人教版九年级上学期数学《期末考试试卷》含答案
- 格式:doc
- 大小:1.12 MB
- 文档页数:26
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。
人教版九年级上册数学期末考试试题一、单选题1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A .B .C .D .2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.关于x 的方程x 2+2x ﹣m =0有两个相等的实数根,则m 的值是()A .m =1B .m =﹣1C .m =2D .m =﹣24.若x 支球队参加篮球比赛,共比赛了42场,每2队之间都比赛两场,则下列方程中符合题意的是()A .x(x ﹣l)=42B .x(x+1)=42C .12x(x ﹣l)=42D .12x(x+1)=425.如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE =65°,则∠A 的度数为()A .112°B .68°C .65°D .52°6.如图,△ABC ∽△A′B′C′,AD 和A′D′分别是△ABC 和△A′B′C′的高,若AD =2,A′D′=3,则△ABC 与△A′B′C′的面积的比为()A .4:9B .9:4C .2:3D .3:27.若A (﹣3,y 1),C (1,y 2)在二次函数y =x 2+2x+c 的图象上,则y 1,y 2的关系是A .120y y ->B .120y y -=C .120y y -<D .无法确定8.如图,△ODC 是由△OAB 绕点O 顺时针旋转30°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠B 的度数是()A .40°B .35°C .30°D .15°9.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的大小为()A .40°B .50°C .80°D .100°10.如图,已知二次函数2y ax bx c =++的图象与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①2a+b =0;②2c>3b ;③当△ABC 是等腰三角形时,a 的值有2个;④当△BCD 是直角三角形时,a =22-.其中正确的个数()A .0个B .1个C .2个D .3个二、填空题11.抛物线y =x 2﹣6x+2的对称轴为直线_____.12.若点A (1,a )关于原点的对称点是B (b ,﹣2),则ab 的值是__.13.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,PO 与AB 相交于点C ,PA =6,∠APB =60°,则OC 的长为__.14.圆锥的底面直径是8cm ,母线长9cm ,则圆锥的侧面积为__.15.已知抛物线y =x 2+bx+c 的部分图象如图所示,若﹣1<x <2,则y 的取值范围是____16.如图,在Rt △ABC 中,∠ABC =90°,AB =4,BC =3,点D 是半径为2的⊙A 上一动点,点M 是CD 的中点,则BM 的最大值是__.17.如图,线段AB =4,M 为AB 的中点,动点P 到点M 的距离是1,连接PB ,线段PB 绕点P 逆时针旋转90°得到线段PC ,连接AC ,则线段AC 长度的最大值是_____.三、解答题18.解下列方程(1)x 2﹣6x ﹣18=0(2)()223(2)x x -=-19.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A(﹣1,0),B(﹣2,﹣2),C(﹣4,﹣1).(1)将△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)求点B 运动路径长;20.已知关于x 的方程()22310kx k x k ++++=.(1)若1x =是该方程的根,求k 的值;(2)若该方程有两个不相等的实数根,求k 的取值范围.21.如图,在△ABC 中,BA=BC ,点BD ⊥AC 于点D ,DE ⊥AB 于点E (1)求证:△AED ∽△CDB ;(2)如果BC =10,AD =6,求AE 的值.22.如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高(1)作出Rt △ABC 的外接圆(保留作图痕迹,不用写过程)(2)若AD =16,BC =15,求BD 的长;23.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元,平均每天可以多售出20箱.(1)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(2)每箱降价多少元超市每天获利最大?最大利润是多少?24.如图,A 、B 、C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB 交弦BC 于点E ,在BC 的延长线上取一点F ,使得EF =DE .(1)求证:DF 是⊙O 的切线;(2)连接AF 交DE 于点M ,若AD =2,DE =52,求DM的长.25.如图,已知二次函数y =ax 2+c 的图象与x 轴分别相交于点A (﹣5,0),点B ,与y 轴相交于C (0,﹣5),点Q 是抛物线在x 轴下方的一动点(不与C 点重合).(1)求该二次函数的表达式;(2)如图1,AQ 交线段BC 于D ,令t =QDAD,当t 值最大时,求Q 点的坐标.(3)如图2,直线AQ ,BQ 分别与y 轴相交于M ,N 两点,设Q 点横坐标为m ,S 1=S △QMN ,S 2=2m 2,试问12S S是否为定值?若是,求出该定值;若不是,请说明理由.26.如图,⊙O 是△ABC 的外接圆,AB 是直径,OD ⊥AC ,垂足为D 点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接PA ,PB ,PC ,且满足∠PCA=∠ABC(1)求证:PA =PC ;(2)求证:PA 是⊙O 的切线;(3)若BC =8,32AB DF =,求DE 的长.参考答案1.C 2.D 3.B 4.A 5.C 6.A 7.B 8.B 9.B 10.C 11.x =312.2-1314.236cm π15.-4<y<016.7217.18.(1)13x =23x =;(2)15=x ,22x =【详解】解:(1)∵26180x x --=,∴2618x x -=∴26927x x -+=,∴()3327x -=,∴3x =±∴13x =23x =(2)∵()223(2)x x -=-,∴()223(2)0x x ---=,∴()23(2)0x x ---=,即()5(2)0x x --=,∴15=x ,22x =.19.(1)见解析;(2【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图所示,B 运动的路径长为弧BB 1的长,由题意得∠BOB 1=90°∵B (-2,-2)∴OB ==,∴点B .20.(1)1k =-;(2)98k ->且0k ≠【分析】(1)把-1代入方程求解即可;(2)根据根的判别式计算即可;【详解】⑴把1x =代入该方程得2310k k k ++++=,解得1k =-;⑵分两种情况讨论:①当0k =时,原方程可化为310x +=,解得13x =-,与“该方程有两个不相等的实数根”矛盾,不合题意,应舍去;②当0k ≠时,原方程是关于x 的一元二次方程,∵该方程有两个不相等的实数根,∴令0∆>,即()()223410k k k +-+>,解得98k ->.综上所述,98k ->且0k ≠为所求.21.(1)见解析;(2)185【分析】(1)由BA=BC ,BD ⊥AC ,得到∠BDC=90°,∠A=∠C ,由DE ⊥AB ,得到∠DEA=∠BDC=90°,由此即可求解;(2)由三线合一定理可以得到AD=DC=6,由相似三角形的性质可以得到63105AE AD CD BC ===,由此即可求解.【详解】解:(1)∵BA=BC ,BD ⊥AC ,∴∠BDC=90°,∠A=∠C ,∵DE ⊥AB ,∴∠DEA=∠BDC=90°,∴△AED ∽△CDB ;(2)∵BA=BC ,BD ⊥AC ,∴AD=DC=6,∵△AED ∽△CDB ,∴63105AE AD CD BC ===,∴31855AE CD ==.22.(1)见解析;(2)9.【详解】解:(1)如图所作的圆即是Rt △ABC 的外接圆;(2) ∠ACB =90°,CD 是AB 边上的高ACB CDB∴∠=∠B B ∠∠= Rt ACB Rt CDB∴ AB BC CB BD∴=2BC BD AB∴=21516BD BD ∴=+216225BD BD ∴+=2(8)64225BD ∴+-=2(8)289BD ∴+=817BD ∴+=±9BD ∴=或25BD =-(舍去)9BD ∴=.【点睛】本题考查作三角形的外接圆、相似三角形的判定与性质、解一元二次方程等知识,是重要考点,掌握相关知识是解题关键.23.(1)2元或5元;(2)每箱降价3.5元时获利最大,最大利润是1445元【分析】(1)设每箱应降价x 元,列方程解答;(2)设每天获利W 元,由题意得到(12)(10020)W x x =-+,化为顶点式即可得到答案.【详解】解:(1)要使每天销售饮料获利1400元,设每箱应降价x 元,依据题意列方程得,(12)(10020)1400x x -+=,整理得27100x x -+=,解得12x =,25x =;答:要使每天销售该饮料获利1400元,则每箱应降价2元或5元.(2)设每天获利W 元,则(12)(10020)W x x =-+,2201401200x x =-++,220( 3.5)1445x =--+,∴每箱降价3.5元时获利最大,最大利润是1445元.【点睛】此题考查一元二次方程的实际应用,二次函数的实际应用,二次函数的性质,正确理解题意是解题的关键.24.(1)见解析;(2)DM =12.【分析】(1)先得出∠ABD =∠CBD ,进而得出OD ⊥DF ,即可得出结论;(2)连接DC,利用全等三角形的判定得出△ABD≌△CBD,进而解答即可.【详解】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE//AB,∴∠ABD=∠BDE.∴∠CBD=∠BDE.∵ED=EF,∴∠EDF=∠EFD.∵∠EDF+∠EFD+∠EDB+∠EBD=180°,∴∠BDF=∠BDE+∠EDF=90°.∴OD⊥DF.∵OD是半径,∴DF是⊙O的切线.(2)解:连接DC,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°.∵∠ABD=∠CBD,BD=BD,∴△ABD≌△CBD(AAS).∴CD=AD=2,AB=BC.∵DE=5 2,∴32EC=,EF=DE=52,∵∠CBD=∠BDE,∴BE=DE=5 2,∴BF=BE+EF=5,BC=BE+EC=4.∴AB=4.∵DE//AB,∴ABE MEF∠=∠,BAM EMF∠=∠,∴△ABF∽△MEF.∴AB BF ME EF=,∴ME=2.∴DM=DE−EM=51222 -=.25.(1)二次函数的解析式为y=15x2﹣5;(2)Q(52,﹣154);(3)12SS=12,理由见解析【分析】(1)利用待定系数法求解即可.(2)如图1中,过点Q作QE∥AB交BC于E.设Q(m,15m2﹣5),利用相似三角形的性质构建二次函数,利用二次函数的性质求解即可.(3)是定值.如图2中,设Q(m,15m2﹣5),求出直线AQ,BQ的解析式,求出点M,N的坐标,利用三角形的面积公式求出S1即可解决问题.【详解】解:(1)把A(﹣5,0),C(0,﹣5)两点坐标代入y=ax2+c,得到2505a cc+=⎧⎨=-⎩,解得155 ac⎧=⎪⎨⎪=-⎩,∴二次函数的解析式为y=15x2﹣5.(2)如图1中,过点Q作QE∥AB交BC于E.设Q(m,15m2﹣5),由(1)可知,A(﹣5,0),B(5,0),C(0,﹣5),直线BC的解析式为y=kx+b,直线AQ的解析式为y=11k x b+∴505k bb+=⎧⎨=-⎩,1121150155k bmk b m-+=⎧⎪⎨+=-⎪⎩解得15kb=⎧⎨=-⎩,11555mkb m-⎧=⎪⎨⎪=-⎩∴直线BC的解析式为y=x﹣5,直线AQ的解析式为y=55m-x+m﹣5,由5555y xmy x m=-⎧⎪-⎨=+-⎪⎩,解得510105010mxmmym⎧=⎪⎪-⎨-⎪=⎪-⎩,∴D(510mm-,105010mm--),∴E(15m2,15m2﹣5),∵QE∥AB,∴△QED∽△ABD,∴t=DQAD=QEAB=21510m m-=﹣150m2+110m,∵﹣150<0,∴当m=﹣11012()50⨯-=52时,t的值最大,此时Q(52,﹣154).(3)是定值.理由:如图2中,设Q (m ,15m 2﹣5),由(2)可知,直线AQ 的解析式为y =55m -x+m ﹣5,当x =0时,y =m ﹣5,∴M (0,m ﹣5),∵直线BQ 的解析式为y =55m +x ﹣m ﹣5,当x =0时,y =﹣m ﹣5,∴N (0,﹣m ﹣5),∴S 1=S △MNQ =12×m×(2m )=m 2,∴12S S =222m m =12,为定值.26.(1)详见解析;(2)详见解析;(3)DE =8.【分析】(1)根据垂径定理可得AD =CD ,得PD 是AC 的垂直平分线,可判断出PA =PC ;(2)由PC =PA 得出∠PAC =∠PCA ,再判断出∠ACB =90°,得出∠CAB+∠CBA =90°,再判断出∠PCA+∠CAB =90°,得出∠CAB+∠PAC =90°,即可得出结论;(2)根据AB 和DF 的比设AB =3a ,DF =2a ,先根据三角形中位线可得OD =4,从而得结论.【详解】(1)证明∵OD ⊥AC ,∴AD =CD ,∴PD 是AC 的垂直平分线,∴PA =PC ,(2)证明:由(1)知:PA =PC ,∴∠PAC =∠PCA .∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;(3)解:∵AD=CD,OA=OB,∴OD∥BC,OD=12BC=182⨯=4,∵32 ABDF=,设AB=3a,DF=2a,∵AB=EF,∴DE=3a﹣2a=a,∴OD=4=32a﹣a,a=8,∴DE=8.。
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图形中不是..中心对称图形的是()A .B .C .D .2.如图,AB 是O 的直径,弦CD AB ⊥于点E ,30CDB ∠=︒,O 的半径为3cm ,则CD 弦长为()A .32cmB C .D .6cm3.已知,⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 在⊙O 的()A .外部B .内部C .圆上D .不能确定4.抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是A .y =12(x +1)2﹣2B .y =12(x ﹣1)2+2C .y =12(x ﹣1)2﹣2D .y =12(x +1)2+25.有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张点数为偶数的概率是()A .16B .14C .13D .126.下列事件中,属于必然事件的是()A .小明买彩票中奖B .投掷一枚质地均匀的骰子,掷得的点数是奇数C .等腰三角形的两个底角相等D .a 是实数,0a <7.已知一元二次方程280x x c --=有一个根为2,则另一个根为()A .10B .6C .8D .2-8.若关于x 的一元二次方程2320kx x -+=有实数根,则字母k 的取值范围是()A .98k <且0k ≠B .98k ≤C .98x <D .98k ≤且0k ≠9.下列说法错误的是()A .等弧所对的弦相等B .圆的内接平行四边形是矩形C .90︒的圆周角所对的弦是直径D .平分一条弦的直径也垂直于该弦10.如果a 0,b 0,c 0<>>,那么二次函数2y ax bx c =++的图象大致是()A .B .C .D .二、填空题11.方程(x -1)(x +2)=0的两根分别为________.12.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为23,则n=_____.13.在半径为6的圆中,一个扇形的圆心角是120︒,则这个扇形的弧长等于__________.14.如果m 是一元二次方程2220x x --=的一个根,那么2242m m --的值是__________.15.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.16.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.17.