[教学课件]2018-2019版高中数学第二章解析几何初步2.3第1课时直线与圆的位置关系课件北师大版必修
- 格式:ppt
- 大小:4.15 MB
- 文档页数:31
2.1.3 两条直线的平行与垂直[学业水平训练]1.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.解析:l 1⊥l 2时,k 1k 2=-1,由一元二次方程根与系数的关系得k 1k 2=-b 2,∴-b 2=-1,得b =2.l 1∥l 2时,k 1=k 2,即关于k 的二次方程2k 2-3k -b =0有两个相等的实根,∴Δ=(-3)2-4×2·(-b )=0,即b =-98. 答案:2 -982.设a ∈R ,如果直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行,那么a =________.解析:当a =0时,l 1:y =12,l 2:x +y +4=0,这两条直线不平行;当a =-1时,l 1:x -2y +1=0,l 2:x +4=0,这两条直线不平行;当a ≠0且a ≠-1时,l 1:y =-a 2x +12,l 2:y =-1a +1x -4a +1,由l 1∥l 2得-a 2=-1a +1且12≠-4a +1,解得a =-2或a =1. 答案:-2或13.如图,已知△ABC 的三个顶点坐标分别为A (-1,1),B (1,5),C (-3,2),则△ABC 的形状为________.解析:因为k AB =1-5-1-1=-4-2=2,k AC =1-2-1--=-12,所以k AB ·k AC =-1,且A 、B 、C 、D 4点不共点,所以AB ⊥AC ,即∠BAC =90°.所以△ABC 是直角三角形.答案:直角三角形4.已知A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD ,其中正确的序号为________.解析:k AB =-4-26--=-35,k CD =12-62-12=-35,且A 、B 、C 、D 4点不共线,所以AB ∥CD ,k AC =6-212--=14,k BD =12--2-6=-4, k BD ·k AC =-1,所以AC ⊥BD .答案:①④5.已知P (-2,m ),Q (m,4),M (m +2,3),N (1,1),若直线PQ ∥直线MN ,则m =________. 解析:当m =-2时,直线PQ 的斜率不存在,而直线MN 的斜率存在,MN 与PQ 不平行,不合题意;当m =-1时,直线MN 的斜率不存在,而直线PQ 的斜率存在,MN 与PQ 不平行,不合题意;当m ≠-2且m ≠-1时,k PQ =4-m m --=4-m m +2, k MN =3-1m +2-1=2m +1,因为直线PQ ∥直线MN , 所以k PQ =k MN ,即4-m m +2=2m +1,解得m =0或m =1.经检验m =0或m =1时直线MN ,PQ 都不重合.综上,m 的值为0或1.答案:0或16.已知两条直线ax +4y -2=0与直线2x -5y +c =0互相垂直,垂足为(1,b ),则a +c -b =________.解析:∵k 1k 2=-1,∴a =10.∵垂足(1,b )在直线10x +4y -2=0上,∴b =-2.将(1,-2)代入2x -5y +c =0得c =-12,故a +c -b =0.答案:07.(1)求与直线y =-2x +10平行,且在x 轴、y 轴上的截距之和为12的直线的方程;(2)求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程.解:(1)设所求直线的方程为y =-2x +λ,则它在y 轴上的截距为λ,在x 轴上的截距为12λ,则有λ+12λ=12, ∴λ=8.故所求直线的方程为y =-2x +8,即2x +y -8=0.(2)法一:由直线方程2x +3y +5=0得直线的斜率是-23, ∵所求直线与已知直线平行,∴所求直线的斜率也是-23. 根据点斜式,得所求直线的方程是y +4=-23(x -1), 即2x +3y +10=0.法二:设所求直线的方程为2x +3y +b =0,∵直线过点A (1,-4),∴2×1+3×(-4)+b =0,解得b =10.故所求直线的方程是2x +3y +10=0.8.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判断▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧ 0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧ a =-1,b =6,∴D (-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1, ∴k AC ·k BD =-1,∴AC ⊥BD .∴▱ABCD 为菱形.[高考水平训练]1.已知A (1,-1),B (2,2),C (3,0)三点,若存在点D ,使CD ⊥AB ,且BC ∥AD ,则点D 的坐标为________.解析:设点D 的坐标为(x ,y ).