八年级数学下册知识点总结(比较全)
- 格式:doc
- 大小:325.50 KB
- 文档页数:11
初二数学下知识点总结
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。 2、一次函数的图像
所有一次函数的图像都是一条直线。 3、一次函数、正比例函数图像的主要特征:
一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。(如下图) 4. 正比例函数的性质
一般地,正比例函数kx y =有下列性质:
(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。 5、一次函数的性质
一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。解这类问题的一般方法是待定系数法。
四边形
3.平行四边形的性质:
因为ABCD 是平行四边形
⎪⎪⎪⎩⎪⎪⎪⎨⎧.
54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(
5.矩形的性质: 因为ABCD 是矩形
⎪⎩⎪
⎨⎧.3;
2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(
6. 矩形的判定:
⎪⎭⎪
⎬⎫
+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形ABCD 是矩形.
A
B
D
O
C
A D
B
C
A D
B
C
A D
B C
O
A
D B C
O
7.菱形的性质: 因为ABCD 是菱形
⎪⎩
⎪
⎨⎧.321角)对角线垂直且平分对()四个边都相等;
(有通性;)具有平行四边形的所( 8.菱形的判定:
⎪⎭
⎪
⎬⎫
+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形ABCD 是菱形.
9.正方形的性质: 因为ABCD 是正方形
⎪⎩
⎪
⎨⎧.321分对角)对角线相等垂直且平(角都是直角;
)四个边都相等,四个(有通性;)具有平行四边形的所( C
D
A
B
(1)
A B
C
D O
(2)(3)
10.正方形的判定:
⎪⎭
⎪
⎬
⎫
++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD 是正方形.
(3)∵ABCD 是矩形
又∵AD=AB
∴四边形ABCD 是正方形
11.等腰梯形的性质: 因为ABCD 是等腰梯形
⎪⎩
⎪
⎨⎧.321)对角线相等(;
)同一底上的底角相等(两底平行,两腰相等;)(
C
D
B
A
O
C
D
B
A
O
A
B
C D
O
C D A
B
12.等腰梯形的判定: ⎪⎭⎪
⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等
)梯形(321四边形ABCD 是等腰梯形
(3)∵ABCD 是梯形且AD ∥BC ∵AC=BD
∴ABCD 四边形是等腰梯形
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于
这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
A B
C
D O
平行四边形
矩形
菱形正
方
形