实验9-陶瓷材料烧结工艺和性能测试
- 格式:doc
- 大小:191.50 KB
- 文档页数:14
一、实验目的本次实验旨在了解陶瓷的烧制过程,掌握陶瓷烧制的基本技术,熟悉陶瓷原料的选取、制备、成型、装饰及烧成等各个环节,提高对陶瓷工艺的认识和操作技能。
二、实验原理陶瓷烧制是将陶瓷原料在高温下烧结成瓷的过程。
在烧制过程中,原料中的矿物质发生一系列物理和化学变化,形成具有一定强度和美观性的陶瓷制品。
三、实验材料与仪器1. 实验材料:高岭土、石英、长石、粘土、釉料等。
2. 实验仪器:陶瓷球磨机、陶瓷拉坯机、陶瓷成型模具、陶瓷窑炉、高温电炉、陶瓷喷枪、陶瓷颜料等。
四、实验步骤1. 原料选取与制备(1)选取高岭土、石英、长石、粘土等原料。
(2)将原料进行球磨,使其达到一定的细度。
(3)将球磨后的原料混合均匀,制成陶瓷泥料。
2. 成型(1)将陶瓷泥料放入陶瓷拉坯机,通过旋转拉坯机,用手和拉坯工具将泥料拉成瓷坯。
(2)将瓷坯放入陶瓷成型模具中,使其成型。
3. 装饰(1)用陶瓷喷枪在瓷坯表面喷洒釉料。
(2)用陶瓷颜料在瓷坯表面进行绘画。
4. 烧成(1)将装饰好的瓷坯放入匣钵中。
(2)将匣钵放入陶瓷窑炉中,进行低温预热。
(3)逐渐提高窑炉温度,使瓷坯达到烧结温度。
(4)保持烧结温度一段时间,使瓷坯充分烧结。
(5)逐渐降低窑炉温度,使瓷坯缓慢冷却。
五、实验结果与分析1. 原料选取与制备实验中选取的高岭土、石英、长石、粘土等原料,经过球磨、混合后制成的陶瓷泥料,具有良好的可塑性。
2. 成型通过陶瓷拉坯机和成型模具,成功地将陶瓷泥料拉成瓷坯,并使其成型。
3. 装饰用陶瓷喷枪喷洒釉料,使瓷坯表面光滑;用陶瓷颜料进行绘画,使瓷坯更具艺术性。
4. 烧成在陶瓷窑炉中,瓷坯经过烧结和冷却过程,最终成为具有一定强度和美观性的陶瓷制品。
六、实验总结通过本次实验,我们对陶瓷的烧制过程有了较为全面的了解,掌握了陶瓷烧制的基本技术。
在实验过程中,我们体会到以下几点:1. 陶瓷原料的选取与制备对陶瓷制品的质量有重要影响。
2. 成型、装饰、烧成等环节对陶瓷制品的美观性和实用性至关重要。
第1篇一、实验目的1. 了解化学陶瓷的基本性质和制备方法。
2. 掌握化学陶瓷的烧结过程及影响因素。
3. 熟悉化学陶瓷的性能测试方法。
二、实验原理化学陶瓷是一种具有特定化学成分和结构的陶瓷材料,其制备过程涉及原料的选择、配料、成型、烧结和性能测试等环节。
化学陶瓷具有高强度、高硬度、高耐磨性、耐腐蚀性、耐高温性等优异性能,广泛应用于航空航天、电子信息、汽车制造、建筑等领域。
本实验主要研究化学陶瓷的制备和性能测试,通过对原料的选择、配料、成型、烧结等环节的探讨,了解化学陶瓷的基本性质,并掌握其性能测试方法。
三、实验仪器与试剂1. 仪器:高温炉、球磨机、模具、压片机、烧结炉、电热鼓风干燥箱、超声波清洗机、万能力学试验机、电子天平、红外光谱仪、X射线衍射仪等。
2. 试剂:氧化铝、氧化锆、碳化硅、氮化硅等原料,以及粘土、滑石粉、长石等熔剂。
四、实验步骤1. 原料选择与配料:根据化学陶瓷的性能要求,选择合适的原料,如氧化铝、氧化锆、碳化硅、氮化硅等。
按照一定比例进行配料,确保化学成分的稳定性。
2. 混合与球磨:将配料放入球磨机中,加入适量的水或有机溶剂,进行球磨处理,使原料充分混合,提高颗粒的分散性和均匀性。
3. 成型:将球磨后的浆料倒入模具中,通过压片机压制成一定厚度的陶瓷片。
4. 烧结:将压制成型的陶瓷片放入烧结炉中,按照一定升温曲线进行烧结。
烧结过程中,原料发生化学反应,形成化学键,使陶瓷材料具有致密的结构。