因为k AB =2--2-1=3,k CD =y x -3, 且CD ⊥AB ,所以k AB ·k CD =-1,即3×yx -3=-1. ①因为k BC =2-02-3=-2,k AD =y +1x -1, 且BC ∥AD ,所以k BC =k AD ,即-2=y +1x -1, ② 由①②得x =0,y =1,所以点D 的坐标为(0,1).答案:(0,1)2.△ABC 的顶点A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,则m 的值为________.解析:若∠A 为直角,则AC ⊥AB ,所以k AC ·k AB =-1,即m +12-5·1+11-5=-1,得m =-7; 若∠B 为直角,则AB ⊥BC ,所以k AB ·k BC =-1,即1+11-5·m -12-1=-1,得m =3; 若∠C 为直角,则AC ⊥BC ,所以k AC ·k BC =-1,即m +12-5·m -12-1=-1,得m =±2. 综上可知,m =-7或m =3或m =±2.答案:-7或±2或33.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值. 解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-m +, k CD =3m +2-m 3--m =m +m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.4.在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解:如图所示,由已知两个点的坐标得:k OP =t -01-0=t , k RQ =+t -2-2t --2t=t , k OR =2-0-2t -0=-1t. k PQ =t -+t 1--2t =-1t, 所以k OP =k RQ ,k OR =k PQ ,所以OP ∥RQ ,OR ∥PQ ,所以四边形OPQR 是平行四边形;又k OP ·k OR =t ·(-1t)=-1, 所以OP ⊥OR ,∠POR 是直角, 所以四边形OPQR 是矩形;过点P 作PA ⊥x 轴,垂足为A , RB ⊥x 轴,垂足为B ,那么由勾股定理得: OP 2=OA 2+AP 2=1+t 2.∴OP =1+t 2,OR 2=OB 2+BR 2=(-2t )2+22=4(1+t 2),∴OR =21+t 2.∴OP ≠OR ,所以四边形OPQR 不是正方形, 综上可知,四边形OPQR 是矩形.。
2.1.2 第1课时直线的点斜式1.掌握直线的点斜式与斜截式方程.(重点、难点)2.能利用点斜式求直线的方程.(重点)3.了解直线的斜截式与一次函数之间的区别和联系.(易混点)[基础·初探]教材整理1直线的点斜式方程阅读教材P80~P81,完成下列问题.1.过点P1(x1,y1)且斜率为k的直线方程y-y1=k(x-x1)叫做直线的点斜式方程.2.过点P1(x1,y1)且与x轴垂直的方程为x=x1.1.过点(2,3),斜率为-1的直线的方程为________.【解析】由点斜式方程得:y-3=-1·(x-2),∴y-3=-x+2,即y=-x+5.【答案】y=-x+52.过点P(1,1)平行于x轴的直线方程为________,垂直于x轴的直线方程为________.【解析】过点P(1,1)平行于x轴的直线方程为y=1,垂直于x轴的直线方程为x=1.【答案】y=1x=13.若直线l过点A(-1,1),B(2,4),则直线l的方程为________.4-1【解析】k==1,l的方程为y-1=1·(x+1),即y=x+2.2--1【答案】y=x+2教材整理2直线的斜截式方程阅读教材P82探究以上部分内容,完成下列问题.斜截式方程:y=kx+b,它表示经过点P(0,b),且斜率为k的直线方程.其中b为直线与y轴交点的纵坐标,称其为直线在y轴上的截距.1.判断(正确的打“√”,错误的打“×”)(1)当直线的倾斜角为0°时,过(x0,y0)的直线l的方程为y=y0.(√)(2)直线与y轴交点到原点的距离和直线在y轴上的截距是同一概念.(×)(3)直线的点斜式方程不能表示坐标平面上的所有直线.(√)(4)当直线的斜率不存在时,过点(x1,y1)的直线方程为x=x1.(√)2.已知直线的倾斜角为60°,在y轴上的截距为-2,则此直线方程为________.【导学号:41292066】【解析】k=tan 60°=3,且过点(0,-2),所以直线方程为y+2=3(x-0),即 3x-y-2=0.【答案】3x-y-2=0[小组合作型]利用点斜式求直线的方程根据下列条件,求直线的方程.(1)经过点B(2,3),倾斜角是45°;(2)经过点C(-1,-1),与x轴平行;(3)经过点A(1,1),B(2,3).【精彩点拨】先求直线的斜率,再用点斜式求直线的方程.【自主解答】(1)∵直线的倾斜角为45°,∴此直线的斜率k=tan 45°=1,∴直线的点斜式方程为y-3=x-2,即x-y+1=0.(2)∵直线与x轴平行,∴倾斜角为0°,斜率k=0,∴直线方程为y+1=0×(x+1),即y=-1.3-1(3)∵直线的斜率k==2.2-1∴直线的点斜式方程为y-3=2×(x-2),即2x-y-1=0.1.