递推数列的几种解
- 格式:ppt
- 大小:476.50 KB
- 文档页数:18
递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
常见递推数列通项的九种求解方法(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n na a f n +=+(()f n 可以求和)−−−−→解决方法累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。
在数学中,有几种方法可以求解这类问题。
一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。
这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。
k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。
解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。
二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。
该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。
解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。
利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。
三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。
该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。
数列递推公式的九种方法1.等差数列递推公式:在等差数列中,相邻两项之间存在相同的差。
如果已知等差数列的首项为a1,公差为d,可以求得递推公式为an = a1 + (n-1)d,其中n为第n项。
2.等比数列递推公式:在等比数列中,相邻两项之间的比值相同。
如果已知等比数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。
3. 几何数列递推公式:几何数列是一种特殊的等比数列,其公比是常数项。
如果已知几何数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。
4. 斐波那契数列递推公式:斐波那契数列是一种特殊的数列,每一项都是前两项的和。
斐波那契数列的递推公式为an = an-1 + an-2,其中n为第n项,a1和a2为前两项。
5. 回型数列递推公式:回型数列是一种特殊的数列,它的每一项都是由周围的四个数字决定的。
回型数列的递推公式为an = an-1 + 8 * (n-1),其中n为第n项,a1为第一项。
6. 斯特恩-布洛特数列递推公式:斯特恩-布洛特数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的约数个数决定的。
斯特恩-布洛特数列的递推公式为an = 2 * an-1 - an-2,其中n为第n项,a1和a2为前两项。
7. 阶乘数列递推公式:阶乘数列是一种特殊的数列,它的每一项都是前一项的阶乘。
阶乘数列的递推公式为an = n * (n-1) * ... * 3 * 2 * 1,其中n为第n项,a1为第一项。
8. 斯特林数列递推公式:斯特林数列是一种特殊的数列,它的每一项都是由前一项和当前项之积的和决定的。
斯特林数列的递推公式为an = an-1 * n + 1,其中n为第n项,a1为第一项。
9. 卡特兰数列递推公式:卡特兰数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的乘积决定的。
卡特兰数列的递推公式为an = (4*n - 2) / (n + 1) * an-1,其中n为第n项,a1为第一项。
思路探寻求递推数列的通项公式问题是一类难度系数较大的问题,侧重于考查同学们的运算和推理能力.求递推数列的通项公式问题中的递推式多种多样,解答这类问题的关键是合理整合递推式,将问题转化为简单的、易于求解的数列问题.本文主要分析三类递推数列通项公式的求法.一、a n +1=qa n -1+d 型递推数列对于形如a n +1=qa n -1+d (q ≠1,d ≠0)的递推数列问题,我们一般采用待定系数法进行求解.在解题时,要先设出待定系数m ,使a n +1+m =q (a n −1+m ),然后将其与原递推式中对应项的系数相比较,建立含有待定系数的方程或方程组,解方程或方程组,求出待定系数的值,就能构造出一个等比数列{}a n +m ,再根据等比数列的通项公式就可以求出数列{}a n 的通项公式.例1.在若数列{}a n 中,a 1=1,a n +1=12a n +1()n ∈N +,求a n .解:令a n +1+m =12()a n+m ,则m =-2,所以{}a n -2是首项为-1,公比为12的等比数列,所以a n -2=-æèöø12n -1,即a n =-æèöø12n -1+2.该递推式属于a n +1=qa n -1+d 型,因此我们需从a n +1=12a n +1入手,运用待定系数法进行求解.二、a n +1=ca n +f ()n 型递推数列当遇到形如a n +1=ca n +f ()n (c ≠0)型的数列递推式时,一般要先将递推式变形为a n +1f ()n =ca nf ()n +1的形式,然后令a n f ()n =b n ,得到b n +1=c q b n +1q ,这样便将问题转化求a n +1=qa n −1+d 型递推数列的通项公式.运用待定系数法构造出等比数列便可解答出来.例2.在数列{}a n 中,a 1=1,a n +1=3a n +2n ()n ∈N +,求a n .解:由a n +1=3a n +2n得2∙a n +12n +1=3∙a n 2n +1,令b n =a n 2n ,则b n +1=32b n +12.