5. 性能测试:对烧结后的化学陶瓷进行性能测试,包括力学性能、热性能、电性能等。
五、实验结果与分析1. 力学性能:通过万能力学试验机对烧结后的化学陶瓷进行抗压强度、抗折强度等力学性能测试。
实验结果表明,化学陶瓷具有较高的抗压强度和抗折强度,满足实际应用需求。
2. 热性能:利用红外光谱仪对化学陶瓷进行热性能测试,包括热膨胀系数、热导率等。
实验结果表明,化学陶瓷具有较低的热膨胀系数和较高的热导率,具有良好的热稳定性。
陶瓷材料力学性能的检测方法为了有效而合理的利用材料,必须对材料的性能充分的了解。
材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。
物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。
化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。
工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。
机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。
而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。
1. 弯曲强度弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。
四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。
而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。
但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。
图1-1 三点弯曲和四点弯曲示意图由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为:zI My =σ在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为:=∙⎪⎭⎫⎝⎛∙=zI y a P max max 21σ⎪⎩⎪⎨⎧圆形截面 16矩形截面 332DPa bh Paπ其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。
因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。
而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:=∙⎪⎭⎫⎝⎛∙=zI y a P l max max 4σ⎪⎩⎪⎨⎧圆形截面 8矩形截面 2332DPl bh Plπ式中l 为两个支点之间的距离(也称为试样的跨度)。
第22章陶瓷烧结工艺烧结温度T s和熔融温度T m之间的关系有一定的规律:z金属粉末T s=(0.3~0.4)T m,z盐类T s=0.57T m,z硅酸盐(0.6~0.8)T m。
§22.1 固相烧结22.1.1 烧结驱动力z烧结致密化的驱动力是固气界面消除所造成的表面积减少和表面自由能降低,以及新的能量更低的固-固界面的形成所导致的烧结过程中自由能发生的变化。
z细小的陶瓷颗粒,不仅有利于可塑性成型的制造过程,它所产生的表面能在烧成时也成为有利于致密化的推动力。
22.1.2 烧结模型z1949年库钦斯基(Kukansky)提出等径球体作为粉末压块的模型,随烧结的进行,球体的接触点开始形成颈部并逐渐扩大,最后烧结成一个整体。
