形态学腐蚀膨胀.. 共26页
- 格式:ppt
- 大小:998.50 KB
- 文档页数:26
形态学运算中腐蚀,膨胀,开运算和闭运算(针对二值图而言)6.1腐蚀腐蚀是一种消除边界点,使边界向内部收缩的过程。
可以用来消除小且无意义的物体。
腐蚀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“与”操作如果都为1,结果图像的该像素为1。
否则为0。
结果:使二值图像减小一圈把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。
用公式表示为:E(X)={alBa C X}=X©B,如图6.8所示。
图6.8腐蚀的示意图图6.8中X是被处理的对象,B是结构元素。
不难知道,对于任意一个在阴影部分的点a,Ba包含于X,所以X被B腐蚀的结果就是那个阴影部分。
阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。
值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。
如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。
y图6.9结构元素非对称时,腐蚀的结果不同图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。
在图6.10中,左边是被处理的图象X (二值图象,我们针对的是黑点),中间是结构元素B ,那个标有origin 的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。
腐蚀的方法是,拿B 的中心点和X 上的点一个一个地对比,如果B 上的所有点都在X 的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。
可以看出,它仍在原来X 的范围内,且比X 包含的点要少,就象X 被腐蚀掉了一层。
o Q Q Q o & QO Qo Q o O oooo o o o o o 0- 0 O 0 o o •• • ■ Oo o oo o o 0 o o o o o 0 0 o o o ••o o o oo o o o ■ ■ o o 0 0 o o o ••o 0 0 oo o o 0 ■ • ♦ o QQ Q ■0 0 & o Q Q Q 0 0 * * 0 0 0 O 0 0 • ♦ ♦■ 0 Q Q ◎ 00o o ■ •0 0 o O ■ ■ ■ ■ *« O Q Qo o■ ■ ■ ■ Q Q c- O■ * ■ o GO O O O o o •o o ■ •• ■ o o o o O oO ■ ■ ■o 0o O O o O ♦<Q 0■••■ o a o o O o O o o 0 0 o 0oO o oooo\>o0 00o o o o 0 0 0'originFEX e 6图6.10腐蚀运算 图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。
第6章腐蚀,膨胀,细化算法这一章的内容我认为是最有趣的。
还记得前言中那个抽取骨架的例子吗?现在我们就来看看它是如何实现的。
今天所讲的内容属于一门新兴的学科:数学形态学(Mathematical Morphology)。
说起来很有意思,它是法国和德国的科学家在研究岩石结构时建立的一门学科。
形态学的用途主要是获取物体拓扑和结构信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。
在图象处理中的应用主要是:(1)利用形态学的基本运算,对图象进行观察和处理,从而达到改善图象质量的目的;(2)描述和定义图象的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。
限于篇幅,我们只介绍二值图象的形态学运算,对于灰度图象的形态学运算,有兴趣的读者可以阅读有关的参考书。
在程序中,为了处理的方便,还是采用256级灰度图,不过只用到了调色板中的0和255两项。
先来定义一些基本符号和关系。
1.元素设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。
2.B包含于X设有两幅图象B,X。
