关于土力学理论发展的一些看法_兼与杨光华同志商榷
- 格式:pdf
- 大小:974.62 KB
- 文档页数:7
土力学理论研究中的两个问题
沈珠江
【期刊名称】《岩土工程学报》
【年(卷),期】1992(14)3
【摘要】岩土工程学报刊载了李广信和杨光华关于本构模型理论的文章,引起了广大读者的兴趣,并进行热烈的讨论。
笔者拜读了杨光华的“岩土类材料的多重势面
弹塑性本构模型理论”一文,也拜读了李广信,陈生水,杨代泉的讨论文稿,觉得大部分讨论意见是正确的,当然也有值得商榷之处。
这里不想对各种意见进行具体评论,只
就本人长期从事土力学理论研究工作的经验谈两点体会,也许对青年学者有所帮助。
【总页数】2页(P99-100)
【关键词】土力学;弹塑性;本构模型;理论
【作者】沈珠江
【作者单位】南京水利科学研究院土工所
【正文语种】中文
【中图分类】TU43
【相关文献】
1.当前中国新闻学理论研究中的两个问题——再论新闻定义及新闻媒体和政府之间的舆论监督关系 [J], 杨幸芳
2.徐德江的索绪尔语言理论研究中的两个问题 [J], 聂志平
3.岩土力学试验中的两个问题讨论及其应用 [J], 张年学;周瑞光;成彬芳
4.当前中国新闻学理论研究中的两个问题--再论新闻定义及新闻媒体和政府之间的舆论监督关系 [J], 闫彦
5.关于马克思世界历史理论研究中的两个问题——兼论马克思对“西方中心论”的批判 [J], 叶险明
因版权原因,仅展示原文概要,查看原文内容请购买。
关于岩土力学与工程的发展问题杨光华(广东省水利水电科学研究所广州510610摘要:本文主要针对目前岩土力学与工程存在需要解决的一些问题,岩土力学与工程的特点及其进一步的发展问题提出一些个人看法,供同行参考。
关键词:岩土力学工程发展中图分类号:TU431 文献标识码:A 文章编号:1008-0112(200006-0015-031 岩土力学理论发展的特点岩土力学应建立于岩土材料的力学特性基础上,经典固体力学理论建立于金属材料的力学特性基础上,以土体材料为例,其与金属材料显然存在很大的区别,如土体抗拉强度很低,拉压强度不同,这就涉及到传统弹性理论解在土介质中的适用性问题。
就材料的强度而言,其与金属介质明显不同的是与围压密切相关,由此发展了著名的库仑强度理论;在变形方面,土体的本构特性要比传统的金属材料复杂,经典金属的本构理论在用于表述土体材料时,明显存在局限性,如剪胀、塑性与静水压力相关等的特点是金属介质所没有的,因而需要发展适合于岩土材料的本构理论;在材料组成方面,土是三相体,受力后的变形存在三相共同作用的问题,因而其基本方程更复杂,由此而发展的太沙基有效应力原理是土力学发展的里程碑,比奥固结理论是表述饱和土中水、土共同作用较为完善的基本方程。
在岩石力学中,岩体中存在节理的变形可以说是岩体力学的一个主要特征,因而产生了节理单元。
由此可见,岩土力学的发展是建立于岩土材料的特点基础上的,传统固体力学的理论可以借用,但不等于照搬,只有利用现代数学力学知识,结合岩土材料的力学特点,创造性地解决岩土工程中的力学问题,岩土力学理论才会取得新的发展。
2 土体的稳定性问题土体的稳定性主要有三种类型,即地基的强度、边坡稳定、挡土结构的土压力。
目前的研究三者是不统一的,地基的强度通常按弹性理论求应力,按塑性滑移场理论求其极限强度,而边坡稳定通常是采用滑弧稳定分析方法,即搜索沿某一滑动面滑动时抗滑力与下滑力之比为最小的解;而土压力中朗肯土压力是依据某一点的应力达到极限平衡的条件而确定,库仑土压力则是依据平面滑动体的力的平衡而确定。