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S = ;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).三、解答题18.解方程:2320x x --=.19.已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式.20.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上.(1)画出ABC 绕B 点顺时针旋转90︒后的111A B C △,并写出1A 的坐标;(2)画出ABC 关于原点O 对称的222A B C △.21.已知抛物线2y x bx c =++经过点()0,3C -和点()4,5D .(1)求抛物线的解析式;(2)设抛物线与x 轴的交点A 、B 的坐标(注:点A 在点B 的左边),求ABC 的面积.22.小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是多少?(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是-红一黑,则小李获胜:若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.23.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.24.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.25.已知二次函数y =x 2-6x+8.求:(1)抛物线与x 轴和y 轴相交的交点坐标;(2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x 2-6x +8=0的解是什么?②x 取什么值时,函数值大于0?③x 取什么值时,函数值小于0?26.如图,ABC 内接于O ,且AB 为O 的直径,过圆心O 作⊥OD AB ,交AC 于点E ,连接DC ,已知2D A ∠=∠.(1)求证:CD 是O 的切线;(2)求证:DE DC =;(3)若5OD =,3CD =,求AC 的长.参考答案1.D 【分析】根据中心对称图形的概念求解.【详解】A 、是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项错误;C 、是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项正确.故选:D .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C 【分析】根据圆周角定理可求出∠COB 的度数,再利用特殊角的三角函数值及垂径定理即可解答.【详解】解:30CDB ∠=︒ ,60COB ∴∠=︒,又3cm OC = ,CD AB ⊥于点E ,·sin 60CE OC ∴=︒=,2CD CE ∴==.故选:C .【点睛】本题考查了垂径定理、勾股定理以及解直角三角形.此题难度不大,注意数形结合思想的应用.3.B 【解析】试题分析:∵⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,5cm >4cm ,∴点P在圆内.故选B.点睛:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.4.D【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【详解】抛物线y=12x2向左平移1个单位,再向上平移2个单位得y=12(x+1)2+2.故选:D.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.5.D【分析】用点数为偶数的张数除以总张数即可得出答案.【详解】有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张一共有6中情形,其中偶数4,8,10三张,由概率公式随机抽取一张点数为偶数的概率P=31= 62,故选择:D.【点睛】本题考查概率公式P(A)=mn求简单事件的概率,关键是应先确定所有结果中的可能性都相同,然后确定所有可能的结果总数n和事件A在总数中的结果数m是解题关键.6.C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.a 是实数,0a <,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B 【分析】设方程的另一根为m ,由根与系数的关系可得:28,m +=解方程可得答案.【详解】解: 一元二次方程280x x c --=有一个根为2,设另一根为m ,828,1m -∴+=-=6,m ∴=故选:.B 【点睛】本题考查的是一元二次方程的根与系数的关系,掌握一元二次方程的根与系数的关系是解题的关键.8.D 【分析】根据一元二次方程根的判别式,b 2-4ac≥0,且二次项系数不为0,即可求出k 的范围.【详解】∵方程有实数根∴b 2-4ac=()23420k --⨯⨯≥解得:98k ≤又∵原方程是一元二次方程∴0k ≠∴k 的取值范围是98k ≤且0k ≠【点睛】本题考查了根的判别式,牢记“当0∆≥时,方程有两个实数根”是解题的关键,且切记不要漏掉二次项系数不为0.9.D 【分析】根据圆的性质逐项判断即可.【详解】A .等弧所对的弦相等,故A 正确,不符合题意.B .根据圆的内接四边形对角互补和平行四边形邻角互补,即可知圆的内接平行四边形是矩形.故B 正确,不符合题意.C .90︒的圆周角所对的弦是直径,故C 正确,不符合题意.D .平分一条弦(非直径)的直径也垂直于该弦.故D 错误,符合题意.故选:D .【点睛】本题考查圆周角定理,垂径定理,圆心角、弧、弦的关系以及圆内接平行四边形的性质.熟练掌握这些知识是判断此题的关键.10.D 【分析】根据a 、b 、c 的符号,可判断抛物线的开口方向,对称轴的位置,与y 轴交点的位置,作出选择.【详解】由a <0可知,抛物线开口向下,排除.D ;由a <0,b>0可知,对称轴x=-b2a-b2a >0,在y 轴右边,排除B ;由c <0可知,抛物线与y 轴交点(0,c)在x 轴下方,排除C ;故答案为:D .【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.11.121,2x x ==-根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程.【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.12.4【分析】根据白球的概率公式列出关于n 的方程,解方程即可得.【详解】由题意得22123n =-+,解得n=4,经检验n=4是方程的根,故答案为4.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.4π【分析】利用扇形的弧长公式:l =180n rπ代入计算即可.【详解】扇形的圆心角为120°.r=6,则扇形弧长l =1206=4180180n r πππ⨯=,故答案为:4π.【点睛】本题主要考查扇形的弧长公式,解题的关键是熟知扇形的弧长公式的运用.14.2【分析】利用一元二次方程的解的定义得到m 2-2m=2,再把2m 2-4m-2变形为2(m 2-2m )-2,然后利用整体代入的方法计算.【详解】解:∵m 为一元二次方程x 2-2x-2=0的一个根.∴m 2-2m-2=0,即m 2-2m=2,∴2m 2-4m-2=2(m 2-2m )-2=2×2-2=2.故答案为:2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.4s 【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】解:252012h t t =-++=52-(t-4)2+41,∵52-<0,∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为16.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE ,∠BAC=∠EAF ,又∵∠B =70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF ,∴∠BAE=∠FAG=40°,∵△ABC ≌△AEF ,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.17.①③④【分析】连接OB 、OC ,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE ,于是可判断△BOD ≌△COE ,所以BD=CE ,OD=OE ,则可对①进行判断;利用S △BOD =S △COE 得到四边形ODBE 的面积=13S △ABC ,则可对③进行判断;作OH ⊥DE ,如图,则DH=EH ,计算出S △ODE 2,利用S △ODE 随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于△BDE 的周长,根据垂线段最短,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,计算出此时OE 的长则可对④进行判断.【详解】解:连接OB 、OC ,如图,∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,∵点O 是△ABC 的中心,∴OB=OC ,OB 、OC 分别平分∠ABC 和∠ACB ,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE ,在△BOD 和△COE 中,BOD COE BO COOBD OCE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BOD ≌△COE (ASA ),∴BD=CE ,OD=OE ,∴①正确;作OH ⊥DE 于H ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=12OE ,332OE ,∴3,∴S △ODE =12×123342,即S △ODE 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S △ODE ≠S △BDE ;设等边三角形ABC 的边长为a ,∵△BOD ≌△COE ,∴S △BOD =S △COE ,∴四边形ODBE 的面积=S △OBC ═13S △ABC =13×24a ,∴四边形ODBE 的面积始终等于定值;故③正确;∵BD=CE ,∴△BDE 的周长,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时OE=6a ,∴△BDE 周长的最小值=a+1322a a =,为定值∴④正确.故答案为:①③④.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.18.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.【点睛】本题考查了一元二次方程的解法,根据题目特点灵活选择解法是解题的关键.19.2441999y x x =-+.【解析】根据()1,1-、()2,1两点纵坐标相同可得,抛物线的对称轴为直线x=12,因为函数图象与x 轴仅有一个交点,则抛物线的顶点为(12,0),可设二次函数解析式为y=a (x ﹣12)2,再将(2,1)代入求解即可.【详解】解:∵二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,∴抛物线的顶点为(12,0),则可设二次函数解析式为y=a (x ﹣12)2,将(2,1)代入得a=49,故二次函数的解析式为:224144192999y x x ⎛⎫=-=-+ ⎪⎝⎭.【点睛】本题主要考查二次函数图象的性质,利用待定系数法求函数解析式,解此题的关键在于熟练掌握其知识点.20.(1)见解析,1A 坐标为(3,1)-;(2)见解析.【分析】(1)分别在网格中找到点A 、C 绕点B 顺时针旋转90︒后的点1A 、1C ,再连接111A B C △,即可解题;(2)分别在网格中找到点A 、B 、C 关于原点O 对称的2A 、2B 、2C ,再连接即可解题.【详解】解:(1)所画图形如下:1A 坐标为(3,1)-;(2)所画图形如下所示:【点睛】本题考查网格作图、坐标与图形变换,是重要考点,难度较易,掌握相关知识是解题关键.21.(1)223y x x =--;(2)6【分析】(1)把点C 和点D 的坐标分别代入抛物线解析式可以得到关于b 、c 的二元一次方程组,解方程组即可得到b 、c 的值,从而得到抛物线的解析式;(2)令抛物线解析式中y=0,可以得到关于x 的一元二次方程,解方程可得A 、B 的坐标,从而得到线段AB 的长度,由题意即得△ABC 的面积为AB 与OC (长度等于C 点纵坐标绝对值)积的一半.【详解】(1)把点()0,3C -和点()4,5D .代入2y x bx c =++得35164cb c-=⎧⎨=++⎩解得23b c =-⎧⎨=-⎩所以抛物线的解析式为:223y x x =--;(2)把0y =代入223y x x =--,得2230x x --=解得11x =-,23x =,∵点A 在点B 的左边,∴点()1,0A -,点()3,0B 由题意得4AB =,3OC =,1143622ABC S AB OC =⨯=⨯⨯=△【点睛】本题考查二次函数与一元二次方程的综合运用,熟练掌握二次函数解析式的求法、通过求解一元二次方程计算二次函数与坐标轴交点坐标、利用函数图象与坐标轴的交点计算直线与坐标轴所围图形的面积是解题关键.22.(1)14;(2)见解析【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到-红一黑,以及两个球都是白色的情况数,求出它们的概率,即可做出判断.【详解】解:(1)4个小球中有1个红球,则任意摸出1个球,恰好摸到红球的概率是:111214=++(2)列表如下:红白白黑红---(白,红)(白,红)(黑,红)白(红,白)---(白,白)(黑,白)白(红,白)(白,白)---(黑,白)黑(红,黑)(白,黑)(白,黑)---所有等可能的情况有12种,其中两次都摸到一红一黑有2种可能,摸出的两个球都是白色的有有2种可能,则P (小李获胜)=21126=,P (小王获胜)=21126=,故游戏公平.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S =120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AODOAD S S ππ⨯-=-- 扇形.【点睛】本题考查了圆周角定理、垂径定理、扇形的面积公式、三角形中位线定理等知识点,较难的是题(2),熟练掌握圆周角定理和扇形的面积公式是解题关键.24.(1)20%;(2)3456【分析】(1)设年平均增长率为x ,一般用增长后的量=增长前的量×(1+增长率),2018年投入教育经费是2000万元,2019年在2018年的基础上增长x ,就是2018年的教育经费数额的(1)x +倍,2020年在2019年的基础上再增长x ,2020年的教育经费数额为20002(1)x +,即可列出方程求解.(2)利用(1)中求得的增长率来求2021年该地区将投入教育经费.【详解】解:(1)设年平均增长率为x,由题意得:2000×(1+x)2=2880,解得:x1=0.2x2=-2.2(舍去),答2018年至2020年洪泽湖初级中学投入教育经费的年平均增长率为20%,(2)2880×(1+20%)=3456(万元),答:2021年该地校将投入教育经费3456万元,【点睛】本题考查了一元二次方程中增长率的知识.掌握增长前的量×(1+年平均增长率)年数=增长后的量是本题的关键.25.(1)(2,0),(4,0),(0,8)(2)(3,-1)(3)①x1=2,x2=4②x<2或x>4③2<x<4【解析】【分析】(1)分别令x=0,y=0即可求得交点坐标.(2)把函数解析式转化为顶点坐标形势,即可得顶点坐标.(3)①根据图象与x轴交点可知方程的解;②③根据图象即可得知x的范围.【详解】(1)由题意,令y=0,得x2-6x+8=0,解得x1=2,x2=4.所以抛物线与x轴交点为(2,0)和(4,0),令x=0,y=8.所以抛物线与y轴交点为(0,8),(2)抛物线解析式可化为:y=x2-6x+8=(x-3)2-1,所以抛物线的顶点坐标为(3,-1),(3)如图所示.①由图象知,x 2-6x+8=0的解为x 1=2,x 2=4.②当x <2或x >4时,函数值大于0;③当2<x <4时,函数值小于0;【点睛】本题考查了二次函数图象上点的坐标特征及函数性质,是基础题型.26.