2017年春季新版北师大版七年级数学下学期第2章、相交线与平行线单元复习导学案2
- 格式:doc
- 大小:82.50 KB
- 文档页数:3
第2章 相交线与平行线一、知识梳理1、如果两个角的和为 ,那么称这两个角互为余角 如果两个角的和为 ,那么称这两个角互为补角 性质:同角或等角的余角 ,同角或等角的补角 .2、如果两个角有公共顶点,且它们的两边互为反向延长线,这样的两个角叫做 .性质:对顶角 。
3、当两条直线相交所成的四个角中有一个角是直角时,就说这两条直线 ,它们的交点叫做 。
4 、直线外一点到直线上各点连结的所有线段中,垂线段 ,这条垂线段的长度叫做 .5。
过直线外一点 一条直线与这条直线平行。
6.如图,若l 1∥l 2,则① ;② ;③ .7。
平行线的判定方法: (1)应用平行线的定义.(2)平行于同一条直线的两条直线 。
(3)如图,①如果 ,那么l 1∥l 2;②如果 ,那么l 1∥l 2;③如果 ,那么l 1∥l 2。
(4)垂直于同一条直线的两条直线互相。
8、只用直尺和圆规来完成的画图,称为。
二、题型、技巧归纳考点一与相交线有关角(对顶角、互余、互补、垂直)的计算例1、如图,直线BC,DE交于O点,OA,OF为射线,AO⊥OB,OF平分∠COE,∠COF+∠BOD=51°。
求∠AOD的度数.考点二平行线的性质例2、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.考点三平行线的判定【例3】如图,已知∠1=∠2,则图中互相平行的线段是________。
考点四尺规作图例4 如图所示,已知∠β,求作∠AOB,使∠AOB=2∠β.三、随堂检测1.如图,DE∥AB,若∠ACD=55°,则∠A等于( )(A)35° (B)55°(C)65° (D)125°2.如图,直线a,b被直线c所截,下列说法正确的是( )(A)当∠1=∠2时,一定有a∥b(B)当a∥b时,一定有∠1=∠2(C)当a∥b时,一定有∠1+∠2=90°(D)当∠1+∠2=180° 时,一定有a∥b3、如图,已知AB∥CD,AE平分∠CAB,且交CD于点D,∠C=110°,则∠EAB为( )(A)30° (B)35°(C)40° (D)45°4.如图,已知BD平分∠ABC,点E在BC上,EF∥AB,若∠CEF=100°,∠ABD的度数为( )(A)60° (B)50°(C)40° (D)30°5。
北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)【知识点一】同位角、内错角、同旁内角的概念(“三线八角”模型)如图1,直线AB、CD 与直线EF 相交(或者说两条直线AB、CD 被第三条直线EF 所截),构成八个角,简称为“三线八角”,如图1.特别提醒:⑴两条直线AB,CD与同一条直线EF 相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.【知识点二】同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD 的同一方,并且都在直线EF 的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD 之间,并且在直线EF 的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD 之间,并且在直线EF 的同一旁,像这样的一对角叫做同旁内角.特别提醒:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【知识点三】同位角、内错角、同旁内角位置特征及形状特征图1特别提醒:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【考点目录】【考点1】“三线八角”模型的认识;【考点2】同位角、内错角、同旁内角的辨别;【考点3】与同位角、内错角、同旁内角相关的综合【考点1】“三线八角”模型的认识;【例1】(1)图1中,∠1、∠2由直线被直线所截而成.(2)图2中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1)EF,CD;AB;(2)不是.【分析】(1)根据三线八角的定义求解即可;(2)根据三线八角的定义求解即可;解:(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.所以图1中,∠1、∠2由直线EF,CD被直线AB所截而成.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【点拨】此题主要考查了“三线八角”,熟练掌握:“三线八角”的定义是解答此题的关键.【变式1】如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【答案】A【分析】根据同旁内角定义可判断A、根据同位角定义可判断B、根据内错角的定义可判断C、D即可.