土力学的研究内容与学科发展土力学是一门广泛的工程学科,研究内容涉及物理力学、土壤力学、岩石力学等多个学科,是建设基础设施、土地开发等工程建设的重要基础。
土力学也是与土木工程、水利工程、测绘等相关的综合学科。
这门学科的发展有很多应用,其发展潜力巨大,为工程建设提供了重要的理论支持。
一、土力学的研究内容土力学研究内容在于调查、理解土壤及其他地质基础土体下受载荷时的变形及稳定性。
其研究内容可分为物理力学研究、土壤力学研究、岩石力学研究等。
1.物理力学研究物理力学研究是土力学的基础性研究,它研究土体及其他地质基础土体的力学性质,例如土体的抗压强度、抗拉强度、抗剪强度等,及其细节机理。
2.土壤力学研究土壤力学研究是土力学的主要研究方向,它研究土体在地基受载荷时的变形及稳定性,主要研究内容包括地基沉降、地下水位变化、土壤渗流、地震效应等。
3.岩石力学研究岩石力学研究是土力学的重要组成部分,它研究的是岩石的力学性质及其受载荷变形及稳定性,主要研究内容包括岩石的抗压强度、抗剪强度、弹性模量等,以及岩石体系受载荷时的应力变形特性。
二、土力学发展1.早期发展土力学的研究始于19世纪末期,当时,研究者在相关实验研究中发现,土体的应力变形特性与材料密度、湿度、水分等有关,而且一定的外力作用下土体会产生沉降。
2.中期发展20世纪以来,土力学的研究有了显著的进展。
根据物理力学的原理,研究者们将土壤、岩石力学的研究内容纳入土力学的研究范畴,并将土力学运用于基础设施的建设。
3.近期发展近年来,随着科学技术的发展及土力学研究的深入,土力学已经成为一门综合性学科,它结合了结构力学、流体力学等多种科学技术,应用于建筑物及桥梁、堤坝等工程建设当中,为建设提供了重要的理论支持。
三、土力学在工程建设中的应用1.基础设施建设中的应用土力学可以用于设计基础设施,例如隧道、桥梁、堤坝以及其他地下建筑物的设计和施工,可以根据不同的基础土体条件评估桩基、回填土等的性能,确定设计参数及改进措施,保证建设物的安全及稳定。
《土力学》在线培训课程学习体会在网络课程这样综合的平台上近一个月的学习.对《土力学》这门课有新的认识.也感受到了学科带头人李广信教授的授课魅力.现将本人学习李广信教授《土力学》课程的的几点体会分享一下。
在听课过程中印象最深刻的就是李广信教授对土力学岩土工程问题的哲学思考。
这种科学与哲学结合起来理解和学习的方式是之前没有接触过的.觉得很新颖.很立体。
他认为哲学源于岩土.岩土充满了哲学。
分析时他提出岩土是人类最早接触和最早使用的材料.旧、中、新石器时代的标志是人类使用岩土材料的水平;几大古文明(古希腊、古希伯来、古印度、两河文化、印第安人、古中国)关于人类起源的传说.不约而同地认为人是上帝(神)用土创造的。
而且还指出土层的厚度与文明、政治、文化、经济的发展成正比;人类耕耘营造.生生不息.建造了宏伟的楼堂殿宇、大坝长堤、千里运河、万里长城.创造了一个个璀璨夺目的古代和现代文明.岩土材料以其与人类间悠久而密切的历史渊源而出现在哲学命题中。
根据自身所学所感的总结.李广信教授归纳出:一方面岩土作为非连续性、多相性和古老的天然材料.形成其性质的复杂性和极大的不可预知性;另一方面岩土工程是充满了不确定性.因而充满了风险与挑战.也就包含丰富的哲学命题。
从哲学的高度认识岩土、学习岩土、进行岩土工程实践具有新时代的意义和实践价值。
哲学的核心是“求真”和“求知”.它的特点是思辨性、解释性和概括性。
大师在讲课的时候就像在谈人生.李广信教授用哲学观点来分析解释和阐明土力学原理.对土力学学科中复杂的本质特征和核心内容进行形象化的解说.极大的启发了我的思路.引导我从哲学角度思考土力学的科学问题.就像李老师授课时所讲.我们现在研究或看待问题时要整体宏观的把握问题.即是很难.但是为我们的学习和研究是非常有帮助的。