(1)见解析;(2)见解析;(31655【分析】(1)连接OC ,由OA OC =,可得ACO A ∠=∠,可推出2COB A ∠=∠,由2D A ∠=∠,可得D COB ∠=∠.由⊥OD AB ,可求得90D COD ∠+∠=︒即可;(2)由90DCO ∠=︒和⊥OD AB 可得E 90DCE CO ∠+∠=︒,90AEO A ∠+∠=︒,由A ACO ∠=∠,可得DEC DCE ∠=∠即可;(3)由勾股定理求得4OC =,可求AB=8,可证AOE ACB ∽,由性质得OA OE AC BC =,可推出12BC AC =,由勾股定理222AC BC AB +=,转化为222184AC AC +=,解之即可.【详解】(1)证明:连接OC ,如图,OA OC = ,ACO A ∴∠=∠,2COB A ACO A ∴∠=∠+∠=∠,又2D A ∠=∠ ,D COB ∴∠=∠.又OD AB ⊥ ,90COB COD ∴∠+∠=︒.90D COD ∴∠+∠=︒.即90DCO ∠=︒,OC DC ∴⊥,又点C 在O 上,CD ∴是O 的切线;(2)证明:90DCO =︒∠ ,90DCE ACO ∴∠+∠=︒.又OD AB ⊥ ,90AEO A ∴∠+∠=︒,又A ACO ∠=∠ ,DEC AEO ∠=∠,DEC DCE ∴∠=∠,DE DC ∴=;(3)解:90DCO =︒∠ ,5OD =,3DC =,4OC ∴=,28AB OC ∴==,又3DE DC ==,2OE OD DE ∴=-=,A A ∠=∠ ,90AOE ACB ∠=∠=︒,AOE ACB ∴ ∽,OA OE AC BC ∴=,即2142BC OE AC OA ===,12BC AC ∴=,在ABC 中,222.AC BC AB += ,222184AC AC ∴+=,AC ∴=.【点睛】本题考查圆的切线,等腰三角形,相似三角形的判定与性质,勾股定理的应用,掌握圆的切线证明方法,等腰三角形判定方法,相似三角形的判定方法与性质的应用,会用勾股定理构造方程是解题关键.。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图图形中,是中心对称图形的是( )A .B .C .D . 2.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件 3.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是( )A .(3,4)B .(-3,-4 )C .(3,-4)D .(4,-3) 4.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 5.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .D .6.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A .12B .13C .14D .1 7.若关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是( ) A .1m < B .1m >- C .1m D .1m <- 8.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A .()11452x x -=B .()11452x x += C .()145x x -= D .()145x x += 9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,AE=1,则弦CD 的长是()A B .C .6 D .810.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .二、填空题11.方程(x-1)(x+2)=0的两根分别为________.12.如图,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=______.13.将抛物线2y 5x =向左平移2个单位得到新的抛物线,则新抛物线的解析式是______. 14.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为 ________.15.如图,在△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE =_____.16.如图,在ABC 中,BC 4=,以点A 为圆心,2为半径的A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是A 上的一点,且EPF 45∠=,则图中阴影部分的面积为______.三、解答题17.有一个人患了流感,经过两轮传染后共有81人患了流感.()1每轮传染中平均一个人传染了几个人?()2按照这样的速度传染,第三轮将又有多少人被传染?18.解一元二次方程:2=-.4x4x119.如图,在Rt ABC中,ACB90∠=,DCE是ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.()1求旋转角的大小;()2若AB10=,求BE的长.=,AC820.如图,在Rt ABC中,C90∠=,B30∠=.()1用直尺和圆规作O,使圆心O在BC边,且O经过A,B两点上(不写作法,保留作图痕迹);()2连接AO,求证:AO平分CAB∠.21.车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.22.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?23.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?∠,过点D作AC的垂24.如图,AB是O的直径,点C、D在O上,且AD平分CAB线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.()1证明EF是O的切线;()2求证:DGB BDF∠∠=;()3已知圆的半径R5=,BH3=,求GH的长.25.如图,抛物线y=ax2+43x+c的图象与x轴交于A(-3,0),B两点,与y轴交于点C(0,-2),连接AC.点P是x轴上的动点.(1)求抛物线的表达式;(2)过点P作x轴的垂线,交线段AC于点D,E为y轴上一点,连接AE,BE,当AD=BE 时,求AD+AE的最小值;(3)点Q为抛物线上一动点,是否存在点P,使得以A、C、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.参考答案1.D【分析】根据中心对称图形的概念和识别.根据中心对称图形的概念和识别,可知D 是中心对称图形,A 、C 是轴对称图形,D 既不是中心对称图形,也不是轴对称图形.故选D .【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.2.B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3.C【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】∵P (-3,4),∴关于原点对称点的坐标是(3,-4),故选C .【点睛】此题主要考查了原点对称的点的坐标特点,关键是掌握坐标的变化规律:两个点关于原点对称时,它们的坐标符号相反.4.D【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).5.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A . 考点:正多边形和圆.6.C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=14. 故选C .【点睛】本题考查概率公式.7.C【分析】根据判别式的意义得到△=(-2)2-4m <0,然后解关于m 的不等式即可.【详解】解:根据题意得△=(-2)2-4m <0,解得m >1.故选:C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.A【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为()11452x x -=.解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为()11452x x -=, 故选:A .【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系. 9.B【分析】根据垂径定理,构造直角三角形,连接OC ,在RT △OCE 中应用勾股定理即可.【详解】试题解析:由题意连接OC ,得OE=OB-AE=4-1=3,CE=CD=故选B .10.D【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确故选:D .【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.11.121,2x x ==-【分析】根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程. 【详解】解:(x-1)(x+2)=0x-1=0或x+2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.12.50°【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得.【详解】解:∵⊙O 是△ABC 的外接圆,∠BOC=100°,∴∠BAC=12∠BOC=12×100°=50°.故答案为:50°.【点睛】本题考查圆周角定理,题目比较简单.13.y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题, 实质上是顶点的平移,原抛物线y=25x顶点坐标为(O, O), 向左平移2个单位, 顶点坐标为(-2, 0), 根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.14.1 6【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=16.故答案为:1 6【点睛】本题考查概率的计算,题目比较简单.15.100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案是:100°.【点睛】考查了旋转的性质,解题的关键是运用旋转的性质(图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等)得出∠CAE=40°.16.4π-【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=12×BC×AD=12×4×2=4S扇形AFDE=144ππ⨯=,所以S阴影=4-π故答案为:4π-【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.17.(1)8人;(2)648人.【分析】(1)设每轮传染中平均一个人传染了x个人,根据人患了流感,经过两轮传染后共有81人患了流感,列方程求解;(2)根据(1)中所求数据,进而得到第三轮被传染的人数.【详解】解:(1)设每轮传染中平均一个人传染了x个人,依题意有x+1+(x+1)x=81,解得x1=8,x2=﹣10(不符合题意舍去).答:每轮传染中平均一个人传染了8个人.(2)8×81=648(人).答:第三轮将又有648人被传染人.【点睛】本题主要考查一元一次方程的实际应用,注意根据题中已知等量关系列出方程式是关键. 18.1212x x ==【解析】【分析】用直配方法解方程即可.【详解】解:原方程可化为:24410x x -+=, ∴()2210x -=, 解得:1212x x ==. 19.(1)90°;(2)14.【分析】(1)根据题意∠ACE 即为旋转角,只需求出∠ACE 的度数即可.(2)根据勾股定理可求出BC ,由旋转的性质可知CE=CA=8,从而可求出BE 的长度.【详解】解:(1)∵△DCE 是△ABC 绕着点C 顺时针方向旋转得到的,此时点B 、C 、E 在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt △ABC 中,∵AB=10,AC=8,∴,∵△ABC 绕着点C 旋转得到△DCE ,∴CE=CA=8,∴BE=BC+CE=6+8=1420.(1)作图见解析;(2)证明见解析.【分析】(1)作线段AB 的垂直平分线即可,线段AB 的垂直平分与BC 的交点即是圆心O ;(2)由线段垂直平分线的性质可得∠OAB=∠B=30°,,从而可求∠CAO=30°,由角平分线的定义可知AO平分∠CAB.【详解】(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.【点睛】本题考查了线段垂直平分线的作法及性质,等腰三角形的性质,角平分线的定义,熟练掌握线段垂直平分线的作法及性质是解答本题的关键.21.(1)14;(2)34.【详解】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=14,故答案为14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.22.(1)r=34;(2)不需要采取紧急措施.【详解】试题分析:(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.试题解析:(1)连结OA,AB=30,OD=(r-18)由题意得:AD=12在Rt△ADO中,由勾股定理得:r2=302+(r-18)2,解得,r=34;(2)连结OA′,∵OE=OP-PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2-OE2,即:A′E2=342-302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.点睛:应用垂径定理时,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此类题的关键.23.(1)14;(2)12;(3)x=16.【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34xx++=0.95,解得:x=16.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.24.(1)详见解析;(2)详见解析;(3【分析】(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(2)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.【详解】解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(2)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G 是半圆弧中点,∴∠BOG =90°在Rt △OGH 中,OG =5,OH =OB ﹣BH =5﹣3=2.∴GH【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.25.(1)224233y x x =+-;(2)4;(3)存在,点P 的坐标为(-5,0)或(20)或(20)或(-1,0).【分析】(1)将A 、C 两点代入,利用待定系数法求得抛物线的表达式;(2)由AD=BE ,将AD+AE 转化为BE+AE ,通过两点之间线段最短即可得解;(3)分情况讨论,AC 为平行四边形的对角线、 AQ 为对角线、AP 为对角线三种情况讨论. 【详解】(1)将A (-3,0),C (0,-2),代入y=ax 2+43x+c 得, ()493032a c c ⎧+⨯-+=⎪⎨⎪=-⎩,解得232a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的表达式为224233y x x =+-; (2)令224 2033y x x =+-=,解得x=-3或1, ∴点B 的坐标为(1,0),当AD=BE 时,AD+AE=BE+AE ,∴当A 、E 、B 三点共线时,BE+AE 最小,最小值为AB 的长,∴当AD=BE 时,AD+AE 的最小值为AB=1-(-3)=4;(3)存在.设点P 的坐标为(m ,0),点Q 的坐标为(n ,224233n n +-), ①若AQ 为平行四边形的对角线,则PA=QC ,QC ∥x 轴,如图①,∴-3-m=0-n ,2242233n n +-=-,解得n=-2或0(舍去),∴m=-5,∴点P 的坐标为(-5,0);②若AP 为对角线,则AC=PQ ,如图②所示,即m-n=3,2242233n n +-=,解得∴∴点P 的坐标为(0)或(0);③当AC 是平行四边形的对角线时,则AQ=PC ,如图③,即m-(-3)=0-n ,2242233n n +-=-,解得n=-2或0(舍去),∴m=-1,∴点P 的坐标为(-1,0).综上所述,点P的坐标为(-5,0)或(0)或(0)或(-1,0).【点睛】本题是二次函数的综合应用题,考查了待定系数法求函数解析式,二次函数的图象及性质,平行四边形的性质;熟练掌握二次函数的图象及性质,灵活应用平行四边形的性质是解题的关键.第(3)问需分类讨论,以防遗漏.。