解:A、由图与同旁内角定义,∠2和∠3是两直线被第三条直线所截,在截线的同侧,在被截直线内部的角可知:∠2和∠3是同旁内角,故选项A正确符合题意;B、∠1和∠2是两条直线被两条直线所截得到的角,不是同位角,故选项B不正确不符合题意;C、∠1和∠3是两直线被第三条直线所截,在截线的两侧,在被截直线内部的角是内错角,不是同位角,故选项C不符合题意;D、∠1和∠2是两条直线被两条直线所截得到的角不是内错角,故选项D不符合题意;故选:A .【点拨】本题考查了同旁内角、同位角、内错角,熟练掌握同位角、内错角、同旁内角的定义是解题关键.【变式2】如图,有下列说法:①能与DEF ∠构成内错角的角的个数有2个;②能与BFE ∠构成同位角的角的个数有2个;③能与C ∠构成同旁内角的角的个数有4个.其中正确结论的序号是.【答案】①【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与DEF ∠构成内错角的角的个数有2个,即EFA Ð和EDC ∠,故正确;②能与EFB ∠构成同位角的角的个数只有1个:即FAE ∠,故错误;③能与C ∠构成同旁内角的角的个数有5个:即CDE ∠,B ∠,CED ∠,CEF ∠,A ∠,故错误;所以结论正确的是①.故答案为:①.【点拨】本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记相关的定义.【考点2】同位角、内错角、同旁内角的辨别;【例2】两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3.(2)若∠1=2∠2,∠2=2∠3,求∠3的度数.【答案】(1)见分析;(2)36°【分析】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)利用邻补角的关系可求出∠3的度数.解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,故x+4x=180°,解得:x=36°,故∠3的度数为36°.【点拨】此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.【变式1】下列四幅图中,1∠和2∠是同位角的是几个()A.1个B.2个C.3个D.4个【答案】B【分析】根据同位角的定义(截线的同一侧,被截线的同一方位)解决此题.解:根据同位角的定义,第一张图和第四张图中的∠1和∠2是同位角.故选:B.【点拨】本题主要考查同位角的定义,熟练掌握同位角的定义是解决本题的关键.【变式2】如图,直线a,b被直线c所截,145∠=︒,2110∠=︒,则1∠的同位角的度数是;4∠的内错角的度数是;3∠的同旁内角的度数是.【答案】70︒/70度45︒/45度70︒/70度【分析】根据同位角,内错角和同旁内角的概念以及邻补角求解即可.解:∵24180∠+∠=︒,2110∠=︒,∴470∠=︒,∵1∠和4∠是一组同位角,∴1∠的同位角的度数是70︒;∵145∠=︒,∴31801135∠=︒-∠=︒,∴4∠的内错角的度数是180318013545︒-∠=︒-︒=︒;3∠的同旁内角4∠的度数是70︒.故答案为:70︒;45︒;70︒.【点拨】此题考查了邻补角,同位角,内错角和同旁内角的概念,解题的关键是熟练掌握以上知识点.【考点3】与同位角、内错角、同旁内角相关的综合【例3】如图,直线AB ,CD 被直线EF 所截,交点分别为G ,H ,∠CHG =∠DHG =34∠AGE .(1)CD 与EF 有怎样的位置关系?请说明理由.(2)求∠CHG 的同位角、内错角、同旁内角的度数.【答案】(1)CD ⊥EF ;(2)∠CHG 的同位角∠AGE =120°,内错角∠BGF =∠AGE =120°,同旁内角∠AGF =60°【分析】(1)先由∠CHG +∠DHG =180°及∠CHG =∠DHG ,可得∠CHG =∠DHG =90°,再根据垂直的定义得到CD 与EF 互相垂直;(2)先由∠CHG =∠DHG =34∠AGE ,可得∠AGE =120°,再根据同位角、内错角、同旁内角的定义即可求解.解:(1)CD ⊥EF .理由如下:因为CD是直线,所以∠CHG+∠DHG=180°,又∠CHG=∠DHG,所以∠CHG=∠DHG=90°,所以CD⊥EF.(2)由(1)知∠CHG=∠DHG=90°,因为∠CHG=∠DHG=34∠AGE,所以∠AGE=120°,所以∠CHG的同位角∠AGE=120°,内错角∠BGF=∠AGE=120°,同旁内角∠AGF=180°-∠AGE=60°.【点拨】本题考查了垂直的定义,邻补角的定义,同位角、内错角、同旁内角的定义,以及对顶角和邻补角的性质的计算,是基础知识,比较简单.【变式1】如图,下列判断正确的是()A.有2对同位角,2对内错角,2对同旁内角B.有2对同位角,2对内错角,3对同旁内角C.有4对同位角,2对内错角,4对同旁内角D.以上判断均不正确【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.解:观察图形可知,有2对同位角,2对内错角,3对同旁内角.故选B.