z由于颈部所处环境和几何条件基本相同,因此只需确定两个颗粒形成颈的生长速率就基本代表了整个烧结初期的动力学关系。
22.1.3 传质机理一、蒸发—凝聚z在高温过程中,由于颗粒表面曲率的不同,必然在系统的不同部位有不同的蒸气压,在蒸气压差的作用下,存在一种传质趋势。
图22-1 蒸发—凝聚烧结的起始阶段z可以观察到,烧结初期的烧结速率随t的1/3次方而变化,随烧结的进行,颈部生长很快就停止了。
可以认为这种传质过程用延长烧结时间不能达到促进烧结的效果。
z除了时间因素.在蒸发-凝聚过程中,起始颗粒尺寸及蒸气压也是影响接触颈部生长速率的重要因素。
起始颗粒尺寸越小,烧结速率越大。
提高温度有利于提高蒸气压,因而对烧结有利。
z对微米级的颗粒尺寸,气相传质要求蒸气压的数量级为10-4~10-5大气压,这高于氧化物或类似材料在烧结时的蒸气压,如Al2O3在1200℃时的蒸气压只有10-46大气压,因而这种传质方式在一般陶瓷材料的烧结中并不多见。
二、扩散过程z对大多数高温蒸气压低的固体材料,物质的传递可能更容易通过固态过程产生;颈部区域和颗粒表面之间的自由能或化学势之差,提供了固态传质可以利用的驱动力。
陶瓷中试实验报告陶瓷中试实验报告一、引言陶瓷是一种古老而又广泛应用的材料,具有耐高温、耐腐蚀、绝缘性能等优点,因此在建筑、电子、化工等领域得到了广泛的应用。
本次实验旨在通过中试实验,研究陶瓷材料的制备工艺和性能,为陶瓷的生产提供参考。
二、材料与方法1. 材料:本次实验采用的陶瓷材料为氧化铝和硅酸铝,分别作为主要原料进行制备。
2. 方法:首先将氧化铝和硅酸铝按照一定比例混合,然后加入适量的水,搅拌均匀形成陶瓷浆料。
接着将浆料倒入模具中,经过压制和干燥后,进行烧结处理。
最后进行陶瓷样品的性能测试。
三、实验结果与分析1. 制备工艺:通过实验发现,氧化铝和硅酸铝的比例对陶瓷材料的性能有着重要影响。
当氧化铝的含量较高时,陶瓷材料的硬度和耐磨性提高,但韧性和强度下降;而硅酸铝的含量较高时,陶瓷材料的韧性和强度增加,但硬度和耐磨性降低。
因此,在实际生产中需要根据具体的应用需求选择合适的比例。
2. 性能测试:对制备好的陶瓷样品进行性能测试,包括硬度、抗压强度、热膨胀系数等指标。
实验结果显示,陶瓷材料具有较高的硬度和抗压强度,适用于承受较大压力和磨损的环境。
同时,陶瓷材料的热膨胀系数较低,具有较好的热稳定性,适用于高温环境下的使用。
3. 微观结构分析:通过扫描电镜观察陶瓷样品的微观结构,发现陶瓷材料呈现出均匀致密的结构,晶粒较小且分布均匀。
这种结构使得陶瓷材料具有良好的力学性能和热稳定性,能够承受较大的外力和高温环境的影响。
四、结论与展望通过本次陶瓷中试实验,我们得到了一系列关于陶瓷材料制备工艺和性能的重要结果。
根据实验结果,我们可以根据具体应用需求选择合适的原料比例,制备出具有良好性能的陶瓷材料。
同时,我们也发现陶瓷材料的微观结构对其性能有着重要影响,因此可以通过调控工艺参数来改善陶瓷材料的性能。
未来,我们还可以进一步研究陶瓷材料的其他性能指标,如导热性能、电绝缘性能等,并探索更多的原料组合和工艺参数,以提高陶瓷材料的综合性能。
陶瓷感应烧结实验报告陶瓷感应烧结实验报告一、实验目的1. 学习和掌握陶瓷感应烧结的原理和方法;2. 通过实验观察和分析,了解陶瓷感应烧结的影响因素;3. 提高实验操作能力和实验报告撰写能力。
二、实验原理陶瓷感应烧结是一种常用的陶瓷材料制备方法。
它利用电磁感应的原理,在陶瓷材料中加热加压,使其粒子结合成致密的块状物质。
实验中使用了感应加热器、烧结模具等设备。
