。
此外,算法优化也是设计智能电风扇控制系统时需要考虑的重要方面。
通过优化算法,可以提高系统的响应速度和准确性,从而提高对环境变化的敏感度和智能调节能力。
总结起来,智能电风扇控制系统的设计主要包括系统整体架构、功能模块设计、通信协议和算法优化等方面。
通过合理设计和优化,可以提供更加智能化、便捷和舒适的电风扇使用体验。
智能风扇控制系统是一种集成了传感器、单片机和执行机构的智能化设备,通过对环境参数的实时监测和分析,实现对风扇运行状态的智能控制。
下面将介绍智能风扇控制系统的设计原理和方法,以及系统的实现步骤。
一、设计原理智能风扇控制系统的设计原理基于环境参数的感知和控制策略的实施。
系统通过传感器采集环境中的温度、湿度等参数,经过单片机进行数据处理和决策,最终控制风扇的速度和运行状态,以提供舒适的环境。
二、系统组成1. 传感器模块:包括温湿度传感器、光敏传感器等,用于采集环境参数数据。
2. 控制模块:使用单片机作为控制核心,负责接收传感器数据、执行控制算法并控制风扇运行。
3. 执行模块:通过电机驱动电路控制风扇的转速和运行状态。
4. 显示模块:液晶显示屏或LED显示模块,用于显示环境参数和风扇状态。
三、系统功能1. 自动调速:根据环境温度和湿度实时调整风扇的转速,保持舒适的环境条件。
2. 光敏控制:根据环境光照强度调整风扇的开启和关闭,节约能源。
3. 远程控制:通过蓝牙、Wi-Fi等通信模块,实现手机App控制风扇的开关和调速。
4. 定时开关:设置定时开关功能,根据用户需求自动控制风扇的启停时间。
四、实施步骤1. 传感器连接:将温湿度传感器、光敏传感器等传感器连接至单片机的模拟输入引脚。
2. 程序设计:编写单片机程序,包括数据采集、控制算法、显示控制等功能的实现。
3. 硬件连接:按照设计需求,将单片机、传感器、执行模块、显示模块等连接至一块PCB板上。
4. 调试测试:将控制系统连接至风扇,进行系统调试和测试,验证系统功能和稳定性。
5. 功能优化:根据测试结果对控制算法进行优化,提高系统的响应速度和稳定性。
通过以上设计和实施步骤,我们可以完成一个智能风扇控制系统的设计和制作。
这样的系统不仅可以提供更加便捷的使用体验,还可以节约能源并提高舒适度,具有广泛的应用前景和市场需求。
希木通过这样的智能控制系统设计,可以为更多领域的智能化设备开发奠定基础。
智能温控电风扇的设计随着科技的不断进步,智能家居产品已经成为人们生活中必不可少的一部分。
智能温控电风扇作为智能家居中的一种重要产品,也得到了越来越多消费者的青睐。
它不仅具有传统电风扇的功能,还能通过智能温控技术实现更加智能化、节能化的使用体验。
一、设计理念智能温控电风扇的设计理念主要包括以下几点:节能环保、智能化、舒适体验。
1. 节能环保:智能温控电风扇采用节能环保的电机和材料,可以降低能源消耗,减少对环境的影响,符合现代社会对于低碳环保的要求。
2. 智能化:智能温控电风扇配备智能温控系统,可以通过传感器探测室内温度,并自动调整风速和摆风角度,以达到更加舒适的使用效果。
3. 舒适体验:智能温控电风扇设计注重用户体验,不仅外观时尚美观,而且操作简便,能够为用户打造更加舒适的生活环境。
二、外观设计智能温控电风扇的外观设计以简约时尚为主,采用优质的材料制作,经过精细的工艺处理,使得整体外观更加美观大气,符合现代家居的装饰风格。
1. 外壳材质:外壳采用高质量的塑料材料,加入抗紫外线的成分,具有较好的耐用性和耐高温性能。
2. 颜色搭配:为了满足不同消费群体的需求,外观设计会采用多种流行色彩的组合,使得整体外观更加时尚个性。
3. 结构设计:在结构设计上,智能温控电风扇会考虑用户的使用习惯和便利性,例如摇头式设计、可调节高度设计等,以满足用户对于风扇使用的各种需求。
三、技术参数1. 功率:智能温控电风扇的功率一般在30W-50W之间,具有较高的风力性能,能够满足不同用户对于风力的需求。