【点拨】本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.注意按顺序一个点一个点的数,不要重复,不要遗漏.【变式2】如图两条直线被第三条直线所截,2∠是3∠的同旁内角,1∠是3∠的内错角,若243∠=∠,321∠=∠,则1∠的度数是.【答案】20︒/20度【分析】设1x ∠=︒,则32x ∠=︒,28x ∠=︒,根据邻补角互补可得方程,求解即可.解:如图,设1x ∠=︒,则32x ∠=︒,28x ∠=︒,∵12180∠+∠=︒,∴8180x x ︒+︒=︒,解得:20x =,∴120∠=︒.故答案为:20︒.【点拨】本题考查了内错角、同旁内角、邻补角互补、角的计算,解本题的关键是掌握内错角的边构成“Z ”形,同旁内角的边构成“U ”。
北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。
第二章平行线与相交线复习教学要点:1梳理本章内容2在丰富的情景中,抽象出平行线、相交线等几何模型教学环节:本节课按知识点分类设计了八个教学环节:课前准备、知识梳理、活动单元一、活动单元二、活动单元三、综合提高、课堂小结、布置作业。
教学设计教学目的::1.掌握平行线与相交线的相关知识,梳理本章内容,建立一定的知识体系;并能够综合运用这些知识解决相关的问题。
2.在丰富的情景中,抽象出平行线、相交线等几何模型,通过讨论角与角之间的关系,进一步认识平行线和相交线。
3.在认识操作基础上锻炼学生的语言表达能力以及逻辑思维能力。
教学重点:掌握平行线与相交线的相关知识教学难点:用尺规作线段和角教学过程:第一环节课前准备活动内容:(1)让学生课前独立回顾所学内容,并尝试回答教科书提出的问题。
在独立思考的基础上,开展小组交流和自评活动,并让学生自己尝试着建立知识框架图。
(2)对于在复习中出现的困惑的问题,进行记录并与同学进行交流。
对于无法解决的问题,可以课堂上师生共同探讨活动目的:让学生自己小结,有利于培养学生的概括能力,使学生自主构建知识体系,养成良好的学习习惯。
通过第一个活动,希望学生能学会自己总结和反思,培养学生条例的进行思考和独立解决问题的能力。
而在第2个活动中,在培养学生解决问题的能力的同时,更注重学生提出问题的能力。
让学生养成善于思考、肯于钻研的精神。
同时培养学生与他人合作交流的意识;这两个活动中学生的思考成果会为下面的学习奠定良好的基础,必将极大地激发了学生学习的积极性与主动性。
实际教学效果:学生由于个人认识水平和能力的不同,对于课本问题的解答和提出的困惑问题的水平就会不同,但只要是合理的解答和学生确实存在的问题,教师都应该给与肯定和解答。
使不同的学生在学习上有不同的发展和收获。
第二环节知识梳理活动内容:请同学们展示自己的知识网络图,开展小组交流和全班交流,使学生在反思和交流的过程中逐渐建立完整的知识体系,师生共同总结,完成活动单元一。
第二章相交线与平行线的复习永和中学唐爱文一、学生起点分析:学生在本章已经完成了部分与相交线与平行线有矢的知识学习,学习了对顶角、余角、补角以及平行线的特征和判定直线平行的条件等,并初步体会了这些知识在一些简单问题中的具体应用,具备了一定的利用数学知识解决实际问题的能力。
二、教学任务分析平行线、相交线在现实生活中随处可见,是平面内两条直线的基本位置尖系。
本节课是相交线与平行线的复习课,所以从具体情境引入,以思维导图梳理基础知识为起点,从简单的问题入手,逐步加深对思维导图的理解,让学生能有意识地把解决特殊问题的策略、方法迁移到思维导图中去。
本节课的教学目标如下:1经历对本章所学知识回顾与思考的过程 > 用思维导图将本章内容条理化,系统化°2•在丰富的情景中,抽象出平行线、相交线等基本几何模型,从而进一步熟悉和掌握几何语言 > 能用语言说明几何图形。
三、教学过程分析本节课设计了六个教学环节:第一环节:创设情境;第二环节:归纳总结;第三环节:知识应用;第四环节:拓展练习;第五环节:构建思维导图。
第一环节:创设情境活动内容:教师提出问题:同学们认识这个标志么?生:(反应异常激烈)认识,是大众汽车的标志。
师:你们知道它的含义么?活动目的:兴趣是最好的老师,而复习课却往往比较枯燥无味。
在这里,以同学们几乎天天见的大众标志为数学情境引入,是为了让同学感受到数学就在我们身边,她不神秘,却应用广泛。
通过展示生活中常见的模型,让学生观察,思考找到模型和本章知识的内在联系,直观形象地得出了生活中的平行线和相交线。
教学效果:这个贴切的引入既激发了学生学习的积极性和主动性,又让学生鳳知 到数学 知识来源于实际生活,服务于生活。
学生亲身体会到了数学的价值,而 且课堂的引入起点很低,学生参与性很广,热情高涨。
第二环节:归纳总结活动内容:问题1:在同一平面内两条直线的位置尖系有几种?分别是什么?学生很容易回答出“在同一平面内两条直线的位置尖系有两种,分别是相交和平行”, 再进一步针对相交和平行分别提出问题2。
北师大版七年级数学下册教案(含解析):第二章相交线与平行线章末复习一. 教材分析北师大版七年级数学下册第二章《相交线与平行线》章末复习,主要目的是让学生巩固和掌握本章所学的基本知识和技能。