三、实验步骤1. 准备工作:将陶瓷粉末样品准备好,并根据实验方案确定烧结温度和时间。
2. 实验操作:将陶瓷粉末样品放入烧结模具中,并根据需要添加适量的添加剂。
3. 装模和加压:将烧结模具放入感应加热器中,调整加热温度和压力。
根据实验方案对样品进行加热和加压。
4. 烧结处理:根据实验参数进行烧结处理,在感应加热器中进行加热一定时间。
5. 实验结束:待烧结时间到达后,关闭感应加热器,待样品冷却后取出。
四、实验结果和分析在实验过程中,我们选择了不同的烧结温度和时间对陶瓷样品进行烧结处理。
观察实验结果可以发现,随着烧结温度和时间的增加,陶瓷样品的致密性逐渐增强。
此外,我们还测试了不同添加剂对陶瓷烧结的影响。
通过添加适量的添加剂,可以改善陶瓷样品的导电性能和力学性能。
五、实验总结通过本次陶瓷感应烧结实验,我们学习和掌握了陶瓷感应烧结的原理和操作方法。
在实验过程中,我们观察到了不同条件下陶瓷样品的烧结效果,并分析了影响烧结效果的因素。
实验中,我们发现烧结温度和时间是影响烧结效果的重要因素。
较高的烧结温度和适当的烧结时间可以促进陶瓷样品的致密化。
此外,添加剂的选择也对陶瓷烧结效果有影响,适量的添加剂可以改善陶瓷样品的性能。
通过本次实验,我们不仅提高了实验操作能力,还锻炼了实验报告撰写能力。
希望今后能够应用所学的知识,探索更多陶瓷材料的制备和性能研究。
一、实验目的1. 了解材料烧结的基本原理和工艺过程;2. 掌握烧结实验的基本操作和数据处理方法;3. 熟悉烧结过程中的影响因素,为后续材料制备提供理论依据。
二、实验原理烧结是指将粉末材料加热到一定温度,使其颗粒表面熔融,通过冷却结晶和晶粒长大,使粉末材料转变为具有一定性能的致密材料的工艺过程。
烧结过程主要包括预热、烧结和冷却三个阶段。
三、实验材料与仪器1. 实验材料:金属粉末、陶瓷粉末等;2. 实验仪器:高温炉、电子天平、样品夹具、温度计、金相显微镜等。
四、实验方法1. 样品制备:将粉末材料按照一定比例混合均匀,压制成所需形状和尺寸的样品;2. 烧结:将样品放入高温炉中,按照预定温度和时间进行烧结;3. 冷却:烧结完成后,将样品从高温炉中取出,自然冷却至室温;4. 性能测试:对烧结后的样品进行力学性能、显微结构等性能测试。
五、实验步骤1. 样品制备:将金属粉末和陶瓷粉末按照一定比例混合均匀,压制成直径20mm、高10mm的圆柱形样品;2. 烧结:将样品放入高温炉中,以10℃/min的升温速率加热至1200℃,保温1小时,然后以10℃/min的降温速率冷却至室温;3. 性能测试:对烧结后的样品进行力学性能测试,包括抗拉强度、抗压强度和硬度测试;同时,利用金相显微镜观察样品的显微结构。
六、实验结果与分析1. 力学性能测试结果:抗拉强度:XX MPa;抗压强度:XX MPa;硬度:XX Hv。
2. 显微结构分析:通过金相显微镜观察,烧结后的样品表面光滑,内部组织致密,无明显气孔和裂纹。
3. 分析:(1)烧结温度对样品力学性能的影响:随着烧结温度的升高,样品的抗拉强度、抗压强度和硬度均有所提高。
这是由于高温下粉末颗粒表面熔融,使得晶粒生长更加充分,从而提高了材料的力学性能;(2)烧结时间对样品力学性能的影响:在一定范围内,烧结时间的延长有助于提高样品的力学性能。
这是由于烧结时间的延长使得晶粒生长更加充分,从而提高了材料的力学性能;(3)粉末材料配比对样品力学性能的影响:金属粉末和陶瓷粉末的配比对样品的力学性能有较大影响。
金属陶瓷材料的烧结工艺与性能研究金属陶瓷材料是一种独特的材料,它综合金属和陶瓷的优点,具有高强度、硬度和耐磨性等独特性能。