由待定系数法得b n +1+1=32(b n +12),令c n =b n +1,则c n +1=32c n ,所以{}c n 是首项为c 1=b 1+1=32,公比为32的等比数列,所以c n =æèöø32n,b n =æèöø32n-1,即a n =2n ∙b n =32-2n .我们先通过换元,把分散的条件联系起来,让隐含的条件显露出来,将问题转化为求a n +1=qa n −1+d 型递推数列的通项公式.再运用待定系数法便可求出数列的通项公式.三、a n +1∙a n =ca n +1+da n 型递推数列对于形如a n +1∙a n =ca n +1+da n (c ≠0,d ≠0)递推数列,在求其通项公式时,我们先要在递推式的两边同时除以a n +1·a n ,得到c a n +da n +1=1,将问题转化为a n +1=qa n −1+d 型递推数列问题,再运用待定系数法求解即可.例3.已知数列{}a n 满足:a n ≠0,且a n =3a n -1a n -1+3()n ≥2,a 1=12,求数列的通项公式.解:在递推式a n =3a n -1a n -1+3的两边取倒数得1a n =1a n -1+13,所以数列{}a n 是首项为1a 1=2、公差为13的等差数列,所以1a n=2+()n -1∙13=13()n +5,所以a n =3n +5.我们先在递推式的两边取倒数,便可构造出首项为1a 1=2、公差为13的等差数列,再根据等差数列的通项公式求得数列的通项公式.虽然求递推式数列的通项公式问题的难度较大,但是我们只要掌握方法,善于整合数列的递推式,将问题转化为等比、等差数列问题进行求解,问题便能迎刃而解.在解题时,要抓住关键,重点分析数列的递推式,将其合理进行变形,如引入待定系数、取倒数、换元等,构造出等差、等比数列,根据等差、等比数列的通项公式进行求解.(作者单位:湖北省襄阳市南漳县第一中学)谈谈三类递推数列通项公式的求法石磊53Copyright©博看网 . All Rights Reserved.。
求数列递推表达式常用的八种方法1. 通项公式法(Explicit Formula Method)通项公式法是一种使用列中已知项的数值来构建一个递推表达式的方法。
根据数列的性质和规律,可以通过观察和找到一个数学模型来表示数列的通项公式。
该公式可以直接给出任意项的值,无需依赖于前面的项。
2. 递推关系法(Recurrence Relation Method)递推关系法是通过关系式来定义后一项与前面一项之间的关系。
可以根据已知项之间的关系来构建递推关系,从而求得数列的递推表达式。
递推关系可以是线性或非线性的,具体要根据数列的性质来确定。
3. 线性代数法(Linear Algebra Method)线性代数法是将数列看作一个向量,通过矩阵运算来求得数列的递推表达式。
可以利用矩阵的特征值和特征向量等性质来求解。
这种方法适用于一些特殊的线性数列,但对于非线性数列则不适用。
4. 拟合法(Curve Fitting Method)拟合法是通过数学函数来逼近数列的变化趋势,从而得到递推表达式。
可以选择不同的函数模型,如多项式、指数函数、对数函数等,并使用最小二乘法来拟合数列的数据点。
这种方法适用于不规律和随机的数列。
5. 差分法(Difference Method)差分法是通过数列中相邻项之间的差值来构建递推表达式。
可以通过一次差分、二次差分等方法来获得递推关系,进而求解数列的递推表达式。
这种方法适用于差分规律明显的数列。
6. 特殊性质法(Special Property Method)特殊性质法是根据数列的特殊性质来求解递推表达式。
可以利用数列的对称性、周期性、递增性、递减性等特点来构建递推关系。
该方法需要对数列的性质特别敏感,适用性较为有限。
7. 生成函数法(Generating Function Method)生成函数法是将数列看作一个形式幂级数,通过对生成函数进行操作来求解递推表达式。
可以利用生成函数的性质和运算法则来求得数列的递推关系,进而得到递推表达式。
几种由递推式求数列通项的方法介绍求数列通项通常可以通过递推式来实现,即通过之前的项推导出后一项。
下面介绍几种常见的方法:1.直接法:直接法是最基本的一种方法,即通过观察数列中的规律,找出递推式,然后根据递推式求解通项。
这种方法适用于简单的数列,如等差数列、等比数列等。
例如,求等差数列1, 3, 5, 7, ...的通项。
由观察可知,每一项与前一项的差值为2,即递推式为an = an-1 + 2、再根据首项a1 = 1,得到an = 2n-12.假设法:假设法是一种通过假设通项形式来求解递推式的方法。
通过猜测通项的形式,并将它代入递推式中,得到一个等式,再通过递推式和等式求解未知系数。
例如,求Fibonacci数列的通项。
观察Fibonacci数列的前几项0, 1, 1, 2, 3, 5, ...,可以猜测通项形式为an = A * φ^n + B * (1-φ)^n,其中A和B为待定系数,φ为黄金分割比。
将该通项代入Fibonacci数列的递推式an = an-1 + an-2,得到A = 1/√5,B = -1/√5、因此,Fibonacci数列的通项为an = (1/√5) * (φ^n - (1-φ)^n),其中φ约等于1.6183.代数法:代数法是通过代数运算来求解通项。
将数列的递推式变形为一个方程,再通过方程求解通项。
例如,求等比数列1, 2, 4, 8, ...的通项。
观察可知,每一项与前一项的比值为2,即递推式为an = 2 * an-1、变形方程为an = 2 * an-1,将an-1代入等式中得到an = 2^n。
因此,等比数列的通项为an =2^n。
4.积分法:积分法适用于一些特殊的数列,如等差递减数列、等比递减数列等。
通过对递推式进行积分,可以得到一个通项形式的积分表达式。
例如,求等差递减数列1, 4/3, 1, ...的通项。
观察可知,每一项与前一项的差值为-1/3,即递推式为an = an-1 - 1/3、对递推式进行积分得到通项的积分表达式∫an dn = ∫(-1/3) dn,即an = C - n/3,其中C为常数。