2. 风速调节:智能温控电风扇可根据室内温度自动调节风速,也可手动调节多档风速,满足用户根据实际需要调节风速的需求。
4. 静音设计:智能温控电风扇在设计上考虑到用户的舒适度,具有较低的噪音水平,不会影响用户的休息和工作。
四、智能化功能1. 远程控制:通过手机APP,用户可以随时随地实现对智能温控电风扇的控制,无需亲自到现场调节。
智能温控电风扇的设计随着科技的发展和生活水平的提高,人们对于居家生活品质的要求也越来越高。
夏日炎炎,炎热的天气让人难以忍受,电风扇成为家庭不可或缺的电器之一。
而随着智能科技的不断进步,智能温控电风扇成为了市场上备受关注的产品。
那么,什么是智能温控电风扇呢?它又是如何设计的呢?接下来我们就来深入探讨一下关于智能温控电风扇的设计。
智能温控电风扇是指能够自动感应环境温度,并根据温度变化自动调节风速、风向等参数的电风扇。
智能温控电风扇不仅具有传统电风扇的降温功能,还能够通过智能技术实现远程操控,定时开关等功能,大大提高了用户的使用体验。
在设计智能温控电风扇时,首先需要考虑的是传感技术的运用。
智能温控电风扇需要能够准确感知环境温度变化,因此需要搭载高精度的温度传感器。
通过温度传感器采集到的环境温度数据,电风扇能够实现自动调节风速的功能,从而达到更好的降温效果。
还可以通过传感器采集到的数据来实现远程监控和智能控制,让用户可以随时随地通过手机或其他智能设备来操控电风扇的开关、风速等参数,极大地提高了用户的便利性。
在智能温控电风扇的设计中,还需要考虑到机械结构和风道设计。
智能温控电风扇需要能够根据用户需求自动调节风向和风速,因此在机械结构设计上就需要更加灵活多变。
通过采用可调节风向的设计以及多档风速的设置,可以实现电风扇的智能风向和风速调节功能,为用户提供更加个性化的使用体验。
对于风道的设计也需要注重,要确保电风扇在调节风向和风速的依然能够提供稳定而舒适的风量,不引起用户的不适感。
智能温控电风扇的设计还需要考虑到节能环保和安全性。
在现代社会,人们对于能源的节约和环保意识日益增强,因此在电风扇设计中需要注重节能性能的提升。
通过采用高效的风机设计以及智能温控技术,可以有效降低电风扇的能耗,实现节能环保的目的。
电风扇作为家用电器,安全性也是设计中需要重点考虑的因素之一。
在电路设计上需要加入过载保护、过热保护等安全机制,确保用户在使用过程中不会受到电风扇的安全隐患。
2013年春季开放性实验题目名称: 智能风扇调速器设计 院系名称: 电气工程学院专业班级: 电气F1102学生姓名: ***学 号: ************指导教师: **目录成绩:评语:指导老师签名:日 期:目录1 系统概述 (4)1.1 AT89C51单片机简介 (4)1. 2 本设计任务和主要内容 (4)2方案论证 (4)2.1 系统总体设计 (5)2.2传感器部分 (5)2.3主控制部分 (6)2.4调速方式的选择 (6)2.5温度控制模块设计 (6)2.6显示电路的设计 (7)3 硬件设计 (7)3.1 系统的原理方框图 (7)3.2 元器件选型 (8)3.3 硬件主电路 (11)4 软件设计 (14)4.1 软件设计思想及主流程 (14)4.2 流程框图及关键代码 (15)5系统调试 (29)5.1 硬件测试 (29)5.2 软件测试 (30)5.3 整体测试 (31)设计心得 (32)参考文献 (33)1 系统概述1.1 AT89C51单片机简介传统电风扇多采用机械方式进行控制,功能少,噪音大,各档的风速变化大。
随着科技的发展和人们生活水平的提高,家用电器产品趋向于自动化、智能化、环保化和人性化,使得由微机控制的智能电风扇得以出现。
AT89C51单片机提供以下标准功能:4K字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时、计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51单片机可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU 的工作,但允许RAM,定时、计数器,串行通行口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