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
人教版九年级上册数学期末考试试题一、单选题1.下列图形,可以看作中心对称图形的是()A .B .C .D .2.已知点P (-3,2)是反比例函数图象上的一点,则该反比例函数的表达式为()A .3y x=B .5y x=-C .6y x=D .6y x=-3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .12B .13C .310D .154.抛物线y =(x -2)2+1的顶点坐标是()A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)5.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于()A .30°B .40°C .50°D .60°6.在平面直角坐标系xOy 中,A 为双曲线6y x=上一点,点B 的坐标为(4,0).若 AOB 的面积为6,则点A 的坐标为()A .(﹣4,32)B .(4,32-)C .(﹣2,3)或(2,﹣3)D .(﹣3,2)或(3,﹣2)7.如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若4OP =,30P ∠=︒,则弦AB 的长为().A 5B .23C .25D .28.已知二次函数()20y ax bx c a =++≠的图像如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b >;⑤()()1a b m am b m +>+≠,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,二次函数y =ax 2+bx+c 与反比例函数y =kx的图象相交于点A(﹣1,y 1)、B(1,y 2)、C(3,y 3)三个点,则不等式ax 2+bx+c >kx的解集是()A .﹣1<x <0或1<x <3B .x <﹣1或1<x <3C .﹣1<x <0或x >3D .﹣1<x <0或0<x <110.如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x =>的图象上,则经过点B 的反比例函数ky x=中k 的值是()A .﹣2B .﹣4C .﹣3D .﹣1二、填空题11.若点(),1a 与()2b -,关于原点对称,则b a =_______.12.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.13.正比例函数11y k x =和反比例函数22y k x=交于A 、B 两点.若A 点的坐标为(1,2)则B 点的坐标为_______________.14.如图,弦AB 的长等于⊙O 的半径,那么弦AB 所对的圆周角的度数________.15.如图, ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,CD =6,OA 交BC 于点E ,则AD 的长度是___.16.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.17.如图所示,在平面直角坐标系中,A (4,0),B (0,2),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是_____.三、解答题18.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?19.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC(1)求反比例函数的解析式;(2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.20.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.21.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x元.(1)商店若想获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(2)用含x的代数式表示商店获得的利润W元,并计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?22.如图,一次函数y=﹣x+4的图象与反比例kyx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)①在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;②在x轴上找一点M,使|MA﹣MB|的值为最大,直接写出M点的坐标.23.如图,抛物线L:y=12x2﹣54x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D ,求PD+35AD 的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线L :y =12x 2﹣54x ﹣3向右平移得到抛物线L′,直线AB 与抛物线L′交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L′的解析式.24.如图,在Rt ABC 中,∠ABC =90°,P 是斜边AC 上一个动点,以BP 为直径作⊙O 交BC 于点D ,与AC 的另一个交点E ,连接DE 、DP .点F 为线段CP 上一点,连接DF ,∠FDP =∠DEP .(1)求证:DF 是⊙O 的切线;(2)当 DP EP =时,求证AB =AP ;(3)当AB =15,BC =20时,是否存在点P ,使得 BDE 是以BD 为腰的等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由.25.解方程:2320x x --=.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.参考答案1.B 2.D 3.A 4.A 5.C 6.C 7.C 8.A 9.A 10.A 11.1212.22()1y x =-+13.(1,2)--14.30°或150°15.16.120°17.y =2x ﹣818.(1)见解析;(2)球回到乙脚下的概率大【详解】(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=28=14;传到乙脚下的概率=38,所以球回到乙脚下的概率大.【点睛】考点:列表法与树状图法.19.(1)8y x=;(2)(2)()1,8P 或()1,8P --.【分析】(1).首先求出点A 的坐标,然后将点A 的坐标代入反比例函数解析式求出解析式;(2).首先求出△ABC 的面积,然后根据面积相等求出点P 的坐标.【详解】解(1).将x=2代入y=2x 中,得y=4.∴点A 坐标为(2,4)∵点A 在反比例函数y=kx的图象上,∴k=2×4=8∴反比例函数的解析式为y=8x (2).()2,4,A B 关于原点对称,()2,4,B ∴--()()114228,22ABC A B S AC x x ∴=-=⨯⨯+= 设8,,P x x ⎛⎫⎪⎝⎭188,2OPC P S OC y x∴=== 1,x ∴=±经检验:1x =±是原方程的解且符合题意,∴P(1,8)或P(-1,-8)20.(1)证明详见解析;(2)163.【分析】(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.【详解】(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=13-5=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.【点睛】题目主要考查切线的判定、圆周角定理、角平分线的性质定理,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.21.(1)每个定价为70元,应进货200个;(2)W =﹣10(x ﹣15)2+6250,每个定价为65元时获得最大利润,可获得的最大利润是6250元【分析】(1)总利润=每个的利润×销售量,销售量为(400﹣10x )个,列方程求解,根据题意取舍;(2)利用函数的性质求最值.【详解】解:(1)根据题意得:(50﹣40+x )(400﹣10x )=6000,解得:x 1=10,x 2=20,当x =10时,400﹣10x =400﹣100=300,当x =20时,400﹣10x =400﹣200=200,要使进货量较少,则每个定价为50+20=70元,应进货200个.答:每个定价为70元,应进货200个.(2)根据题意得:W =(50﹣40+x )(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250,当x =15时,y 有最大值为6250.所以每个定价为65元时获得最大利润,可获得的最大利润是6250元.【点睛】一元二次方程和二次函数在实际生活中的应用是本题的考点,根据每个小家电利润×销售的个数=总利润列出方程是解题的关键.22.(1)3y x=,B(3,1);(2)①P(52,0);②M(4,0)【分析】(1)利用待定系数法即可解决问题;(2)作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小;(3)直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,求得x 的值,即可求得M 的坐标.【详解】解:(1)把点A (1,a )代入一次函数y =﹣x+4,得a =3,∴A (1,3),把点A (1,3)代入反比例y =kx,得k =3,∴反比例函数的表达式y =3x,联立43y x y x =-+⎧⎪⎨=⎪⎩,解得:13x y =⎧⎨=⎩或31x y =⎧⎨=⎩,故B (3,1).(2)①作点B 关于x 轴的对称点D ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小∴D (3,﹣1)设直线AD 的解析式为y =mx+n ,则331m n m n +=⎧⎨+=-⎩,解得25m n =-⎧⎨=⎩,∴直线AD 的解析式为y =﹣2x+5,令y =0,则x =52,∴P 点坐标为(52,0);②直线y =﹣x+4与x 轴的交点即为M 点,此时|MA ﹣MB|的值为最大,令y =0,则x =4,∴M 点的坐标为(4,0).【点睛】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题.23.(1)AB 解析式为y=34x-3,抛物线顶点坐标为125)2(413-,;(2)点P 的坐标为125)2(413-,,PD+35AD 的最大值为12132;(3)21133242y x x =-+.【分析】(1)先求出点A ,点B 坐标,利用待定系数法可求解析式,通过配方法可求顶点坐标;(2)CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,即可求解;(3)设点M (x 1,y 1),点N (x 2,y 2),则x 1+x 2=2(m+34),而点A 是MN 的中点,故x 1+x 2=8,进而求解.【详解】解:(1)∵抛物线L :y =12x 2﹣54x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B ,令0y =,则21530,24x x --=解得:123,4,2x x =-=令0,x =则3,y =-∴点A (4,0),点B (0,-3),设直线AB 解析式为:y=kx-3,∴0=4k-3,∴k=34,∴直线AB 解析式为:y=34x-3①,∵y =12x 2﹣54x ﹣3=2152412132x --)(,∴抛物线顶点坐标为125)2(413-;(2)∵点A (4,0),点B (0,-3),∴OA=4,OB=3,∴5==,则sin ∠BAO=35OBAB =,则CD=ADsin ∠BAO=35AD ,则PD+35AD=PD+DC=PC 为最大,当点P 为抛物线顶点时,PC 最大,故点P 的坐标为125)2(413-,则PD+35AD 的最大值=PC 为最大,最大值为12132;(3)设平移后的抛物线L'解析式为21121()232y x m =--②,联立①②并整理得:223252()0416x m x m -++-=,设点M (x 1,y 1),点N (x 2,y 2),∵直线AB 与抛物线L'交于M ,N 两点,∴x 1,x 2是方程223252(0416x m x m -++-=的两根,∴x 1+x 2=2(3)4m +,∵点A 是MN 的中点,∴x 1+x 2=8,∴32()84m +=,∴m=134,∴平移后的抛物线L'解析式为221131211133()2432242y x x =--=-+.24.(1)见解析(2)见解析(3)存在,252或10【分析】(1)利用圆周角定理证明∠FDP=∠DBP ,∠DBP+∠OPD=90°,再证明OD ⊥DF ,即可证明结论;(2)先证明∠CBP=∠EBP ,易证∠C=∠ABE ,由∠APB=∠CBP+∠C ,∠ABP=∠EBP+∠ABE ,得出∠APB=∠ABP ,即可得出结论;(3)先证明△DCP ∽△BCA ,利用相似三角形的性质得到CP =54CD ,再分当BD =BE ,BD =ED 两种情况讨论,即可求解.(1)证明:连接OD ,∵ DPDP =,∴∠DBP =∠DEP ,∵∠FDP =∠DEP ,∴∠FDP=∠DBP ,∵BP 是⊙O 的直径,∴∠BDP=90°,∴∠DBP+∠OPD=90°,∵OD=OP ,∴∠OPD=∠ODP ,∴∠FDP+∠ODP=90°,∴OD ⊥DF ,∴DF是⊙O的切线;(2)证明:连接BE,如图所示:∵DP EP=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(3)解:由AB=15,BC=20,由勾股定理得:AC25,∵12AB•BC=12AC•BE,即12×15×20=12×25×BE,∴BE=12,∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴CPAC=CDBC,∴CP=AC CDBC⋅=2520CD=54CD,△BDE是等腰三角形,分两种情况:①当BD =BE 时,BD =BE =12,∴CD =BC ﹣BD =20﹣12=8,∴CP =54CD =54×8=10;②当BD =ED 时,可知点D 是Rt △CBE 斜边的中线,∴CD =12BC =10,∴CP =54CD =54×10=252;综上所述,△BDE 是等腰三角形,符合条件的CP 的长为252或10.25.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.26.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S = 120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD ∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AOD OAD S S ππ⨯-== 扇形.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!九年级(上)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,请选出一个符合题意的正确的选项填涂在答题纸上,不选、多选、错选均不给分)1.﹣7的倒数是( )A.7B.﹣7C.D.﹣2.现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学记数法表示为( )A.5.7×109B.5.7×1010C.0.57×1011D.57×1093.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是( )A.B.C.D.4.