学会运用哲学思想考虑科学问题的方法.不仅有助于我们提高教学水平.更有益于我们的启迪我们的科研思路。
人类要想在大自然中生存.就必须顺应自然.它是一个和谐体.会排斥一切不符合和谐发展的因素。
土力学理论的发展和面临的挑战摘要:土力学是一门实践性很强的学科,研究对象为工程建设活动密切相关的土体,被广泛应用于基础设计、挡土构筑物、土工建筑物、水工建筑物(土石坝)、边坡、基坑及隧道等设计中,是土木工程的重要分枝,有其固有的特点和规律。
鉴于此,文章主要针对土力学理论的发展和面临的挑战进行了分析,以供借鉴。
关键词:土力学理论;发展;面临问题;发展方向1导言土力学是土木工程的重要分支,有其固有的特点和规律。
文章分析了当前并未形成严格、统一与完备的土力学理论、处理非饱和土问题方式不完善、多种环境载荷效果下,多场耦合一致与完备的理论并未构成等问题;并指出为了未来发展的预测,希望为土力学理论未来的发展提供有利论证。
2土力学理论的发展土力学发展可分为几个阶段:18世纪中叶以前土力学发展以感性认识为主,在此阶段涌现重要影响的建筑物。
比如,中国的万里长城、京杭大运河及大型宫殿等伟大建筑物;古埃及和巴比伦农田水利工程;古罗马的桥梁工程和腓尼基的海港工程等。
第二阶段始于工业革命时期,在此期间,提出了至今仍在广泛应用的土力学理论。
比如,法国科学家库仑提出的土的抗剪强度理论和土压力理论;法国的Darcy提出的渗透定律;法国的布辛内斯克提出的半无限弹性体中应力分布的计算公式。
通过工程实践的积累,对土的强度、土的变形和土渗透性等课题做了初步的理论探讨。
第三阶段始于20世纪初,通过巨大工程的兴建、地基勘探、土工试验、监测及计算机技术的发展,促使人们发展理论研究并系统地总结实验成果,特别是太沙基提出的有效应力原理,使土力学成为一门独立学科的重要标志。
第四阶段。
此时,最突出的工作是用新的非线性应力应变关系代替过去的理想弹塑性体。
随着应力应变模型建立,以此为基础建立了新的理论体系。
1957年,D.C.Drucker提出了土力学与加工硬化塑性理论,对土的本构模型研究起了很大的推动作用。
许多学者纷纷进行研究,并召开多次学术会议,提出了各种应力应变模型。
土力学心得体会改革教学方法是深化教学改革的重要内容,应根据学生的特点和需要,因材施教;采用新的现代教育技术,如多媒体技术,把一些在课堂上难于表达清楚的问题,例如土力学模型、模拟实验、土力学原理、工程情况等,通过多媒体技术演示出来,使教学过程生动形象,让学生易于理解掌握,从而激发学生的学习兴趣,以提高教学效果。
在保留课堂授课、课下作业和答疑等传统的教学方法的基础上,通过“项目工程教学法”的运用,达到能够解决实际工程项目知识储备的良好效果,通过工学结合,突出能力培养。
开发校本教程,取自于工,用之于学具有工学结合特点的教材在编写和选用上不同于普通高校的教材,其内容既要有校内的理论和实践内容,又要有企业生产实践的指导性内容,即取自于工,用之于学。
教材内容要吸纳本专业领域的最新科技成果,反映区域经济的特点,要充分体现实用性、职业性、针对性、及时性及直观性。
具体到《土力学与地基基础》课程,其重点放在基本定理的理解与应用,淡化理论与推导,同时加强土力学与后续课程的联系及在工程实际中的运用。
开发校本教程,在课程的难度和广度方面,遵循“实用为先、够用为度”的原则。
教学内容的更新与重组主要体现在删除陈旧内容、增加新内容以及对教学内容重新编排与组合等方面。
《土力学与地基基础》课程教学体系,分土力学和地基基础两个部分,包括理论教学与实验实训教学内容。