对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作B X,如图6.2所示。
3.B击中X设有两幅图象B,X。
若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作B↑X,如图6.3所示。
4.B不击中X设有两幅图象B,X。
若不存在任何一个点,它即是B的元素,又是X的元素,即B和X的交集是空,则称B不击中(miss)X,记作B∩X=Ф;其中∩是集合运算相交的符号,Ф表示空集。
如图6.4所示。
图6.1 元素图6.2 包含图6.3 击中图6.4 不击中5.补集设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作X c,如图6.5所示。
显然,如果B∩X=Ф,则B在X的补集内,即B X c。
图6.5 补集的示意图6.结构元素设有两幅图象B,X。
形态学处理膨胀和腐蚀好嘞,今天我们聊聊形态学处理里的膨胀和腐蚀。
这听起来像是高深的科学名词,其实它们在图像处理里就像是咱们生活中的调味品,能让你的图像变得更美味。
想象一下,你在厨房里做饭,光有盐和胡椒可不够,还得有些独特的香料来提升风味。
膨胀和腐蚀就是这样的小秘密。
咱们来说说膨胀。
这就像是给图像穿了一层华丽的衣服,真是让人眼前一亮。
你想想,图像上的小点点在这个过程中就像是被“喂胖”了一样,慢慢膨胀开来。
你瞧,原本那些稀稀拉拉的像素瞬间变得丰满起来,边缘变得更加圆润,整个图像看起来更饱满、更有活力。
是不是感觉就像看到朋友从一个青涩少年变成了一个风度翩翩的大叔,心里那个自豪啊,真想给他来个大拇指!这样处理过的图像,边缘更光滑,缺口也不见了,真是妙不可言。
不过,膨胀也有它的小麻烦。
就好比我们偶尔吃多了,肚子胀得不行。
有些细节可能就被淹没了,原本清晰的轮廓可能变得模糊不清。
想象一下,你在画画,结果一不小心把颜色泼到了旁边,哎,真是得不偿失。
要是这图像里的信息被淹没了,那可就麻烦了。
所以,咱们在使用膨胀的时候,要谨慎点,心里得有数,别让它把一切都搞得一团糟。
接下来就是腐蚀了,听起来是不是有点严肃?别担心,这可不是要让你的图像变得灰暗。
腐蚀其实就像是给图像减肥,帮助那些多余的部分去掉。
就像你秋天扫落叶,清理掉那些多余的杂草,留下干净整洁的花园。
经过腐蚀处理后,图像的细节会更加明显,原本杂乱的背景也会变得更加整洁,仿佛一下子清晰了不少。
这时候,边缘变得尖锐了,形状更加分明。
就像你用刀切蛋糕,切出的每一块都是那么整齐。
可是,腐蚀也是有它的短板哦。
减肥太过了,可能连必要的部分也一起减掉,最终图像看起来就像是被削减了好几块,失去了原有的风采。
这样一来,原本生动的画面瞬间变得干瘪,真是让人心疼。
咱们再说说这两者的结合,嘿,这可是魔法般的存在。
膨胀和腐蚀如果搭档起来,简直就像是一个完美的舞蹈组合。
先来个膨胀,让图像膨胀得更丰满,再进行腐蚀,修剪掉那些不必要的部分,最终呈现出的效果,简直就像是经过打磨的璀璨钻石,闪闪发光。
形态学处理简述膨胀和腐蚀的运算原理和适用场合下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!形态学处理:膨胀与腐蚀运算原理与适用场合1. 引言形态学处理是数字图像处理领域中的重要技术之一,其中膨胀与腐蚀是两种基础的形态学运算。
数学形态学运算——腐蚀、膨胀、开运算、闭运算腐蚀简单说:就是以结构B的原点为基点沿着将要被腐蚀的图像A中的所有点移动,如果此时结构B中的所有点(包括原点)被A包含,那么被B原点沿着的A中的该点就保留,否则,该点就被抛弃。
可以看出,执行完该腐蚀指令后,A中突出部分,以及外围至少减少了结构B的一半(假设B的原点为B的中心)。
膨胀简单说:就是以结构B的原点为基点沿着将要被膨胀前的图像A中的所有点移动,如果此时结构B中至少有一个点(包括原点)被A包含,那么被沿着的A中的该点及周围就被B扩充,扩充范围为B的整个区域。
可以看出,膨胀后,原A沿着边缘外围被扩充了B的一半(假设B的原点为B的中心)。
数学形态学操作可以分为二值形态学和灰度形态学,灰度形态学由二值形态学扩展而来。
数学形态学有2个基本的运算,即腐蚀和膨胀,而腐蚀和膨胀通过结合又形成了开运算和闭运算。
开运算就是先腐蚀再膨胀,闭运算就是先膨胀再腐蚀。
腐蚀粗略的说,腐蚀可以使目标区域范围“变小”,其实质造成图像的边界收缩,可以用来消除小且无意义的目标物。