下列计算正确的是( )A.a2+a2=a4B.2a﹣a=2C.(ab)2=a2b2D.(a2)3=a55.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )A.140°B.160°C.170°D.150°6.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球7.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+68.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分9.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是( )A.B.C.D.10.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( )A.6B.7C.8D.9二、填空题(本大题共有6小题,每小题4分,共24分,请将答案填在答题纸上)11.多项式a2﹣4因式分解的结果是 .12.使式子1+有意义的x的取值范围是 .13.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是 cm.14.化简: = .15.已知如图所示的图形的面积为24,根据图中的条件,可列出方程: .16.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:5168421,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的最小值为 .三、解答题(本大题共有8小题,共66分,请将答案写在答题纸上,务必写出解答过程)17.计算:﹣23÷|﹣2|×cos45°.18.解不等式,并把解在数轴上表示出来.19.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?20.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.21.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?22.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD 在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.23.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时, = ;②当α=180°时, = .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.24.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,请选出一个符合题意的正确的选项填涂在答题纸上,不选、多选、错选均不给分)1.﹣7的倒数是( )A.7B.﹣7C.D.﹣【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学记数法表示为( )A.5.7×109B.5.7×1010C.0.57×1011D.57×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000000000用科学记数法表示为:5.7×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是( )A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上面看得到的图形.4.下列计算正确的是( )A.a2+a2=a4B.2a﹣a=2C.(ab)2=a2b2D.(a2)3=a5【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.5.将一副直角三角尺如图放置,若∠AO D=20°,则∠BOC的大小为( )A.140°B.160°C.170°D.150°【考点】直角三角形的性质.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.【点评】此题主要考查了直角三角形的性质,得出∠COA的度数是解题关键.6.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【考点】随机事件.【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选A.【点评】本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,7.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+6【考点】二次函数图象与几何变换.【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【解答】解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.【点评】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.8.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分【考点】轨迹;直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半得到OC=AB=A′B′=OC′,从而得出滑动杆的中点C所经过的路径是一段圆弧.【解答】解:连接OC、OC′,如图,∵∠AOB=90°,C为AB中点,∴OC=AB=A′B′=OC′,∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,∴滑动杆的中点C所经过的路径是一段圆弧.故选B.【点评】本题考查了轨迹,圆的定义与性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.9.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是( )A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=﹣tanB•t+2mtanB(m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.【解答】解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,∵△ABC为等腰三角形,∴∠B=∠C,BD=CD,当点F从点B运动到D时,如图1,在Rt△BEF中,∵tanB=,∴y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,在Rt△CEF中,∵tanC=,∴y=tanC•CF=tanC•(2m﹣t)=﹣tanB•t+2mtanB(m≤t≤2m).故选B.【点评】本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围.10.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( )A.6B.7C.8D.9【考点】扇形面积的计算.=,【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB==×6×3=9.故选D.=.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB二、填空题(本大题共有6小题,每小题4分,共24分,请将答案填在答题纸上)11.多项式a2﹣4因式分解的结果是 (a+2)(a﹣2) .【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.使式子1+有意义的x的取值范围是 x≥0 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式即可.【解答】解:由题意得,x≥0.故答案为:x≥0.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是 168 cm.【考点】众数.【分析】根据众数的定义找出这组数据中出现次数最多的数即可得出答案.【解答】解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;故答案为:168;【点评】此题考查了众数众数是一组数据中出现次数最多的数,属于基础题,难度不大.14.化简: = .【考点】分式的加减法.【专题】计算题;压轴题.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.15.已知如图所示的图形的面积为24,根据图中的条件,可列出方程: (x+1)2=25 .【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】此图形的面积等于两个正方形的面积的差,据此可以列出方程.【解答】解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是明确题目中的不规则图形的面积计算方法.16.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:5168421,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的最小值为 3 .【考点】规律型:数字的变化类.【分析】利用列举法,尝试最小的几个非0自然数,再结合“自然数5.最少经过5步运算可得1”,即可得出结论.【解答】解:利用列举法进行尝试,1(不用运算);21(1步运算);3105,结合已知给定案例可知,5再经过5步运算可得1,故3要经过7步运算可得1.故答案为:3.【点评】本题考查了数字的变换类,解题的关键是:利用列举法,尝试几个最小的非0自然数.三、解答题(本大题共有8小题,共66分,请将答案写在答题纸上,务必写出解答过程)17.计算:﹣23÷|﹣2|×cos45°.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣8÷2×=2﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式,并把解在数轴上表示出来.【考点】解一元一次不等式;不等式的性质;在数轴上表示不等式的解集.【专题】计算题;数形结合.【分析】根据不等式的性质得到3(x﹣1)≤1+x,推出2x≤4,即可求出不等式的解集.【解答】解:去分母,得3(x﹣1)≤1+x,整理,得2x≤4,∴x≤2.在数轴上表示为:.【点评】本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.19.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?【考点】模拟实验;利用频率估计概率.【专题】应用题;压轴题.【分析】(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.【解答】解:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,∴总球数为8÷=100,∴红球数为100×40%=40,答:盒中红球有40个.【点评】此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.20.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC 的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.21.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.22.如图,已知点A(4,0),B(0,4),把一个直角三角尺DEF放在△OAB内,使其斜边FD 在线段AB上,三角尺可沿着线段AB上下滑动.其中∠EFD=30°,ED=2,点G为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式;如果不能,说明理由.【考点】反比例函数综合题.【分析】(1)设直线AB的解析式为y=kx+b,把点A、B的坐标代入,组成方程组,解方程组求出k 、b的值即可;(2)由Rt△DEF中,求出EF、DF,在求出点D坐标,得出点F、G坐标,把点G坐标代入反比例函数求出k即可;(3)设F(t,﹣t+4),得出D、G坐标,设过点G和F的反比例函数解析式为y=,用待定系数法求出t、m,即可得出反比例函数解析式.【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(4,0),B(0,4),∴,解得:,∴直线AB的解析式为:y=﹣x+4;(2)∵在Rt△DEF中,∠EFD=30°,ED=2,∴EF=2,DF=4,∵点D与点A重合,∴D(4,0),∴F(2,2),∴G(3,),∵反比例函数y=经过点G,∴k=3,∴反比例函数的解析式为:y=;(3)经过点G的反比例函数的图象能同时经过点F;理由如下:∵点F在直线AB上,∴设F(t,﹣t+4),又∵ED=2,∴D(t+2,﹣t+2),∵点G为边FD的中点.∴G(t+1,﹣t+3),若过点G的反比例函数的图象也经过点F,设解析式为y=,则,整理得:(﹣t+3)(t+1)=(﹣t+4)t,解得:t=,∴m=,∴经过点G的反比例函数的图象能同时经过点F,这个反比例函数解析式为:y=.【点评】本题是反比例函数综合题目,考查了用待定系数法求一次函数的解析式、求反比例函数的解析式、坐标与图形特征、解直角三角形、解方程组等知识;本题难度较大,综合性强,用待定系数法确定一次函数和反比例函数的解析式是解决问题的关键.23.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时, = ;②当α=180°时, = .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、A C的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD﹣DE=8﹣2=6,由(2),可得,∴BD==.综上所述,BD的长为4或.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了相似三角形、全等三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了线段长度的求法,以及矩形的判定和性质的应用,要熟练掌握.24.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【考点】二次函数综合题.。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m<98B.98<m<258C.0<m<258D.m<98或m<2583.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④4.关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是()A.k5<B.k5<且k1≠C.k5≤D.k5≤且k1≠5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 6.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定7.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大8.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元9.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)10.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.116二、填空题11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是_____.13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为_______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.16.如图,PA PB 、切O 于点AB 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.三、解答题17.