在理论教学方面,考虑专业教学需要和实际工程对土力学理论的要求,将传统理论教学内容科学重组、有机整合,形成三个知识模块,分别是变形问题模块、强度问题模块、渗透稳定问题模块。
其中,变形问题模块研究土的变形性质、土体应力计算及沉降计算方法等内容;强度问题模块研究土的强度性质、地基承载力计算、土压力计算、土坡稳定计算等内容;渗透稳定问题模块研究土的渗透性质和有关渗透稳定性等内容。
理论教学内容的整合优化和知识模块的划分,使土力学看似分散无序的内容变得系统、连续、协调,有助于学生对土力学知识体系的把握,有助于学生对地基基础设计内容的理解。
土力学的回顾1) 土力学学科的形成一般认为,土力学自太沙基在1925年发表《土力学原理》后才成为一门独立的学科。
但是,关于土的理论并非在l925年才有。
实际上,1925年以前,土力学的某些规律和理论已经被发现、创立和运用。
按太沙基的说法,土力学始于1776年库仑土压力理论的发表(比1925年早149年)。
此外,反映水在多孔介质中流动规律的达西定律、描述土体极限平衡状态的理论等等也都是土力学早期理论上成就的突出例子。
太沙基认为,就土力学原理来说,它是两门早已确立的工程学科分科——材料试验和应用力学的派生物。
可见土力学不仅来自自身的实践,而且也充分地借鉴了相关学科的成就。
不难看.在太沙基之前,人们对土实际上早已有相当的认识,提出了诸多关于土的理论和规律。
但当时这些理论和规律还是零散的、不系统的,对土的认识也还仅仅是局部的或者是唯象的。
可以说当时土力学的发展还缺乏许多反映土的本质和真实面目的东西,因此尚未形成一门独立的学科。
太沙基主要功绩之一,是他将当时已有的孤立的规律、原理或理论,按土的特性将它们联系和系统化起来,总结提出了土的3个特性,即“粘性”、“弹性”和“渗透性”,并且凭借丰富的实践经验和深邃的洞察力发展了土力学原理,拓宽了土力学领域,使之形成一门独立的学科。
其中有几个重要的贡献是特别值得提出的。
首先他强调土的分类,并依据其物理力学性质将“粘土”和“砂土”区别开来。
他认识到“砂土”的强度属纯摩擦材料的强度,而“粘土”的强度则是其“粘性”所致。
虽然用现在的眼光看,这样的认识似乎太简单化,但它毕竟是从土本身特性出发的,不再是简单地借用别的学科的原理。
这样,土力学就具有了自己的个性;其次是建立了有效应力原理和一维固结微分方程。
如果说一维固结微分方程可能与太沙基曾作为热传导教授的经历有关,从而带有热传导方程的某些痕迹的话(诚然,这种借鉴别的学科成就来丰富本学科内容的做法也是学科发展的必由道路之一),那么有效应力原理则完全是从土的本性出发,确切地反映了土的力学性状本质的。
浅谈土力学的发展过程及发展趋势浅谈土力学的发展过程及发展趋势摘要:本文主要介绍了土力学的发展过程以及未来的发展趋势。
通过查找相关资料,简要总结了土力学的发展历史,同时分析了土力学发展的现状,提出了土力学未来的发展趋势。
关键词:土力学发展过程趋势一、引言随着城市建设的发展,随着人们生活质量的提升,人类对居住环境的要求越来越高。
随着城市范围的扩大,城市建设用地越来越紧张,迫使人类不得不向高空、向地下、向沟塘或废墟上发展。
这样就必然促使人们对土有更深的了解,对土工处理技术的质量、方法、效益要求越来越严格,无论是地基处理技术还是边坡支护技术以及土坡突破治理技术等都要有新的发展。
二、发展过程早在新石器时代,人类已建造原始的地基基础,西安市半坡村遗址的土台和石础即为一例。
公元前2世纪修建的万里长城,后来修建的南北大运河、黄河大堤以及宏伟的宫殿、寺庙、宝塔等建筑,都有坚固的地基基础,经历地震强风考验,留存至今。