然而,要实现这些优良性能,烧结工艺在金属陶瓷材料的制备过程中起着至关重要的作用。
本文将探讨金属陶瓷材料的烧结工艺,并研究其对材料性能的影响。
1. 烧结工艺的基本原理烧结是指将粉末形式的原料在一定温度下加热处理,使颗粒之间发生颗粒间结合并形成致密的材料。
金属陶瓷材料的烧结工艺主要包括压制和烧成两个步骤。
首先,将粉末按照一定的比例混合,并加入有机粘结剂,通过压制形成所需形状的坯体。
然后,将坯体放入高温炉中,进行烧结过程。
在高温下,有机粘结剂会燃烧掉,原材料颗粒之间发生扩散反应,形成结晶颗粒,进而实现颗粒间的结合。
2. 烧结工艺对材料性能的影响烧结工艺对金属陶瓷材料的性能起着重要的影响。
首先,烧结温度和时间对材料的致密度和结晶度有直接影响。
较高的烧结温度和较长的烧结时间能够使颗粒之间更加紧密地结合,从而增强材料的强度和硬度。
然而,过高的烧结温度可能导致材料的晶粒长大过大,使材料的韧性降低。
因此,在烧结过程中需要控制好温度和时间的参数。
其次,烧结工艺还会影响材料的微观结构和晶界特性。
良好的烧结工艺可以使材料的晶界清晰且紧密,从而提高材料的耐磨性和耐腐蚀性。
另外,适当的烧结工艺还能够调控材料的孔隙率和孔径分布,提高材料的气密性和导热性能。
同时,烧结工艺对材料的物理性能和化学性能也有一定的影响。
烧结过程中可能会引入杂质或氧化物,从而影响材料的导电性和热稳定性。
因此,在烧结前需要对原料进行严格的筛选和处理,以确保所得材料的纯度和稳定性。
3. 改善烧结工艺的方法为了改善金属陶瓷材料的烧结工艺和性能,可以采取一些措施。
首先,可以通过优化原料粉末的物理性质和颗粒分布,提高材料的流动性和均匀性。
其次,可以调整压制工艺中的压力和模具形状,以保证坯体的致密度和形状的一致性。
此外,可以引入特殊的助剂和添加物,调节材料的烧结过程和相变行为,改善材料的晶界微观结构和性能。
陶瓷烧结摘要:本篇实习报告主要通过烧结陶瓷的过程了解到热敏电阻陶瓷的性质,发展现状,及制作过程。
其次,总结了实习过程中的理论、步骤以及相关事件的处理。
关键词:热敏电阻陶瓷;实习方法与步骤;结论1 实习目的与背景1.1 合成的目的与本专业核燃料、废物固化体的关系自从1942年第一座核反应堆在美国建立,核工业已经发展了70多年。
期间核工业的发展中心从核武器转移到了核能应用上,目前各国又开始共同研究聚变核反应堆。
在这期间应用于核工业中的材料也在不断发展,其中陶瓷材料则在核工业中的材料选择上受到重视,并广泛地应用于核反应堆原料、组件以及核废料处理等各个方面。
陶瓷材料在核工业中的大量应用离不开它本身具有的性能优势。
陶瓷具有强度大、刚度好、耐腐蚀、化学稳定性好的特点,而随着陶瓷材料的进一步发展(比如陶瓷基复合材料的发展),材料性能中的一些薄弱环节像韧性差、难加工等方面也得到了一定的改进。
此外,陶瓷材料还具有耐高温、抗辐射的性能,一些特定的陶瓷还有活性低、能吸收中子的特点,这些性能都有助于其在高温高辐射的核工业环境下的应用。
而对于核废料的处理也一直是各个国家所担忧的又一实际问题。
将核废料封入合成岩中是当前最为现实的做法,合成岩于上世纪70年代研制,用于储存高放核废料。
在设计上,合成岩可以吸收清水反应堆和钚核裂变产生的特定废物,能够将核废料封入晶格内,用以模拟在地质构造上较为稳定的矿石。
1.2 文献调研与分析目前通用型NTC热敏电阻材料,大多是在Mn-Co-Ni-Cu-Fe系过渡金属氧化物中选择2~4种,经配料、成型、烧结等传统陶瓷工艺制成热敏电阻器。
其性能与组成(配比)、烧结、退火处理、封装等工艺条件有密切关系。
在空气中烧结成的NTC热敏电阻材料ρ=1~108Ω•cm,B=1000~7000K,其使用温度范围为-50~+300℃。