内容包括:相交线与平行线的性质,平行线的判定,平行线的性质,以及相交线与平行线在实际问题中的应用。
二. 学情分析学生在学习本章内容时,可能对相交线与平行线的性质和判定有一定的理解,但在解决实际问题时,可能会遇到一些困难。
因此,在复习过程中,需要通过实例让学生更好地理解和运用所学知识。
三. 教学目标1.知识与技能:使学生掌握相交线与平行线的性质和判定,能运用所学知识解决实际问题。
2.过程与方法:通过复习,提高学生的数学思维能力,培养学生的空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:相交线与平行线的性质和判定。
2.难点:相交线与平行线在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探讨,激发学生的学习兴趣;通过案例分析,让学生更好地理解和运用所学知识;通过小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备相关案例和问题,用于课堂讨论。
2.准备课堂练习题,用于巩固所学知识。
3.准备PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的相交线与平行线的图片,引导学生关注和学习这些现象。
2.呈现(10分钟)呈现本章所学的基本知识和技能,包括相交线与平行线的性质、判定以及应用。
通过PPT展示,让学生对所学内容有一个整体的把握。
3.操练(10分钟)让学生分组进行讨论,每组选取一个案例,分析案例中相交线与平行线的性质和判定,并尝试解决案例中的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示课堂练习题,让学生独立完成。
题目包括相交线与平行线的性质、判定以及应用。
北师大版七年级下册第二单元相交线与平行线单元——探索直线平行的条件(全章知识梳理与考点分类讲解)【知识点一】平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.特别提醒:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.【知识点二】平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.特别提醒:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.【知识点三】两直线平行的判定方法1判定方法1:同位角相等,两直线平行.如图1,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)图1【知识点二】两直线平行的判定方法2判定方法2:内错角相等,两直线平行.如图2,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)图2【知识点三】两直线平行的判定方法3判定方法3:同旁内角互补,两直线平行.如图3,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)图3特别提醒:平行线的判定是由角相等或互补,得出平行,即由数推形.【考点目录】【考点1】平行线的画法;【考点2】平行公理及推论的应用;【考点3】同位角相等,两直线平行;【考点4】内错角相等,两直线平行;【考点5】同旁内角互补,两直线平行;【考点6】垂直于同一直线的两直线平行;【考点7】判定两直线平行综合应用.【考点目录】【考点1】平行线的画法;【答案】(1)见分析;(2)见分析;(3)见分析【分析】本题考查了射线、线段的作法,画平行线,掌握平行线画法是解题关键.(1)根据射线及线段的定义作图即可;(2)过点B作AC的垂线BD,垂足为D即可;(3)将C点向右移3个单位得到点E,作直线BE即可;(1)解:射线AC,线段AB即为所求;(2)解:垂线段BD即为所求;(3)解:直线BE即为所求.【变式1】(2022下·辽宁辽阳·七年级统考期末)下列说法正确的是()A.相等的角是对顶角B.在同一平面内,两直线的位置关系有三种:平行,垂直,相交C.过一点有且只有一条直线与已知直线平行D.平面内,过一点有且只有一条直线与已知直线垂直【答案】D【分析】由对顶角的概念可判断A,由平面内直线与直线的位置关系可判断B,由过直线外一点画已知直线的平行线可判断C,由过一点画已知直线的垂线可判断D,从而可得答案.解:相等的角不一定是对顶角,故A不符合题意;在同一平面内,两直线的位置关系有二种:平行,相交,故B不符合题意;过直线外一点有且只有一条直线与已知直线平行,故C不符合题意;平面内,过一点有且只有一条直线与已知直线垂直,描述正确,故D符合题意;故选D【点拨】本题考查的是对顶角的性质,平面内,直线与直线的位置关系,平行线的含义,垂直的性质,掌握以上基础的概念是解本题的关键.【变式2】(2020·四川达州·校考一模)如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:.【答案】③②④①【分析】根据同位角相等两直线平行判断即可.