(教师版)立体几何专题一:表面积体积计算

  • 格式:docx
  • 大小:417.14 KB
  • 文档页数:10

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何专题复习一:空间几何体的表面积与体积

【高考会这样考】

考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.

【复习指导】

本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.

基础梳理

1.柱、锥、台和球的侧面积和体积

(1)棱柱、棱锥、棱台的表面积就是各面面积之和.

(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.

两种方法

(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.

考向一几何体的表面积

【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为

().

A.48 B.32+817

C.48+817 D.80

[审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面

积.

解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为48+817.

答案 C

以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一

个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().

A. 3 B.2

C.2 3 D.6

解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2×1×3=6.

答案 D

考向二几何体的体积

【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为().

A.18 3 B.12 3 C.9 3 D.6 3

[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公

式求解.

解析 该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V =3×3×3=9 3. 答案 C

以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原

几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.

【训练2】 (2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于( ).

A.283π

B.16

3π C.4

3π+8 D .12 π

解析 由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+43π=28

3π. 答案 A

考向三 几何体的展开与折叠

【例3】►(2012·广州模拟)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图2所示.

(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.

[审题视点] (1)利用线面垂直的判定定理,证明BC 垂直于平面ACD 内的两条相交线即可;(2)利用体积公式及等体积法证明. (1)证明 在图中,可得AC =BC =22,

从而AC 2+BC 2=AB 2,故AC ⊥BC , 取AC 的中点O ,连接DO ,

则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC , 又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .

(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD = 13S △ACD ·BC =13×2×22=423,

由等体积性可知,几何体DABC 的体积为423.

(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠

后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.

(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题. 【训练3】 已知

在直三棱柱ABCA 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +P A 1的最小值为________. 解析 P A 1在平面A 1BC 1内,PC 在平面BCC 1内,将其铺平后转化为平面上的问题解决.计算A 1B =AB 1=40,BC 1=2,又A 1C 1=6,故△A 1BC 1是∠A 1C 1B =90°的直角三角形.铺平平面A 1BC 1、平面BCC 1,如图所示.

CP +P A 1≥A 1C .

在△AC 1C 中,由余弦定理得 A 1C =

62+(2)2-2·6·2·cos 135°=50=52,故(CP +P A 1)min =5 2.

答案 5 2

考向四 转换法——等体积法

当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积.

例4 在边长为a 的正方体1111ABCD A B C D -中,M N P ,,分别是棱11111A B A D A A ,,上的点,且满足1111

2

A M A

B =

,112A N ND =,113

4

A P A A =

(如图1),试求三棱锥1A MNP -的体积.

分析:若用公式1

3

V Sh =

直接计算三棱锥1A MNP -的体积,则需要求出MNP △的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥

1A MNP -的顶点和底面转换一下,

变为求三棱锥

1P A

MN -的体积,便能很容易的求出其

高和底面1A MN △的面积,从而代入公式求解.