求直线的点斜式方程的前提条件是:(1)已知一点P(x0,y0)和斜率k;(2)斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.2.求直线的点斜式方程的步骤是:先确定点,再确定斜率,从而代入公式求解.[再练一题]1.求倾斜角为135°且分别满足下列条件的直线方程:(1)经过点(-1,2);(2)在x轴上的截距是-5.【解】(1)∵所求直线的倾斜角为135°,∴斜率k=tan 135°=-1,又直线经过点(-1,2),∴所求直线方程是y-2=-(x+1),即x+y-1=0.(2)∵所求直线在x轴上的截距是-5,即过点(-5,0),又所求直线的斜率为-1,∴所求直线方程是y-0=-(x+5),即x+y+5=0.利用斜截式求直线的方程根据条件写出下列直线的斜截式方程.(1)斜率为2,在y轴上的截距是5;(2)倾斜角为150°,在y轴上的截距是-2;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.【精彩点拨】(1)直接利用斜截式写出方程;(2)先求斜率,再用斜截式求方程;(3)截距有两种情况.【自主解答】(1)由直线方程的斜截式方程可知,所求直线方程为y=2x+5.3(2)∵倾斜角α=150°,∴斜率k=tan 150°=-.33 由斜截式可得方程为y=-x-2.3(3)∵直线的倾斜角为60°,∴其斜率k=tan 60°=3,∵直线与y轴的交点到原点的距离为3,∴直线在y轴上的截距b=3或b=-3.∴所求直线方程为y=3x+3或y=3x-3.1.直线的斜截式方程使用的前提条件是斜率必须存在.2.当直线的斜率和直线在y轴上的截距都具备时,可以直接写出直线的斜截式方程;当斜率和纵截距不直接给出时,求直线的斜截式方程可以利用待定系数法求解.[再练一题]2.根据下列条件,求直线的斜截式方程.(1)倾斜角是30°,在y轴上的截距是0.(2)倾斜角为直线y=-3x+1的倾斜角的一半,且在y轴上的截距为-10.【导学号:41292067】3【解】(1)由题意可知所求直线的斜率k=tan 30°=,33由直线方程的斜截式可知,直线方程为y=x.3(2)设直线y=-3x+1的倾斜角为α,则tan α=-3,∴α=120°,∴所求直线的斜率k=tan 60°=3.∴直线的斜截式方程为y=3x-10.[探究共研型]直线的点斜式方程和斜截式方程的应用探究1对于直线y=kx+1,是否存在k使直线不过第三象限?若存在,k的取值范围是多少?【提示】直线y=kx+1过定点(0,1),直线不过第三象限,只需k<0.探究2已知直线l的方程是2x+y-1=0,求直线的斜率k在y轴上的截距b,以及与y 轴交点P的坐标.【提示】∵2x+y-1=0可变形为y=-2x+1,斜率k=-2.令x=0,得y=1,即b=1,直线l与y轴的交点为(0,1).已知直线l经过点P(4,1),且与两坐标轴在第一象限围成的三角形的面积为8,求直线l的点斜式方程.【精彩点拨】设出直线的点斜式方程,表示出横、纵截距,利用三角形面积得斜率方程,求解即可.【自主解答】设所求直线的点斜式方程为:y-1=k(x-4)(k<0),1当x=0时,y=1-4k;当y=0时,x=4-.k1 1由题意,得2×(1-4k)×(4-k)=8.1 1解得k=-.所以直线l的点斜式方程为y-1=-(x-4).4 4在利用直线的点斜式方程或斜截式方程表示纵、横截距,从而进一步表示直线与坐标轴围成的三角形面积时,要注意截距并非一定是三角形的边长,要根据斜率进行判断,当正负不确定时,要进行分类讨论.[再练一题]13.已知直线l的斜率为,且和两坐标轴围成面积为3的三角形,求l的方程.61【解】设直线方程为y=x+b,则x=0时,y=b;y=0时,x=-6b.由已知可得61·|b|·|-6b|=3,2即6|b|2=6,∴b=±1.1 1故所求直线方程为y=x+1或y=x-1,6 6即x-6y+6=0或x-6y-6=0.1.直线y-2=-3(x+1)的倾斜角和所过的点分别为________.【解析】由点斜式方程知,直线过点(-1,2),斜率为-3,∴倾斜角为120°.【答案】120°,(-1,2)2.已知直线的方程为y+2=-x-1,则直线的斜率为________.【解析】化直线方程为斜截式:y=-x-3,∴斜率为-1.【答案】-123.经过点(-1,1),斜率是直线y=x-2的斜率的2倍的直线方程是_____.25∴所求直线的斜率是由2直,线方程的点斜式可得方程为y-1=2(x+即1),2x-y+2+1=0.【答案】2x-y+2+1=04.直线x+y+1=0的倾斜角与其在y轴上的截距分别是________.【导学号:41292068】【解析】直线x+y+1=0变成斜截式得y=-x-1,故该直线的斜率为-1,在y轴上的截距为-1.若直线的倾斜角为α,则tan α=-1,即α=135°.【答案】135°,-15.求经过点A(-3,4),且在两坐标轴上的截距之和为12的直线方程.【解】设直线方程为y-4=k(x+3)(k≠0).当x=0,y=4+3k,4 当y=0,x=--3,k4∴3k+4--3=12,即3k2-11k-4=0,k1∴k=4或k=-.31∴直线方程为y-4=4(x+3)或y-4=-(x+3),即4x-y+16=0或x+3y-9=0.3。