解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.【考点2】平行公理及推论的应用;【例2】(2022上·河南南阳·七年级校考期末)【操作】在如图的方格纸中(网格线的交点叫格点),按要求画图、填空.(1)过点A 作BC 的垂线,垂足为点D ,该垂线经过的一个格点记为点E .(2)过点E 作AC 的平行线EF ,该平行线经过的一个格点记为F ;过点B 作AC 的平行线BG ,该平行线经过的一个格点记为G .【发现】EF 与BG 的位置关系为______.【概括】根据你的发现,概括一条事实或结论:______.【答案】(1)画图见分析;(2)画图见分析;发现:平行;概括:平行于同一条直线的两条直线平行.【分析】(1)根据网格结构作出BC 的垂线AD 即可;(2)根据网格结构的特征构造相等的同位角再画图,然后标注即可.再根据平行线的判定可得EF 与BG 的位置关系以及结论.解:(1)如图,AD BC ,D 为垂足;(2)如图,EF AC ∥,BG AC ∥,EF 与BG 的位置关系为平行;结论:平行于同一条直线的两条直线平行.【点拨】本题考查了这题-应用与设计作图,利用网格结构作垂线,作平行线,熟练掌握网格结构的特征,准确找出对应点的位置是解题的关键.【变式1】(2022下·湖南长沙·七年级校考阶段练习)下列说法错误的是()A .在同一平面内,没有公共点的两条直线是平行线B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .经过直线外一点有且只有一条直线与该直线平行D .在同一平面内,不相交的两条线段是平行线【答案】D【分析】根据平行公理等即可逐一进行判断.解:A 、在同一平面内,没有公共点的两条直线是平行线.正确,本选项不符合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行线具有“传递性”,正确,本选项不符合题意;C 、经过直线外一点有且只有一条直线与该直线平行.正确,本选项不符合题意;D 、在同一平面内,不相交的两条直线是平行线.原说法错误,本选项符合题意.故选:D .【点拨】本题考查了平行公理等知识点.掌握相关结论是解题的关键.【变式2】(2022上·上海·九年级开学考试)如图,点E 、F 分别是梯形ABCD 两腰的中点,联结EF 、DE ,如果图中DEF △的面积为1.5,那么梯形ABCD 的面积等于.【答案】6【分析】过点A 作AH BC ⊥于H ,交EF 于G ,根据梯形中位线定理得到AD BC ∥EF ∥,根据三角形的面积公式、梯形的面积公式计算,得到答案.解:过点A 作AH BC ⊥于H ,交EF 于G ,如图,∵点E 、F 分别是梯形ABCD 两腰的中点,∴EF 是梯形ABCD 的中位线,∴AD BC ∥EF ∥,∴AG EF ⊥,AG GH =,∵ 1.5DEF S = ,∴1 1.52EF AG ⋅=,∴• 1.546EF AH =⨯=,∴•6ABCD S EFAH 梯形==,故答案为:6.【点拨】本题考查的是梯形的中位线、三角形的面积计算,掌握梯形中位线定理是解题的关键.【考点3】同位角相等,两直线平行;【例3】(2022上·黑龙江绥化·七年级统考期末)AB BC ⊥,12=90∠+∠︒,23∠∠=.BE 与DF 平行吗?为什么?解:BE DF ∥.AB BC ⊥ ,ABC \Ð=︒,即34∠+∠=︒.又1290∠+∠=︒ ,且23∠∠=,∴=.理由是:.BE DF ∴∥.理由是:.【答案】90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行【分析】由AB 垂直于BC ,利用垂直的定义得到ABC ∠为直角,进而得到3∠与4∠互余,再由1∠与2∠互余,根据23∠∠=,利用等角的余角相等得到14∠=∠,利用同位角相等两直线平行即可得证.解:BE DF ∥.AB BC ⊥ ,90ABC ∴∠=︒,即3490∠+∠=°.又1290∠+∠=︒ ,且23∠∠=,14∴∠=∠.理由是:等角的余角相等.BE DF ∴∥.理由是:同位角相等,两直线平行.故答案为:90;90;1∠,4∠;等角的余角相等;同位角相等,两直线平行.【点拨】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键【变式1】(2022下·福建宁德·七年级校联考期中)如图,若12∠=∠,则下列选项中,能直接利用“同位角相等,两直线平行”判定a b )A .B .C .D .【答案】B【分析】先判断出1∠与2∠是同位角,然后根据平行线的判定即可得出答案.解:A 、1∠与2∠是内错角,故该选项错误;B 、1∠与2∠是同位角,∵12∠=∠,∴a b ,故该选项正确;C 、1∠与2∠不是内错角、同位角,同旁内角,故该选项错误;D 、1∠与2∠是对顶角,故该选项错误;故选:B .【点拨】本题考查了平行线的判定,内错角相等、同位角相等,同旁内角互补两直线平行,是需要同学们熟练记忆的内容.【变式2】(2023上·七年级课时练习)如图,若12∠=∠,则 ;若23∠∠=,则 .