1. 2 本设计任务和主要内容本文以AT89C51单片机为核心,通过数字温度传感器对外界环境温度进行数据采集,从而建立一个控制系统,使电风扇随温度的变化而自动调节档位,实现“温度高、风力大、温度低、风力弱”的性能。
另外,通过红外发射和接收装置及按键实现各种功能的启动与关闭,并且可对各种功能实现遥控,用户可以在一定范围内设置电风扇的最低工作温度,当温度低于所设置温度时,电风扇将自动关闭,当高于此温度时电风扇又将重新启动。
本设计主要内容如下:(1)风速设为从低到高共5个档位,可由用户通过键盘和遥控手动设定。
(2)每当温度降低2℃,则电风扇风速自动下降一个档位。
(3)每当温度升高2℃,则电风扇风速自动上升一个档位。
(4)用户可以设定电风扇最低工作温度,当低于该温度时,电风扇自动停转。
二、方案论证传统电风扇供电采用的是220V交流电,电机转速分为几个档位,通过人工手动调整电机转速达到改变风速的目的,亦即,每改变一次风力,必然有人参与操作,这样就会带来诸多不便。
本文介绍了一种基于AT89C51单片机的智能电风扇调速器的设计,该设计巧妙利用红外线遥控技术、单片机控制技术、无级调速技术和温度传感技术,把智能控制技术应用于家用电器的控制中,将电风扇的电机转速作为被控制量,由单片机分析采集到的数字温度信号,再通过可控硅对风扇电机进行调速。
从而达到无须人为控制便可自动调整风速的效果。
2.1 系统总体设计图1 系统总体结构框图经过详细分析和实现难度对比有以下基本理论依据:2.2传感器部分方案一:采用热敏电阻采用热敏电阻,可满足40摄氏度至90摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的。
而且在温度测量系统中,采用单片温度传感器,比如AD590,LM35等.但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使得测温装置的结构较复杂.另外,这种测温装置的一根线上只能挂一个传感器,不能进行多点测量.即使能实现,也要用到复杂的算法,一定程度上也增加了软件实现的难度。
方案二:采用DS18B20温度传感器采用DS18B20数字温度传感器。
DS18B20数字温度传感器芯片是以9位数字量的形式反映器件的温度值。
DS18B20数字温度传感器通过一个单线接口发送或接受信息,因此在中央微处理器和DS18B20之间仅需一条连接线(加上地线)。
用语读写和温度转换的电源可以从数据线本身获得,无需外部电源。
它可以直接将模拟温度信号转化为数字信号,降低了电路的复杂程度,提高了电路的运行质量。
综合考虑,选择方案DS18B20进行温度测量。
2.3主控制部分方案一:采用SPCE061A单片机采用凌阳16位的SPCE061A单片机,处理速度较慢,内置2K SRAM,32K FLASH,要实现稍大的存储量受到限制,而如果扩展大量的外围电路的话,则降低了系统的可靠性,消耗了大量的CPU资源。
方案二:采用AT89C51单片机AT89C51是美国ATMEL公司生产的低电压、高性能CMOS8位单片机,片内4bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置用8位中央处理器(CPU)和Flash存储单元,功能强大。
AT89C51单片机可灵活应用于各种控制领域。
综合考虑,选择AT89C51单片机作为主控制器。
2.4调速方式的选择方案一:采用PWM控制PWM是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量。
但前期投入大。