随着NTC热敏电阻器应用领域的扩大,对其性能的要求也日益提高。
就目前情形而言,对能在高温条件下使用的NTC元件,要求十分严格,例如在汽车发动机使用电子计算机控制系统后,为了限制尾气中有害气体的排放量(CO、NOx、CHx等有害气体),要求对排气口温度进行有效的测控。
瓷材料烧结工艺和性能测试实验指导书1实验目的和意义1)了解和掌握在实验室条件下制备功能瓷材料的典型工艺和原理,包括配方计算、称量、混料、筛分、造粒、成型、排塑、烧结、加工、物理与电学性能测试等基本过程,本实验以多功能TiO2 压敏瓷的制备和性能检测为实例。
2)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间。
2 实验背景知识2.1 试样制备2.1.1 敏感瓷的原理敏感瓷材料是某些传感器中的关键材料之一,用于制作敏感元件,它是一类新型多晶半导体功能瓷。
敏感瓷材料是指当作用于有这些材料制造的原件上的某一个外界条件,如温度、压力、湿度、气氛、电场、光及射线改变时,能引起该材料某种物理性能的变化,从而能从这种元件上准确迅速的获得某种有用的信号。
按其相应的特性把这些材料分别称作为热敏、压敏、湿敏、光敏、气敏及离子敏感瓷。
敏感瓷就是通过微量杂质的掺入,控制烧结气氛(化学计量比偏离)及瓷的微观结构,可以使传统绝缘瓷半导体化,并使其具备一定的性能。
瓷是由晶粒、晶界、气孔组成的多相系统,通过人为掺杂,造成晶粒表面的组分偏离,在晶粒表层产生固溶、偏析及晶格缺陷;在晶界处产生异质相的析出、杂质的聚集,晶格缺陷及晶格各向异性等。
这些晶粒边界层的组成、结构变化,显著改变了晶界的电性能,从而导致整个瓷电气性能的显著变化。
2.1.2 压敏瓷的原理压敏半导体瓷是指电阻值与外加电压成显著的非线性关系的半导体瓷。
使用时加上电极后包封即成为压敏电阻器。
制造压敏电阻器的半导体瓷材料主要有SiC、ZnO、BaTiO3、Fe2O3、SnO2、SrTiO3、TiO2 等。
其中BaTiO3、Fe2O3 利用的是电极与烧结体界面的非欧姆特性,而SiC、ZnO、SrTiO3、TiO2 利用的是晶界的非欧姆特性,目前在高压领域中应用最广、性能最好的是ZnO 压敏瓷。
氧化锌压敏电阻器的I-V 特性曲线(左图)及其示意图(右图)由于大规模集成电流的广泛使用,对变阻器的要更小更薄,具有更多功能和相对较低漏电流。
根据这些新要求和压敏功能与瓷显微结构的关系,人们把研究的注意力集中到具有半导体晶界效应的TiO2材料方面。
2.1.3 材料的微观结构和设计电子瓷的电阻是由晶粒和晶界的电阻组成的,压敏电阻器是利用电子瓷的晶界效应,晶粒的电阻率要很小。
晶界实在瓷的烧结过程中,随着晶粒长大,部分添加剂偏析在晶粒之间形成的。
压敏电阻器的阻值是随着外加的电压而变化的,当外加电压低于压敏电压时,材料的晶界势垒高,压敏电阻表现为高阻状态,这时的电阻主要来源于晶界;当外加电压达到压敏电压时,电阻将随着电压的增加而急剧下降,这使得晶界势垒将被击穿,其阻值主要由晶粒电阻所决定。
考虑到压敏电阻器的这种电阻变化特性,要求压敏瓷的晶界势垒B 要高,使境界称为一个高阻的晶界层,而晶层界的厚度t 要窄,即易发生隧道击穿,并且晶粒的电阻率要很小,有利于压敏瓷由高阻状突变为低阻状态。
2.1.4 试样的制备与性能A.添加剂的掺杂为了降低晶粒的电阻率,就必须使TiO2 晶粒半导体化。
由于TiO2 材料存在有本征缺陷和钛离子填隙,已经使得TiO2 变成一种弱n 型半导体。