【答案】AB DE BC EF【分析】根据12∠=∠,利用同位角相等两直线平行推出AB DE ∥;由23∠∠=,利用同位角相等两直线平行推出BC EF ∥.解:∵12∠=∠,∴AB DE ∥,∵23∠∠=,∴BC EF ∥,故答案为:AB ,DE ,BC ,EF .【点拨】此题考查平行线的判定定理,熟练掌握同位角相等两直线平行是解题的关键.【考点4【例4】(2023上·七年级课时练习)如图,已知CD AD ⊥于点,D DA AB ⊥于点,12A ∠=∠.试说明:DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(__________).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(__________),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=_______(___________).∴_____∥_____(____________).【答案】垂直的定义,等量代换,4∠,等量代换,DF ,AE ,内错角相等,两直线平行【分析】根据垂直的定义得到90CDA DAB ∠=∠=︒,推出132490∠+∠=∠+∠=︒,得到3=4∠∠,由此证得DF AE ∥.解:CD AD ⊥ (已知),90CDA ∴∠=︒(垂直的定义).同理,90DAB ∠=︒.90CDA DAB ∴∠=∠=︒(等量代换),即132490∠+∠=∠+∠=︒.12∠=∠ (已知)3∴∠=4∠(等量代换).∴DF AE ∥(内错角相等,两直线平行).【点拨】此题考查了垂直的定义,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2022·广东深圳·蛇口育才二中校考三模)如图,能判定EB AC ∥的条件是()A .C ABE∠∠=B .A EBD ∠∠=C .C ABC ∠∠=D .A ABE∠∠=【答案】D 【分析】通过角相等判定两直线平行,则判断两角是否能推出同位角或内错角相等即可.解:∵只有同位角相等,内错角相等,同旁内角互补才能判断两直线平行,选项D 中A ABE ∠∠=是内错角相等,故能判定两直线平行,其他选项不符合判定定理,无法判断.故选:D .【点拨】本题考查了平行线的判定,掌握平行线的判定是解题的关键.【变式2】(2023下·陕西宝鸡·七年级统考期中)三个完全相同的含30︒角的三角板如图摆放,可以判断AB 与EC 平行的理由是.【答案】BAC ACE =∠∠,内错角相等,两直线平行(答案不唯一)【分析】根据平行线的判定定理求解.解:由题意知90BAC ACE ∠=∠=︒,由内错角相等,两直线平行,可判断AB 与EC 平行.故答案为:BAC ACE =∠∠,内错角相等,两直线平行.【点拨】本题考查平行线的判定,解题的关键是掌握平行线的判定定理,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【考点5】同旁内角互补,两直线平行;【例5】(2023下·山东青岛·七年级统考期中)如图,EF BC ∥,CE 平分BCF ∠,111DAC ∠=︒,23ACF FEC ∠=∠=︒,则AD 与BC 平行吗?请说明理由.【答案】AD 与BC 平行.理由见分析【分析】根据角平分线的定义可得246BCF FEC ∠=∠=︒,进而得出69ACB ∠=︒,结合题意可得69111180ACB DAC ∠+∠=︒+︒=︒,即可得证.解:AD 与BC 平行.理由如下:∵CE 平分BCF ∠,23ACF FEC ∠=∠=︒,∴246BCF FEC ∠=∠=︒,∴462369ACB BCF ACF ∠=∠+∠=︒+︒=︒,又∵111DAC ∠=︒,∴69111180ACB DAC ∠+∠=︒+︒=︒,∴AD BC ∥.【点拨】本题考查了平行线的判定,角平分线的定义,熟练掌握平行线的判定定是解题的关键.【变式1】(2023下·山东济南·七年级统考期末)如图,将一纸条ABCD 沿折痕MG 折叠,MA 时对应线段MA '与CD 相交于点N 则下列条件中,不足以证明AB CD ∥的是()A .180BMN CNM ∠+∠=︒B .2AMN MGN ∠=∠C .MN NG=D .MN MG=【答案】D 【分析】根据翻折的性质和平行线的判定逐一进行判断即可.解:A.180BMN CNM ∠+∠=︒ ,∴AB CD ∥;B .由翻折可知:2AMN AMG ∠=∠,2AMN MGN ∠=∠ ,AMG MGN ∴∠=∠,∴AB CD ∥,故B 选项不符合题意;C .由翻折可知:AMG NMG ∠=∠,MN NG = ,NMG MGN ∴∠=∠,AMG MGN ∴∠=∠,∴AB CD ∥,故C 选项不符合题意;MN MG = ,MGN MNG ∴∠=∠,AMG MGN ∴∠≠∠,AB ∴不平行CD ,故D 选项符合题意;故选:D .【点拨】本题考查了折叠的性质,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式2】(2019下·七年级课时练习)如图,某工件要求AB ∥ED ,质检员小李量得∠ABC =146°,∠BCD =60°,∠EDC =154°,则此工件.