方案二:采用可控硅控制实际中通过控制双向可控硅的导通角,使输出端电压发生改变,从而使施加在电风扇的输入电压发生改变,以调节风扇的转速,实现各档位风速的无级调速。
从本设计要求综合考虑实际中选择方案二。
2.5温度控制模块设计方案一:采用红外遥控器+红外遥控解码:红外遥控器的使用大大方便了用户,使他们可以在一定范围内实现对本系统的远程控制,符合当代人的生活习惯,而且红外遥控器的技术已经相当成熟,使用也比较方便。
方案二:用键盘:假如使用键盘,用户就只能走进本控制系统去控制该系统已完成自己想要的操作。
此方案设计与制作比较简单,且能完全完成既定功能。
综合各方面因素,采选用方案二。
2.6显示电路的设计方案一:LCD1602液晶屏:LCD1602液晶屏是16*2的字符型液晶,可以显示英文26个字母的大小写,阿拉伯数字0—9,及一些简单的符号。
该液晶屏操作简单,显示功能强大。
方案二:数码管:虽然数码管的显示位数有限,且只能显示一些简单的字符。
但是在本课程设计中,所需要的数码管不多,少量数码管即可符合设计要求,估可采用。
方案三:LCD12864液晶屏:该液晶屏是比LCD1602液晶屏更先进的液晶,可以显示图片信息,同样可以完成本设计系统的需要。
但是该液晶屏相对比较贵。
综上所述,我们选择了数码管作为显示模块。
综上所述的论证,通过焊接、接线、编程等工作就可以制作智能调速风扇。
3 硬件设计3.1 系统的原理方框图本系统由集成温度传感器、单片机、LED数码管、发光二极管、直流电机及一些其他外围器件组成。
使用具有价廉易购的AT89C51单片机编程控制,通过修改程序可方便实现系统升级。
系统的框图结构如下:图2 系统原理框图3. 2 元器件选型经过案例分析选择以下元器件并给出其基本原理3.2.1 DS18B20数字温度传感器DS18B20数字温度传感器采集现场温度,将测量到的数据送入AT89C51单片机的P3.3口,经过单片机处理后显示当前温度值,并与设定温度值的上下限值作比较,若高于设定上限值或低于设定下限值则控制电机转速进行自动调整。
--图3 DS18B20温度计原理3.2.2 AT89C51的引脚功能VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P0口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH 编程和校验时,P1口作为低八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
3.2.3 双向可控硅双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。
其英文名称TRIAC即三端双向交流开关之意。
3.2.4 数码管数码管显示电路采用共阳极四位数码管以及9012三极管作为驱动数码管发亮。
其连接方式如下:应用单片机P0口连接八段数码管,用P1口的P1.0—P1.3四个端口作为数码管的片选信号输出端口,其中要用9012(PNP型)三极管做驱动。
为了防止烧坏数码管,所以给数码管各段各加一个50k的限流电阻。
要显示的数据通过P0口送给数码管显示,通过P1口的P1.0—P1.3四个端口分别对数码管进行位选,事实上数码管是间断被点亮的,只是其间断时间十分短,扫描期周在20ms以下,利用人眼视觉暂留,我们基本看不出它们的闪烁。
图4 数码管显示电路3.2.5 键盘控制元件键盘是人机交互的重要部件。
本部件主要便于用户对电风扇进行操作,使用户只要进行一些简单的操作,就能实现所需的全部功能,键盘操作模块在电风扇底座部分有一个3 x 3小矩阵键盘,可以进行风的强度、类型、定时等系统设置,按键电路图如图6所示。
图5 按键控制原理图3.3 硬件主电路3.3.1 温度采集、控制模式设定以及复位电路温度采集电路主要是由DS18B20构成,它可以把采集的温度数据转化成二进制数,经过单片机处理后输出送数码管显示。