为进一步降低材料的晶粒电阻掺入高价离子,如5 价离子Nb5+、Ta5+和6 价离子W6+来替代Ti4+形成晶格替位,可以发生如下缺陷反应:Sb2O5→2 SbTi + 2e′+ Oox +1/2O2 (g)式中:SbTi——占据钛离子格点位置带有一个正电荷的锑离子;e′——一个电子的电荷;Oox——占据氧个点位置的原子;TiO2 材料中晶粒载流子浓度为:n=[ SbTi]从理论上说,随着掺杂Sb2O5 浓度的增加,载流子浓度不断增加,晶粒的电阻率应当不断下降,实际上开始时随着Sb2O5 含量的增加,晶粒电阻率急剧减小,但是当其含量超过一定值以后,晶粒的电阻率稍有增加。
这可能是由于掺杂过多时,不能够形成替位杂质,不能提供自由电子,而杂志的增加,导致杂质散射作用增强。
B.烧结过程的控制烧结温度和保温时间一直是工艺研究的主要容,直接影响材料的半导化、致密化及添加物在主成分中的扩散过程。
烧结温度显著影响材料的电学性能。
适当的烧结温度,可使晶粒生长充分,并降低压敏电压、完善晶界的形成;过高的烧结温度会使晶粒过分长大,导致晶界不稳定;过低的烧结温度不利于势垒的形成,压敏性能较差。
适当的保温时间是获得一定高度晶界势垒、形成良好压敏特性晶界的必备条件。
TiO2 压敏电阻器在烧成时容易受氧分压的控制,较低的氧分压有利于晶粒的半导化,获得较好的压敏性能。
在烧结后冷却过程中,空气中的氧沿晶界扩散,使晶界层绝缘化更加充分,但在高氧化气氛条件下,非线性系数主要取决于表面氧化层。
由此表明,工艺极影响TiO2 压敏电阻的微观结构和电学性能。
2.2 球磨机工作原理对原料进行球磨的目的主要有两个:(1)使物料粉碎至一定的细度;(2)使各种原料相互混合均匀。
瓷工业生产中普遍采用的球磨机主要是靠装一定研磨体的旋转筒体来工作的。
当筒体旋转时带动研磨体旋转,靠离心力和摩擦力的作用,将研磨体带到一定高度。
当离心力小于其自身重量时,研磨体落下,冲击下部研磨体及筒壁,而介于其间的粉料便受到冲击和研磨,故球磨机对粉料的作用可分成两个部分:(1)研磨体之间和研磨体与筒体之间的研磨作用;(2)研磨体下落时的冲击作用。
为提高球磨机的粉碎效率,主要应考虑以下几个影响因素:1、球磨机转速。
当转速太快时,离心力大,研磨体附在筒壁上与筒壁同步旋转,失去研磨和冲击作用。
当转速太慢时,离心力太小,研磨体升不高就滑落下来,没有冲击能力。
只有转速适当时,磨机才具有最大的研磨和冲击作用,产生最大的粉碎效果。
合适的转速与球磨机的径、衬、研磨体种类、粉料性质、装料量、研磨介质含量等有关系。
2、研磨体的比重、大小和形状。
应根据粉料性质和粒度要求全面考虑,研磨体比重大可以提高研磨效率,而且直径一般为筒体直径的1/20,且应大、中、小搭配,以增加研磨接触面积。
圆柱状和扁平状研磨体因其接触面积大,研磨作用强,而圆球状研磨体的冲击力较集中。
3、料、球、水的比例。
球磨机筒体的容积是固定的。
原料、磨球(研磨体)和水(研磨介质)的装载比例会影响到球磨效率,应根据物料性质和粒度要求确定合适的料、球、水比例。
2.3 材料的成型2.3.1 成型前粉料预处理为使粉料更适合成型工艺的要求,在需要时应对已粉碎、混合好的原料进行某些预处理:(1) 塑化:传统瓷材料中常含有粘土,粘土本身就是很好的塑化剂;只有对那些难以成型的原料,为提高其可塑性,需加入一些辅助材料:①粘结剂:常用的粘结剂有:聚乙烯醇、聚乙烯醇缩丁醛、聚乙二醇、甲基纤维素、羧甲基纤维素、羟丙基纤维素、石蜡等。
②增塑剂:常用的增塑剂有:甘油、酞酸二丁酯、草酸、乙酸二甘醇、水玻璃、粘土、磷酸铝等。
③溶剂:能溶解粘结剂、增塑剂,并能和物料构成可塑物质的液体。
如水、乙醇、丙酮、苯、醋酸乙酯等。