(填“合格”或“不合格”)【答案】合格【分析】作CF ∥AB ,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF ∥ED ,证出AB ∥ED ,即可得出结论.解:作CF ∥AB ,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF ∥ED ,∴AB ∥ED ;故答案为合格.【点拨】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键【考点6】垂直于同一直线的两直线平行.【例6】(2023下·七年级课时练习)探索与发现(在同一平面内):(1)若直线12a a ⊥,23a a ∥,判断直线1a 与3a 的位置关系,请说明理由;(2)若直线12a a ⊥,23a a ∥,34a a ⊥,则直线1a 与4a 的位置关系是______;(直接填结论,不需要证明)(3)现在有2023条直线1a ,2a ,3a ,…,2023a ,且有12a a ⊥,23a a ∥,34a a ⊥,45a a ∥,…,请你探索直线1a 与2023a 的位置关系.【答案】(1)13⊥a a .理由见分析;(2)14a a ∥;(3)直线1a 与2023a 的位置关系是12023a a ⊥【分析】(1)根据垂直定义和平行线的性质求解即可;(2)根据垂直定义和平行线的性质求解即可;(3)根据垂直定义和平行线的性质,找到变化规律即可求解.(1)解:13⊥a a .理由如下:如图,∵12a a ⊥,∴190∠=︒,∵23a a ∥,∴2190∠=∠=︒,∴13⊥a a .(2)解:由(1)知13⊥a a ,又34a a ⊥,根据垂直于同一条直线的两条直线平行可得14a a ∥,故答案为:14a a ∥;(3)解:直线1a 与2a ,3a 的位置关系分别是12a a ⊥,13⊥a a ,直线1a 与4a ,5a 的位置关系分别是14a a ∥,15a a ∥,从2a 开始,直线2a ,3a ,…,2023a 与直线1a 的位置关系以⊥,⊥,∥,∥为一次循环,∴12022a a ⊥,12023a a ⊥,∴直线1a 与2023a 的位置关系是12023a a ⊥.【点拨】本题考查垂直定义和平行线的性质,熟练掌握平行线的性质,得到变化规律是解答的关键.【变式1】(2018下·七年级单元测试)在同一平面内,a 、b 、c 是直线,下列说法正确的是()A .若a b ∥,b c ∥则a c∥B .若a b ⊥r r ,b c ⊥,则a c ⊥C .若a b ∥,b c ⊥,则a c∥D .若a b ∥,b c ∥,则a c ⊥【答案】A【分析】根据平行公理、平行线的性质对各选项分析判断即可解答.解:A.在同一平面内,若a b ∥,b c ∥则a c ∥正确,故本选项正确;B.在同一平面内,若a b ⊥r r ,b c ⊥则a c ∥,故本选项错误;C.在同一平面内,若a b ∥,b c ⊥则a c ⊥,故本选项错误;D.在同一平面内,若a b ∥,b c ∥则a c ∥,故本选项错误.故选:A .【点拨】本题主要考查了平行公理、平行线的性质等知识点,灵活运用相关性质是解答本题的关键.【变式2】(2018下·七年级课时练习)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线.(1)它的理由如下:(如图1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c(2)如图2是木工师傅使用角尺画平行线,有什么道理?.【答案】平行同位角相等,两条直线平行垂直于同一条直线的两条直线平行解:∵在同一平面内,两条直线都垂直于同一条直线,∴这两条直线互相平行.故答案为平行;(1)∵b ⊥a ,c ⊥a ,∴∠1=∠2=90°,∴b ∥c (同位角相等,两条直线平行).故答案为同位角相等,两条直线平行;(2)垂直于同一条直线的两条直线平行,故答案为垂直于同一条直线的两条直线平行.【考点7】判定两直线平行的综合应用.【例7】(2024下·七年级课时练习)如图,AK 与BC 相交于点B ,BC 与CD 相交于点C ,如果160∠=︒,2120∠=︒,60D ∠=︒,那么AB 与CD 平行吗?BC 与DE 呢?并说明理由.【答案】AB CD ∥,BC DE ∥.理由见分析【分析】根据对顶角相等得出60ABC ∠=︒,进而可得2180ABC ∠+∠=︒,则AB CD ∥,进而得出BCD D ∠=∠,即可得证.解:AB CD ∥,BC DE ∥.理由如下:∵160∠=︒,1ABC ∠=∠∴60ABC ∠=︒.又∵2120∠=︒,∴2180ABC ∠+∠=︒.∴AB CD ∥.又∵2180BCD ∠+∠=︒,∴60BCD ∠=︒.∵60D ∠=︒,∴BCD D ∠=∠.∴BC DE ∥.