隋唐修建的河北省赵州桥,为世界最早最长的石拱桥,全桥仅一孔石拱横越洨河,净跨达37.02m。
此石拱桥两端主拱肩部设有两对小拱,结构合理,造型美观,节料减重,简化桥台,增加稳定性,桥宽8.4m,桥下通航,桥上行车。
桥台位于粉土天然地基上,基地压力达500-600kpa,从1390年以来沉降与位移甚微,至今安然无恙。
公元989年建造开封开宝寺木塔时,预见塔基土质不均会引起不均匀沉降,施工时特意做成倾斜,待沉降稳定后塔身正好竖直。
此外,在西北地区黄土中大量建窑洞,以及采用料石基垫、灰土地基等,积累了丰富的地基处理经验。
18世纪中期以前﹐人类的建筑工程实践主要是根据建筑者的经验进行的。
18世纪中叶至20世纪初期﹐工程建筑事业迅猛发展﹐许多学者相继总结前人和自己实践经验﹐发表了迄今仍然行之有效的﹑多方面的重要研究成果。
例如1773年法国科学家库仑发表了土压力滑动楔体理论;1776年库仑根据一系列土的强度试验创立了著名的土的抗剪强度库仑定律﹔1856年法国的达西在研究水在砂土中渗透的基础上提出了著名线性渗透定律﹔1857年英国的朗肯分析半无限空间土体在自重作用下达到极限平衡状态时的应力条件﹐提出了另一著名的土压力理论﹐与库仑理论一起构成了古典土压力理论﹔1885年法国的布辛奈斯克提出的半无限弹性体中应力分布的计算公式﹐成为地基土体中应力分布的重要计算方法﹔1900年德国的莫尔提出了至今仍广泛应用的土的强度理论﹔19世纪末至20世纪初期瑞典的A.M.阿特贝里提出了黏性土的塑性界限和按塑性指数的分类﹐至今仍在实践中广泛应用。
2024年土力学学习心得与总结土力学是土木工程中的重要学科之一,研究土壤的物理力学性质以及其在工程中的应用。
经过一学期的学习,我对土力学有了更深入的了解,并积累了一定的学习心得。
以下是我对____年土力学学习的心得和总结,希望能够对后来的学习者有所帮助。
首先,在学习土力学过程中,我发现理论和实践密不可分。
土力学是一门应用性很强的学科,理论知识只有与实际工程相结合才能真正发挥其价值。
因此,在学习过程中,我注重理论与实践相结合的学习方法,通过案例分析和实验验证,深入理解和应用土力学的基本理论。
其次,土力学是一门需要动手实践的学科。
在课堂上学习的知识只是一个基础,要想真正掌握土力学,需要进行实验室和野外的实践。
通过与同学们一起进行实验操作,我学会了如何正确使用实验仪器,了解了土壤的力学性质在不同条件下的变化规律。
在野外实践中,我学会了如何进行土壤取样和力学性质测试,对于土壤的结构和性质有了更直观的了解。
实践让我更加深入地理解土力学的内容,也让我对于工程实践中土力学的应用有更好的认识。
再次,理论知识的掌握是学习土力学的基础。
土力学作为一门理论学科,理论知识的掌握是我们应该重视的部分。
在学习过程中,我通过听课、课本阅读和参考其他专业书籍,系统地学习了土力学的相关理论知识。
特别在总结和复习阶段,我注重总结和整理知识框架,对于土力学的基本理论进行了全面的回顾。
通过理论知识的学习,我掌握了土壤的物理力学性质、土壤的水力学性质以及土壤侧限状态等核心概念。
这些理论知识为后续的工程实践提供了坚实的基础。
此外,在学习过程中,我注重与同学们的合作学习。
土力学是一门需要实践与理论相结合的学科,而这样的学习方式对于个人学习而言有一定的局限性。
通过与同学们一起进行案例分析和实践操作,我不仅对于土力学的理论知识有更深入的了解,而且更加注重团队合作和沟通的重要性。
在小组讨论中,我和同学们共同解决问题、共同分享经验,这种互动的学习方式让我们互相促进,共同进步。