解一元二次方程:3x 2﹣1=2x+5.18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.19.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.21.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.22.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?23.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.A首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y=x+m 与抛物线C 1相切时m 的值以及直线y=x+m 过原点时m 的值,结合图形即可得到答案.【详解】令2240y x x =-+=,解得:x =0或x =2,则点A (2,0),B (−2,0),∵C 1与C 2关于y 铀对称,C 1:22242(1)2,y x x x =-+=--+∴C 2解析式为222(1)224(20)y x x x x =-++=---≤≤,当y =x +m 与C 1相切时,如图所示:令224y x m y x x=+==-+,即2230x x m -+=,890m =-+= ,解得98m =,当y =x +m 过原点时,m =0,∴当908m <<时直线y =x +m 与C 1、C 2共有3个不同的交点,故选:A.【点睛】考查抛物线与x 轴的交点,二次函数的性质,二次函数与一次函数的综合,数形结合是解题的关键.3.C根据二次函数的图象与性质即可求出答案.【详解】①由图象可知:2ba->0,∴ab <0,故①正确;②由抛物线与x 轴的图象可知:△>0,∴b 2>4ac ,故②正确;③由图象可知:x =1,y <0,∴a+b+c <0,故③正确;④∵2ba-=1,∴b =﹣2a ,令x =﹣1,y >0,∴2a+b+c =c <0,故④错误.故选C .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.4.D 【分析】根据一元二次方程的根的判别式及一元二次方程的定义,建立关于k 的不等式租,解不等式组,求出k 的取值范围即可.【详解】∵关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,∴244(1)010k k ⎧--≥⎨-≠⎩,解得:k≤5,且k≠1,故选D.【点睛】本题考查了一元二次方程的定义及一元二次方程根的判别式的应用,根据题意列出不等式并注意一元二次方程的二次项系数不为0的隐含条件是解题关键.5.C【解析】【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.【详解】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.A【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选A.【点睛】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.A 【分析】设降价元,根据商家获利金额列出一元二次方程并求解,因为要顾客得实惠,所以要保留较大的值并求出售价.【详解】设降价元,则售价为()60x -元,销量为()30020+x 件.由题意得:()()6040300206080x x --+=,展开得220100800x x -+-=,因式分解得()()20140x x ---=,所以121,4x x ==.因为要顾客得实惠,所以取4x =,此时60456-=(元),即应将售价定为56元.故答案选:A.【点睛】本题主要考查了一元二次方程.9.A 【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 1即为所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.10.B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.11.2018【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.y=(x﹣1)2﹣1.【分析】先将所给的抛物线解析式写成顶点式,然后再根据“左加右减、上加下减”的原则进行解答即可.【详解】y=x2﹣6x+5=(x-3)2-4,向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x-3+2)2-4+3,即:y=(x﹣1)2﹣1,故答案为:y=(x﹣1)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【详解】如图:∵△COD 是由△AOB 绕点O 按逆时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点睛】此题考查旋转的性质.解题关键是理解△COD 是由△AOB 绕点O 按逆时针方向旋转而得的含义,找到旋转角.14.27【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】设草鱼有x 条,捕捞到草鱼的频率稳定在0.5左右,则0.5,200150x x =++解得:350.x =捞到鲤鱼的概率为20022003501507=++,故答案为27.【点睛】考查样本估计总体,解题的关键是根据草鱼出现的频率计算出鱼的数量.15.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在Rt △AOC 中,OA=2,AC=6,根据勾股定理得,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA 的长是解本题的关键.16.20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.17.x 1=13+,x 2=13.【解析】【分析】先把方程化为一般式,然后利用求根公式法解方程.【详解】3x 2﹣1=2x +5,3x 2﹣2x ﹣6=0∵a =3,b =﹣2,c =﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x =,∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法18.(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为14;(Ⅲ)两次取出的小球标号的和大于6的概率为3 16.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为3 16.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)12π;(2)【分析】(1)根据垂径定理得到,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.【详解】(1)∵弦CD⊥AB,∴,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点睛】本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.20.(1)94m≥-;(2)1m=【分析】(1)因为方程有实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3、x1x2=﹣m代入x12+x22=(x1+x2)2﹣2x1•x2=11,解关于m的方程即可.【详解】(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,解题的关键是熟练掌握根与系数的关系.21.(1)k=4;(2)a的值为13或﹣1.【解析】【分析】(1)∵图形过A点,∴A点坐标符合函数关系式,代入求解即可.(2)B点可以在C点左边,也可以在C点右边,并通过待定系数法即可求解.【详解】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,-4a+b=0,求得a=13,b=43.②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,4a+b=0,求得a=-1,b=4.综上,所求a的值为13或﹣1.【点睛】需要注意的是线段长度与点的坐标的关系,注意进行分情况讨论,考虑问题要全面. 22.(1)40%;(2)2616.【分析】(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.(1),B 点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB=OA ,故当△BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)∵抛物线2y x bx c =-++对称轴是直线x=1,∴﹣2(1)b ⨯-=1,解得b=2,∵抛物线过A (0,3),∴c=3,∴抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P (2t ,2443t t -++),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=2443t t -++,解得t=1或t=﹣34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得t=64+(舍去)或t=64-;当OQ=BQ=|2t﹣3|,解得t=34;综上可知当t34时,△BOQ为等腰三角形.24.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,OA OC AD CD OD OD=⎧⎪=⎨⎪=⎩,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB ,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE 2a ,∴OD=OE+DE=52a ,在△AOD 中,AO 2+AD 2)2+)2=254a 2,OD 2=(52a )2=254a 2,∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.25.(1)223y x x =--+;(2)185;(3)278.【分析】()1将A ,B ,C 点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D 的坐标为()1,4-,作B 点关于直线1x =的对称点'B ,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小;(3)作PE x ⊥轴交AC 于E 点,求得AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,得23PE m m =--,所以,()2113322APC A S PE x m m =⋅=--⨯ ,求函数的最大值即可.【详解】()1将A ,B ,C 点的坐标代入解析式,得方程组:9304233a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩抛物线的解析式为223y x x =--+()2配方,得2(1)4y x =-++,顶点D 的坐标为()1,4-作B 点关于直线1x =的对称点'B ,如图1,则()'4,3B ,由()1得()1,4D -,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小,则119181555m =-⨯+=.()3作PE x ⊥轴交AC 于E 点,如图2,AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,()222333PE m m m m m =--+-+=--()2211332733()22228APC A S PE x m m m =⋅=--⨯=-++ ,当32m =-时,APC 的面积的最大值是278;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.。
人教版九年级上册期末试卷(1)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1)B.ﻩC.ax2+bx+c=0D.x2+2x=x2﹣12.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.ﻩB.2 C.D.33.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等ﻩC.垂直且相等ﻩD.不再需要条件4.(3分)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3ﻩB.y3<y2<y1ﻩC.y3<y1<y2ﻩD.y2<y1<y35.(3分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9%B.8.5%ﻩC.9.5%ﻩD.10%6.(3分)甲、乙两地相距60km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.ﻩB.ﻩC.ﻩD.7.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7B.(x﹣2)2﹣1C.(x+2)2+7 D.(x+2)2﹣18.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A.B.C.ﻩD.9.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短ﻩB.变长 C.不变D.无法确定10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.ﻩB.5C.ﻩD.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a的值为.14.(4分)已知==,则= .15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB 的面积为2,则该双曲线的表达式为 .16.(4分)如图,在Rt △ABC中,∠ACB =90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD = .17.(4分)如图,在梯形A BCD 中,AD ∥B C,A C,BD 交于点O ,S△A OD :S △CO B=1:9,则S△D OC:S△BO C= .18.(4分)如图,在△A BC 中,点D、E 分别在AB 、AC 上,DE ∥B C.若AD =4,DB=2,则的值为 .三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x 2﹣2x ﹣5=0;(2)(y+2)2=(3y ﹣1)2.20.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?、P2是反比例函数(k>0)在第一象限图象上的两点,26.(10分)如图,P1点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.ﻩC.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.(4)二次项系数不为0.【解答】解:A、3(x+1)2=2(x+1)化简得3x2+4x﹣4=0,是一元二次方程,故正确;B、方程不是整式方程,故错误;C、若a=0,则就不是一元二次方程,故错误;D、是一元一次方程,故错误.故选:A.【点评】判断一个方程是不是一元二次方程:首先要看是不是整式方程;然后看化简后是不是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )A.ﻩB.2ﻩC. D.3【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】几何图形问题.【分析】由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,AC===5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣X,∴(4﹣x)2=x2+22,解得x=.故选A.【点评】本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.3.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是( )A.