【点拨】本题考查了对顶角相等,平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式1】(2024下·全国·七年级假期作业)如图,将一副三角尺如图放置,DE 、BC 交于点F ,(45C ∠=︒,30D ∠=︒)则下列结论不正确...的是()A .13∠=∠B .2180CAD ∠+∠=︒C .若230∠=︒,则BC AD∥D .若230∠=︒,则AC DF∥【答案】C 【分析】由余角的性质,得到13∠=∠,由 3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠,得到2180CAD ∠+∠=︒,因为3B ∠≠∠,故BC 和DA 不平行,由160E ∠=∠=︒,得到AC DF ∥.解:1∠ +23∠=∠+290∠=︒,13∴∠=∠,故A 正确;3 21802CAD CAB CAB EAD ∠=∠+∠=∠+∠-∠=︒-∠ ,2180CAD ∴∠+∠=︒,故B 正确;230∠=︒ ,390260∴∠=︒-∠=︒,45B ∠=︒ ,3B ∴∠≠∠,BC ∴和DA 不平行,故C 错误;230∠=︒ ,190260∴∠=︒-∠=︒,60E ∠=︒ ,1E ∴∠=∠,∴AC DF ∥,故D 正确.故选:C .【点拨】本题考查平行线的判定,关键是掌握平行线的判定方法.【变式2】(2024下·全国·七年级假期作业)如图,有下列说法:①若12∠=∠,则AB CD ∥;②若3=4∠∠,则AD BC ∥;③若180ABC BCD ∠+∠=︒,则AD BC ∥;④若13180ABC ∠+∠+∠=︒,则AD BC ∥.其中说法正确的有个.【答案】1【解析】略。
课题垂线及性质
【学习目标】
1.理解并掌握垂线的概念及性质,了解点到直线的距离.
2.能够运用垂线的概念及性质进行运算并解决实际问题.
【学习重点】
垂线的概念及性质的理解与应用.
【学习难点】
运用垂线的概念和性质解决相关问题.
行为提示:创景设疑,帮助学生知道本节课学什么.
行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.
归纳:由垂直可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直.
情景导入生成问题
旧知回顾:
1.对顶角有何性质?
答:对顶角相等.
2.余(补)角的性质是什么?
答:同角或等角的余(补)角相等.
3.如图,长方形木板ABCD相邻两边的夹角是多少度?这样的两条边所在直线有什么位置关系?
答:夹角为90°,两边所在直线垂直.
自学互研生成能力
阅读教材P41-42,完成下列问题:
什么是垂线?如何过一点画已知直线的垂线?
答:两条直线相交所成的四个角,如果有一个角为直角,则称这两条直线互相垂直,其中一条叫另一条的垂线,它们的交点叫垂足.
学习笔记:归纳:点到直线的距离是过一点作已知直线的垂线,垂线段的长度才是这一点到直线的距离.
行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.
学习笔记:
检测可当堂完成.
利用三角尺可以过一点画已知直线的垂线,如图分两种情况:(1)点A在直线l上;(2)点A在直线l外.过点A有且只有一条直线是直线l的垂线.
【归纳】平面内过一点有且只有一条直线与已知直线垂直.
范例1.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为( C )
A.35°B.45°
C.55°D.65°
仿例1.如图,EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为( C )
A.120°B.130° C.135° D.140°
, (范例1图) (仿例1图) (仿例2图) (仿
例3图))
仿例2.如图,∠AOB=180°,OD,OE分别是∠AOC和∠BOC的平分线,则与OD垂直的射线是( C )
A.OA B.OC C.OE D.OB
仿例3.(2016·周口期末)如图,直线AB、CD相交于O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE,则∠BOD =__75°__.
范例2.(1)如图,点P是直线l外一点,PO⊥l,点O是垂足,A、B、C在l上,比较PA、PB、PC与PO的大小,你发现了什么?
答:PO最短,直线外一点与直线上各点连接的所有线段中,垂线段最短;
(2)如图,过点A作l的垂线,垂足为B,线段AB的长度叫做点A到直线l的距离.
仿例自来水公司为某小区A改造供水系统,如图,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),
路线最短,工程造价最低,根据是__直线外一点与直线上各点连接的所有线段中,垂线段最短__.
交流展示生成新知
1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一垂线的定义和性质
知识模块二点到直线的距离
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。