选择塑化剂要根据成型方法、物料性质、制品性能要求、添加剂的价格以及烧结时是否容易排除等条件,来选择添加剂的种类及其加入量;(2) 造粒:粉末越细小,其烧结性能越良好;但由于粉末太细小,其松装比重小、流动性差、装模容积大,因而会造成成型困难,烧结收缩严重,成品尺寸难以控制等困难。
为增强粉末的流动性、增大粉末的堆积密度,特别是采用模压成型时,有必要对粉末进行造粒处理。
常用的方法是,用压块造粒法来造粒:将加好粘结剂的粉料,在低于最终成型压力的条件下,压成块状,然后粉碎、过筛;(3)浆料:为了适应注浆成型、流延成型、热压铸成型工艺的需要,必须将瓷粉料调制成符合各种成型工艺性能的浆料。
2.3.2 模压(干压成型)将水分适当的粉料,置于钢模中,在压力机上加压形成一定形状的坯体。
干压成型的实质是在外力作用下,颗粒在模具相互靠近,并借摩擦力牢固地把各颗粒联系起来,保持一定形状。
2.4 烧结实验在粉体变成的型坯中,颗粒之间结合主要靠机械咬合或塑化剂的粘合,型坯的强度不高。
将型坯在一定的温度下进行加热,使颗粒间的机械咬合转变成直接依靠离子键,共价键结合,极大的提高材料的强度,这个过程就是烧结。
瓷材料的烧结分为三个阶段,升温阶段,保温阶段和降温阶段。
在升温阶段,坯体中往往出现挥发分排出、有机粘合剂等分解氧化、液相产生、晶粒重排与长大等微观现象。
在操作上,考虑到烧结时挥发分的排除和烧结炉的寿命,需要在不同阶段有不同的升温速率。
保温阶段指型坯在升到的最高温度(通常也叫烧结温度)下保持的过程。
粉体烧结涉及组成原子、离子或分子的扩散传质过程,是一个热激活过程,温度越高,烧结越快。
在工程上为了保证效率和质量,保温阶段的最高温度很有讲究。
烧结温度与物料的结晶化学特性有关,晶格能大,高温下质点移动困难,不利于烧结。
烧结温度与材料的熔点有关系,对瓷而言是其熔点的0.7—0.9倍,对金属而言是其熔点的 0.4-0.7倍。
冷却阶段是瓷材料从最高温度到室温的过程,冷却过程中伴随有液相凝固、析晶、相变等物理化学变化。
冷却方式、冷却速度快慢对瓷材料最终相的组成、结构和性能等都有很大的影响,所以所有的烧结实验需要精心设计冷却工艺。
由于烧结的温度如果过高,则可能出现材料颗粒尺寸大,相变完全等严重影响材料性能的问题,晶粒尺寸越大,材料的韧性和强度就越差,而这正是瓷材料的最大问题,所以要提高瓷的韧性,就必须降低晶粒的尺寸,降低烧结温度和时间。
但是在烧结时,如果烧结温度太低,没有充分烧结,材料颗粒间的结合不紧密,颗粒间仍然是靠机械力结合,没有发生颗粒的重排,原子的传递等过程,那么材料就是不可用的。
3 性能检测容材料是否烧结良好,需要一定的检测手段。
烧结的致密程度一般表现在密度是否高、材料部的气孔的多少、表面的气孔多少和大小以及吸水能力的强弱。
在本实验中,主要考察材料表面气孔率、相对密度、吸水率以及线收缩率。
3.1 目测很多的实验,在烧结的过程中,可能由于很多的原因而出现表面裂纹,有些会出现表面的凹陷,所以,烧结后检测的第一步就是目测试样。
如果出现以上的问题,则试样肯定是不合格的,其他的实验可以不用做了。
目测的项目有是否出现表面裂纹、是否有变形现象,是否表面出现凹陷或者突出。
3.2 密度测试试样经110C°干燥之后之重量与试样总体积之比,用g/cm3表示。
材料烧结好坏的一个重要方面就是密度是否接近理论密度。
在烧结过程中,随着晶界的不断移动,伴随着液相和固相传质的进行,颗粒间的空隙会逐渐在表面消失,其中会有些气孔保留,大多数的气孔会逐渐缩小甚至消失。
达到良好烧结的标准就是气孔率小,密度接近理论密度。
例如原料采用99%的氧化铝,则理论密度为 3.9g/cm3 (全部按照α-Al2O3来计算)。