垂直B.相等ﻩC.垂直且相等D.不再需要条件【考点】中点四边形.【分析】因为菱形的四边相等,再根据三角形的中位线定理可得,对角线AC与BD需要满足条件是相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.【点评】本题很简单,考查的是三角形中位线的性质及菱形的性质.解题的关键在于牢记有关的判定定理,难度不大.4.(3分)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则( )A.y1<y2<y3B.y3<y2<y1ﻩC.y3<y1<y2ﻩD.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.【点评】在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.5.(3分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9% B.8.5%C.9.5%ﻩD.10%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分数是x,则第一次降价后的价格是100(1﹣x),第二次降价后的价格是100(1﹣x)(1﹣x),根据“现在的售价是81元”作为相等关系列方程求解.【解答】解:设平均每次降价的百分数是x,依题意得100(1﹣x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.【点评】本题运用增长率(下降率)的模型解题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”)6.(3分)甲、乙两地相距60km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.ﻩB.ﻩC.D.【考点】反比例函数的应用.【分析】根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【解答】解:根据题意可知时间y(小时)与行驶速度x(千米/时)之间的函数关系式为:y=(x>0),所以函数图象大致是B.故选B.【点评】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式从而判断它的图象类型,要注意自变量x的取值范围,结合自变量的实际范围作图.7.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7ﻩB.(x﹣2)2﹣1C.(x+2)2+7ﻩD.(x+2)2﹣1【考点】配方法的应用.【分析】在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数﹣4的一半的平方;可将常数项3拆分为4和﹣1,然后再按完全平方公式进行计算.【解答】解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1.故选B.【点评】在对二次三项式进行配方时,一般要将二次项系数化为1,然后将常数项进行拆分,使得其中一个常数是一次项系数的一半的平方.8.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A.ﻩB.ﻩC.ﻩD.【考点】一次函数的图象;反比例函数图象上点的坐标特征.【专题】待定系数法.【分析】先根据函数y=的图象经过(1,﹣1)求出k的值,然后求出函数y=kx ﹣2的解析式,再根据一次函数图象与坐标轴的交点坐标解答.【解答】解:∵图象经过(1,﹣1),∴k=xy=﹣1,∴函数解析式为y=﹣x﹣2,所以函数图象经过(﹣2,0)和(0,﹣2).故选A.【点评】主要考查一次函数y=kx+b的图象.当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是A M,MR的中点,则EF的长随着M点的运动()A.变短ﻩB.变长C.不变ﻩD.无法确定【考点】三角形中位线定理;矩形的性质.【专题】压轴题;动点型.【分析】易得EF为三角形AMR的中位线,那么EF长恒等于定值AR的一半.【解答】解:∵E,F分别是AM,MR的中点,∴EF=AR,∴无论M运动到哪个位置EF的长不变,故选C.【点评】本题考查三角形中位线等于第三边的一半的性质.10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.B.5ﻩC.ﻩD.【考点】反比例函数综合题.【专题】综合题;压轴题;数形结合.【分析】根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故选:A.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足k>﹣2 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的倍.故答案为:.【点评】本题考查了相似三角形面积的比等于相似比的平方的性质,熟记性质是解题的关键.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a 的值为﹣4.【考点】一元二次方程的解;一元二次方程的定义.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=0代入原方程即可求得a的值.【解答】解:把x=0代入一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0,可得a2+3a﹣4=0,解得a=﹣4或a=1,∵二次项系数a﹣1≠0,∴a≠1,∴a=﹣4.故答案为:﹣4.【点评】本题逆用一元二次方程解的定义易得出a的值,但不能忽视一元二次方程成立的条件a﹣1≠0,因此在解题时要重视解题思路的逆向分析.14.(4分)已知==,则=.【考点】比例的性质.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k,∴a=5k,b=3k,c=4k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为y=﹣.【考点】反比例函数系数k的几何意义.【专题】压轴题;数形结合.=2求出【分析】先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOBk的值即可.【解答】解:∵反比例函数的图象在二、四象限,∴k<0,=2,∴|k|=4,∴k=﹣4,即可得双曲线的表达式为:y=﹣,∵S△AOB故答案为:y=﹣.【点评】本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD= 2.【考点】相似三角形的判定与性质.【分析】首先证△ACD∽△CBD,然后根据相似三角形的对应边成比例求出CD 的长.【解答】解:Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°﹣∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=4,即CD=2.【点评】此题主要考查的是相似三角形的判定和性质.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC :S△BOC=1:3.【考点】相似三角形的判定与性质;梯形.【专题】压轴题.【分析】根据在梯形ABCD中,AD∥BC,AC,易得△AOD∽△COB,且S△AOD:S△COB=1:9,可求=,则S△AOD:S△DOC=1:3,所以S△DOC:S△BOC=1:3.【解答】解:根据题意,AD∥BC∴△AOD∽△COB∵S△AOD:S△COB=1:9∴=则S△AOD:S△DOC=1:3所以S△DOC :S△BOC=3:9=1:3.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.【考点】相似三角形的判定与性质.【分析】由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.【解答】解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)利用求根公式计算即可;(2)利用因式分解可得到(4y+1)(3﹣2y)=0,可求得方程的解.【解答】解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.【点评】本题主要考查一元二次方程的解法,掌握一元二次方程的求根公式是解题的关键.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴ﻩAFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.【考点】游戏公平性;根的判别式;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【解答】解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD 及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.24.(10分)如图,已知A (﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】计算题;压轴题;待定系数法.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx +b 经过A (﹣4,2),B (2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB =S△ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2. 【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y 轴的交点运用分割法求得不规则图形的面积.同时间接考查函数的增减性,从而来解不等式.25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?【考点】一元二次方程的应用.【专题】经济问题;压轴题.【分析】等量关系为:(原来每张贺年卡盈利﹣降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【解答】解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x)元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x)(500+1000x)=120,解得x1=﹣0.3(降价不能为负数,不合题意,舍去),x2=0.1.答:每张贺年卡应降价0.1元.【点评】考查一元二次方程的应用;得到每降价x元多卖出的贺年卡张数是解决本题的难点;根据利润得到相应的等量关系是解决本题的关键.26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;等边三角形的性质.【分析】(1)首先作P1B⊥OA1于点B,由等边△P1OA1中,OA1=2,可得OB=1,P1B=,继而求得点P1的坐标,然后利用待定系数法即可求得此反比例函数的解析式;(2)首先作P2C⊥A1A2于点C,由等边△P2A1A2,设A1C=a,可得P2C=,OC=2+a,然后把P2点坐标(2+a,)代入,继而求得a的值,则可求得A2点的坐标.【解答】解:(1)作P1B⊥OA1于点B,∵等边△P1OA1中,OA1=2,∴OB=1,P1B=,把P1点坐标(1,)代入,解得:,∴;(2)作P2C⊥A1A2于点C,∵等边△PA1A2,设A1C=a,2则P2C=,OC=2+a,把P2点坐标(2+a,)代入,即:,解得,(舍去),∴OA2=2+2a=,∴A2(,0).【点评】此题考查了待定系数法求反比例函数的解析式以及等边三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.【考点】相似三角形的判定与性质.【专题】压轴题.【分析】(1)因为EF∥AB,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P点可能的位置,再找到相似三角形,依据相似三角形的性质解答.【解答】解:(1)∵△ECF的面积与四边形EABF的面积相等∴S△ECF :S△ACB=1:2又∵EF∥AB∴△ECF∽△ACB==∵AC=4,∴CE=;(2)设CE的长为x∵△ECF∽△ACB∴=∴CF=由△ECF的周长与四边形EABF的周长相等,得x+EF+x=(4﹣x)+5+(3﹣x)+EF 解得∴CE的长为;(3)△EFP为等腰直角三角形,有两种情况:①如图1,假设∠PEF=90°,EP=EF由AB=5,BC=3,AC=4,得∠C=90°∴Rt△ACB斜边AB上高CD=设EP=EF=x,由△ECF∽△ACB,得:=即=解得x=,即EF=当∠EFP´=90°,EF=FP′时,同理可得EF=;②如图2,假设∠EPF=90°,PE=PF时,点P到EF的距离为EF设EF=x,由△ECF∽△ACB,得:=,即=解得x=,即EF=综上所述,在AB上存在点P,使△EFP为等腰直角三角形,此时EF=或EF=.【点评】此题考查了相似三角形的性质,有一定的开放性,难点在于作出辅助线就具体情况进行分类讨论.期末试卷(2)一、选择题(每小题3分,共42分)1.(3分)计算a7•()2的结果是()A.aB.a5 C.a6ﻩD.a82.(3分)要使分式有意义,则x的取值范围是()A.x≠1ﻩB.x>1C.x<1D.x≠﹣13.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.ﻩB.ﻩC.ﻩD.4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=2,BC=4,AC=7B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4 D.∠C=90°,AB=65.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个ﻩB.2个ﻩC.3个ﻩD.4个6.(3分)若(x+3)(x﹣4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=﹣12C.p=7,q=12D.p=7,q=﹣127.(3分)下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6B.∠A=40°、∠B=70°C.AB=3、BC=8,周长为16ﻩD.∠A=40°、∠B=50°8.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形ﻩB.八边形ﻩC.九边形D.十边形9.(3分)如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5 B.6C.3ﻩD.410.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数为()A.65°B.25°C.35°D.45°11.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25ﻩB.±25 C.5ﻩD.±512.(3分)如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于()A.65°B.115°C.105°D.75°13.(3分)若分式方程无解,则m的值为()A.﹣2B.0ﻩC.1 D.214.(3分)若m=2100,n=375,则m,n的大小关系为()A.m>nﻩB.m<nﻩC.m=nﻩD.无法确定二、填空题(本大题满16分,每小题4分)15.(4分)计算:=.16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为cm.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于.18.(4分)下列图形中对称轴最多的是.。