式子表达为:该式子表示用结构B腐蚀A,需要注意的是B中需要定义一个原点,【而B的移动的过程与卷积核移动的过程一致,同卷积核与图像有重叠之后再计算一样】当B的原点平移到图像A的像元(x,y)时,如果B在(x,y)处,完全被包含在图像A重叠的区域,(也就是B中为1的元素位置上对应的A图像值全部也为1)则将输出图像对应的像元(x,y)赋值为1,否则赋值为0。
我们看一个演示图。
B依顺序在A上移动(和卷积核在图像上移动一样,然后在B的覆盖域上进行形态学运算),当其覆盖A的区域为[1,1;1,1]或者[1,0;1,1]时,(也就是B中‘1’是覆盖区域的子集)对应输出图像的位置才会为1。
膨胀粗略地说,膨胀会使目标区域范围“变大”,将于目标区域接触的背景点合并到该目标物中,使目标边界向外部扩张。
作用就是可以用来填补目标区域中某些空洞以及消除包含在目标区域中的小颗粒噪声。
形态学运算中腐蚀,膨胀,开运算和闭运算(针对二值图而言)6.1 腐蚀腐蚀是一种消除边界点,使边界向内部收缩的过程。
可以用来消除小且无意义的物体。
腐蚀的算法:用3x3的结构元素,扫描图像的每一个像素用结构元素与其覆盖的二值图像做“与”操作如果都为1,结果图像的该像素为1。
否则为0。
结果:使二值图像减小一圈把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。
用公式表示为:E(X)={a| Ba X}=X B,如图6.8所示。
图6.8 腐蚀的示意图图6.8中X是被处理的对象,B是结构元素。
不难知道,对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B腐蚀的结果就是那个阴影部分。
阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。
值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。
如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。
图6.9 结构元素非对称时,腐蚀的结果不同图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。
在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。
腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。
可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。
图6.10 腐蚀运算图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。
图6.11 原图图6.12 腐蚀后的结果图下面的这段程序,实现了上述的腐蚀运算,针对的都是黑色点。
形态学(膨胀、腐蚀、开运算和闭运算)
形态学是数字图像处理中常用的一种方法,主要包括膨胀、腐蚀、开运算和闭运算四种基本操作。
这些操作可以用来改变图像的形状和结构,从而实现对图像的分割、特征提取和去噪等处理。
膨胀是形态学处理中的一种操作,其主要作用是扩张图像中的目标区域。
具体来说,膨胀操作会将目标区域的边界向外扩展,使得目标变得更加完整和连通。
膨胀操作常常用于填充图像中的空洞、连接断裂的目标以及增加目标的大小和粗细。
与膨胀相反,腐蚀是一种将目标区域缩小和削弱的操作。
腐蚀操作会消除目标区域的边界像素,使得目标变得更加细化和疏松。
腐蚀操作常常用于去除图像中的噪声、分割目标区域以及减小目标的大小和粗细。
开运算是先进行腐蚀操作,再进行膨胀操作的组合操作。
开运算可以去除图像中的小型噪声,并使得目标区域更加平滑和连续。
开运算的效果类似于平滑滤波,可以减少图像中的细节和边缘。
闭运算是先进行膨胀操作,再进行腐蚀操作的组合操作。
闭运算可以填充图像中的小型空洞,并使得目标区域更加完整和连通。
闭运算的效果类似于形态学填充,可以增加目标的大小和粗细。
总的来说,形态学操作是一种非常有效的图像处理方法,可以用来改变图像的形状和结构,从而实现各种图像处理任务。
膨胀、腐蚀、
开运算和闭运算是形态学处理中常用的四种基本操作,它们各自具有不同的作用和效果,可以根据实际需求灵活选择和组合。
形态学操作在数字图像处理中有着广泛的应用,可以帮助我们更好地理解和处理图像数据,提取有用信息并实现各种图像处理任务。