人教版九年级上册数学期末考试试题一、单选题1.在平面直角坐标系中,点A(1,-2)和点B(m ,2)关于原点对称,则m 的值为( ) A .2 B .-2 C .1 D .-12.从-2,0,2,3中随机选一个数,是不等式231x -≥的解的概率为( )A .13B .14C .12D .23 3.如图,将△AOB 绕点O 按逆时针方向旋转60°后得到A OB ''△,若△AOB =25°,则AOB '∠的度数是( )A .25°B .35°C .40°D .85°4.已知直角三角形的两条边长分别是方程x 2﹣9x+20=0的两个根,则此三角形的第三边是A.4或5 B .3 C D .35.如图,若抛物线2221y ax x a =-+-经过原点,则抛物线的解析式为( )A .22y x x =--B .22y x x =-C .221y x x =--+D .22y x x =--或22y x x =-6.如图,AB 是△O 的直径,AP 是△O 的切线,PB 交△O 于点C ,点D 在△O 上,若△ADC =40°,则△P 的度数是( )A .35°B .40°C .45°D .50°7.已知抛物线223y x x =--经过A (-2,1y ),B (-1,2y ),C (1,3y )三点,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >> 8.如图,将△ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '刚好落在BC 边上,且AB CB ''=,若△C=20°,则△ABC 旋转的角度为( )A .60°B .80°C .100°D .120°9.如图,在平面直角坐标系中,二次函数234y x x =+-的图象与x 轴交于A 、C 两点,与y 轴交于点B ,若P 是x 轴上一动点,点Q (0,2)在y 轴上,连接PQ ,则PQ 的最小值是( )A.6 B .2 C .2+ D .10.已知二次函数y =ax 2+bx +c (a≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根二、填空题11.一元二次方程230x -=的解为_______.12.二次函数2152y x =-+有最_________值为__________. 13.如图,在平面直角坐标系中,点A 的坐标是(4,0),点P 的坐标是(0,3),把线段AP 绕点P 逆时针旋转90°后得到线段PQ ,则点Q 的坐标是__________.14.二次函数y=ax2+bx+c 图象上部分点的坐标满足下表:则该函数图象的顶点坐标为___________15.如图,CD 是△O 的直径,AB 是弦,CD△AB 于点E ,若OA=5,AB=8,则AD 的长为_____________.16.定义:关于x 的方程21110a x b x c ++=(a 1≠0)与22220a x b x c ++=(a 2≠0),如果满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个方程互为“对称方程”.若关于x 的方程223(23)40x m m x +-+-=与2320x x n -++=互为“对称方程”,则2()m n -的值为____.17.如图,已知四边形ABCD 和四边形BEFM 均为正方形,以B 为圆心,以BE 为半径作弧EM .若大正方形的边长为8厘米,则图中阴影部分的面积为________.(结果保留π)三、解答题18.已知关于x 的一元二次方程2(1)420m x x --+=.(1)若方程的一个根为1x =,求m 的值;(2)若方程没有实数根,求m 的取值范围.19.如图,从某建筑物的窗口A 处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),点A 离地面的高度为6米,抛物线的最高点P 到墙的垂直距离为2米,到地面的垂直距离为8米,如图建立平面直角坐标系.(1)求抛物线的解析式;(2)求水落地离墙的最远距离OB .20.一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球1个,黄球1个,蓝球1个.(1)现从中任意摸出一个球,则摸到黄球的概率为;(2)现规定:摸到红球得6分,摸到黄球得4分,摸到蓝球得3分,甲同学先随机摸出一个小球(然后放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于9分的概率.21.如图,在△ABC中,△ACB=30°,将ABC绕点C顺时针旋转60°得到△DEC ,连接AE.(1)求证:AB=AE;(2)若AB=AC,试判断四边形ACDE的形状,并说明理由.22.如图,在等腰三角形ABC中,AB=AC,AD△BC,垂足为D.(1)请用尺规作图作出三角形ABC的外接圆△O;(不写作法及证明,应保留作图痕迹)(2)若BC=4,AD=5,求△O的半径r.23.如图,在RtΔABC中,△ACB=90°,D为AB边上的一点,以AD为直径作△O,△O 与BC相切于点E,连结AE,过点C作CG△AB于点G,交AE于点F,过点E作EP△AB于点P.(1)求证:△BED=△EAD;(2)求证:CE=EP;(3)连接PF,若CG=8,PG=6,求四边形CFPE的面积.24.某商场将每件进价为70元的某种商品原来按每件90元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润______元.(2)设后来该商品每件降价x元,商场一天可获利润y元,△若商场经营该商品一天要获利润2210元,则每件商品应降价多少元?△求出y与x之间的函数关系式,当x取何值时,商场获利润最大?25.如图(1),在△ABC中,△ACB=90°,以AB为直径作△O;过点C作直线CD交AB 的延长线于点D,且BD=OB,CD=CA.(1)求证:CD是△O的切线.(2)如图(2),过点C作CE△AB于点E,若△O的半径为8,△A=30°,求线段BE.26.如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. (1)求点B 的坐标;(2)求经过点A .O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.参考答案1.D 【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求得m 的值.【详解】解:点A(1,-2)和点B(m ,2)关于原点对称,则m 的值为1-故选:D .【点睛】本题考查了原点对称的两个点的坐标特征,理解“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.2.C 【分析】首先确定不等式的解集,然后利用概率公式计算即可.【详解】解:解231x -≥得:2x ≥,所以满足不等式的数有2和3两个,所以从-2,0,2,3中随机选一个数,是231x -≥的解的概率为:2142=, 故选:C .【点睛】考查了概率公式的知识,解题的关键是正确的求解不等式,难度不大.3.B 【分析】根据AOB 绕点O 按逆时针方向旋转60°后得到AOB '',可得60BOB ∠'=︒,然后根据25AOB ∠=︒,可以求出'AOB ∠的度数.【详解】△AOB 绕点O 按逆时针方向旋转60°后得到AOB'', △60BOB ∠'=︒,又△25AOB ∠=︒△602535AOB BOB AOB ∠'=∠'-∠=︒-︒=︒,故选B .4.D【详解】解:解方程29200x x -+=得14x =,25x =,当两直角边分别为4和5,则第三边的长==当斜边为5,第三边的长3=,所以此三角形的第三边长为3故选:D .5.A 【详解】 抛物线2221y ax x a =-+-经过原点,∴ 令0x = ,则2200201a a =⨯-⨯+- ,解得1a =± ;由图可知,抛物线2221y ax x a =-+-的开口向下,∴ 1a =- ,∴抛物线22y x x =--. 故选:A6.D 【分析】根据圆周角和圆心角的关系,可以得到ADC ∠的度数,然后根据AP 为O 的切线和直角三角形的两个锐角互余,即可求得P ∠的度数.【详解】解:40ADC ∠=︒,40ABC ∴∠=︒, AB 为O 的切线,点A 为切点,90OAB ︒∴∠=,90904050P ABC ∴∠=︒-∠=︒-︒=︒,故选:D .7.A 【分析】根据抛物线解析式可得抛物线开口向上,对称轴为1x =,求得、、A B C 三点到对称轴的距离,利用二次函数的性质即可求解.【详解】解:抛物线223y x x =--,则开口向上,对称轴为1x =,由二次函数的性质可得离对称轴越远,函数值越大,A (-2,1y ),B (-1,2y ),C (1,3y )到对称轴的距离分别为3,2,0,所以123y y y >>,故选A8.C 【分析】由AB’=CB’得△B’AC=△C ,由旋转得AB’=AB ,所以有△B=△AB’B=△B’AC+△C=2△C ,进而得到△B=△AB’B=40°,再由△BAB’+△B+△AB’B=180°即可求出旋转角△BAB’的度数.【详解】解:△AB CB ''=,△△B’AC=△C ,由旋转前后对应线段相等可知:AB’=AB ,△△B=△AB’B ,由三角形外角定理可知:△AB’B=△B’AC+△C=2△C=40°,△△B=△AB’B=40°,△△ABC 旋转的角度为△BAB’=180°-△B-△AB’B=180°-40°-40°=100°,故选:C .9.D 【分析】连接BC ,过点P 作PD△BC 于D ,过点Q 作QH△BC 于H .根据PQ PQ PD =+,可得DQ PD +的最小值为QH 的长,即可解决问题.【详解】如图,连接BC ,过点P 作PD△BC 于D ,过点Q 作QH△BC 于H .由234y x x =+-,令0y =,则2340x x +-=,解得1241x x =-=,,()()4,0,1,0C A ∴-,令0x =,解得0y =,()0,4B ∴-,4OB OC ∴==,90BOC ∠=︒,45OCB OBC ∴∠=∠=︒,PC ∴=,∴2PQ PC PQ PD QH +=+≥,当P 为QH 与x 轴交点时PQ 最小,最小值为QH 的长, Q (0,2),()0,4B -, 4BQ ∴=,设QH x =,则BH x =,△222DH BH Q B +=,△2226x x +=,△x =△QH =则PQ 的最小值是 故选D .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.10.D 【详解】由开口方向可知a 0<,故A 选项错误,不符合题意;观察图像可知当x >1时y 随x 的增大而减小,故B 选项错误,不符合题意;观察图像可知0c >,故C 选项错误,不符合题意;抛物线与x 轴的另一个交点是(3,0)故3是方程ax 2+bx +c=0的一个根,故D 选项正确,符合题意.故选:D .11.1x =2x =【分析】先移项,再两边开平方即可. 【详解】解:△230x -= △23x =,△1x =2x =,故答案为:1x 2x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12. 大 5【分析】根据开口方向向下得到有最大值,根据对称轴为y 轴得到当x=0时,y 最大为5. 【详解】解:由2152y x =-+可知: 102a =-<,开口向下, △二次函数有最大值,又其对称轴为y 轴,△当x=0时,y 最大为5,故答案为:大,5.【点睛】本题考查二次函数的性质,属于基础题,熟练掌握二次函数的性质是解决本题的关键.13.(3,7)【分析】过Q 作QE△y 轴于E 点,证明△QEP△△POA ,得到EQ=PO=3,EP=OA=4后即可求解.【详解】解:过Q 作QE△y 轴于E 点,如下图所示:△旋转90°,△△1+△2=90°,△EQ△y轴,△△3+△2=90°,△△1=△3,且△QEP=△POA=90°,PQ=PA,△△QEP△△POA(AAS),△EQ=PO=3,EP=OA=4,△EO=EP+PO=4+3=7,△点Q的坐标是(3,7),故答案为:(3,7).【点睛】本题考查三角形全等的判定和性质,坐标与图形,本题的关键过Q作QE△y轴于E点,证明△QEP△△POA.14.(-2,-2)【详解】△x=−3和−1时的函数值都是−3相等,△二次函数的对称轴为直线x=−2,△顶点坐标为(−2,−2).故选B.15.△CD是△O的直径,AB是弦,CD△AB,AB=8,在Rt△OEB中,根据勾股定理3=,△CD=OD+OE=5+3=8,在Rt△AED中,==故答案为【点睛】本题考查垂径定理,勾股定理,线段和差,掌握垂径定理,勾股定理,线段和差是解题关键.16.9【分析】由题可知2232m m -+=,40n -+=,求出,m n 的值,然后代入()2m n -求解即可.【详解】解:由题可知2232m m -+=,40n -+=解得14m n ==, △()()22149m n -=-=故答案为:9.【点睛】本题考查了代数式求值,完全平方公式求一元二次方程的解.解题的关键在于求出,m n 的值.17.16π平方厘米【分析】连接BD 、ME ,根据正方形的性质得出BD△ME ,可知△MED 的面积等于△MEB 的面积,则阴影部分的面积为扇形MEB 的面积,利用面积公式求解即可.【详解】解:连接BD 、ME ,△四边形ABCD 和四边形BEFM 均为正方形,△△DBA=△MEA=45°,△BD△ME ,△△MED 的面积等于△MEB 的面积,△阴影部分的面积为扇形MEB 的面积,△正方形的边长为8厘米,△MBE=90°, 2908==16360S ππ⨯阴影(平方厘米), 故答案为:16π平方厘米.【点睛】本题考查了正方形的性质和扇形面积公式,解题关键是利用正方形性质得出阴影部分面积为扇形面积.18.(1)3(2)3m >【分析】(1)根据一元二次方程的根的定义把1x =代入2(1)420m x x --+=中进行求解即可;(2)根据一元二次方程根的判别式求解即可.(1)解:把1x =代入2(1)420m x x --+=得:1420m --+=,解得:3m =;(2)解:△方程2(1)420m x x --+=没有实数根, △()Δ164210m =-⨯-<,解得:3m >.【点睛】本题主要考查了一元二次方程的解和一元二次方程根的判别式,熟知相关知识是解题的关键.19.(1)21(2)82y x =--+ (2)6米【分析】(1)根据题意可知该抛物线顶点坐标,且经过点A (0,6),即可设抛物线的解析式为2(2)8y a x =-+,再将A (0,6)代入,求出a 即可;(2)对于该抛物线解析式,令y=0,求出x 的值即可.(1)由题意可知抛物线的顶点坐标为(2,8),且经过点A (0,6),△设抛物线的解析式为2(2)8y a x =-+,把A (0,6)代入得486a +=, 解得:12a =-,△21(2)82y x =--+.(2)令0y =,得()212802x --+=, 解得:16x =,22x =-(舍去),△水落地离墙的最远距离为6米.【点睛】本题考查二次函数的实际应用.根据题意,利用待定系数法求出解析式是解答本题的关键.20.(1)13(2)59【分析】(1)根据概率公式,求得任意摸出一个球的结果总数以及摸到黄球的结果数,即可求解;(2)利用列表法求解概率即可.(1)由题意可得,小球总数为3个,从中任意摸出一个球,结果总数为3,摸到黄球的结果数为1,则摸到黄球的概率为13, (2)根据题意,列表如下:由表可知:共有9个等可能的结果,甲、乙摸球所得分数之和不低于9分的结果有5个,△甲、乙摸球所得分数之和不低于9分的概率为59, 【点睛】此题考查了概率的有关计算,涉及了概率公式以及利用列表法或树状图求解概率,解题的关键是掌握概率公式以及列表法或树状图求解概率的方法.21.(1)见解析(2)四边形ACDE 是菱形,见解析【分析】(1)由旋转的性质可得出△BCE =60°,BC=EC .再根据题意即可求出ACE =30°=△ACB .即易证△ACB△△ACE(SAS),得出结论AB=AE ;(2)由旋转的性质可得出AC=DC ,AB=ED ,结合(1)可证明AE=DE ,若AB=AC ,即可证明AC=DC=DE=AE ,即证明四边形ACDE 是菱形.(1)证明:△△ABC 绕点C 顺时针旋转60°得到△DEC ,△△BCE =60°,BC=EC .△△ACB =30°,△△ACE =30°=△ACB .△AC=AC ,△△ACB△△ACE(SAS),△AB=AE ;(2)△△ABC 绕点C 顺时针旋转得到△DEC ,△AC=DC ,AB=ED ,由(1)可知AB=AE ,△AE=DE ,若AB=AC ,则AC=AE ,△AC=DC=DE=AE ,△四边形ACDE 是菱形.【点睛】本题考查旋转的性质,全等三角形的判定和性质,菱形的判定.利用数形结合的思想是解答本题的关键.22.(1)见解析 (2)2910【分析】(1)作AB 边的垂直平分线交AD 于点O ,再以O 点为圆心,OA 长为半径画圆,即可求解;(2)连结OB ,根据等腰三角形的性质可得BD=CD=2 ,然后设△O 的半径为r ,则AO=BO=r ,5OD r =-,在Rt△BOD 中,由勾股定理即可求解.(1)解:△AB=AC ,AD△BC ,△BD=CD ,即AD 垂直平分BC ,△作AB 边的垂直平分线交AD 于点O ,再以O 点为圆心,OA 长为半径画圆,△O 即为所求作,如下图所示;(2)解:连结OB ,△AB=AC ,AD△BC ,BC =4,△BD=CD=2 ,设△O 的半径为r ,则AO=BO=r ,5OD r =-,在Rt△BOD 中,由勾股定理可得:222(5)2r r --=, 解得:2910r =, △△O 的半径2910r =. 【点睛】本题主要考查了三角形的外接圆,等腰三角形的性质,勾股定理,熟练掌握三角形的外接圆的性质,等腰三角形的性质,勾股定理是解题的关键.23.(1)见解析;(2)见解析; (3)752【分析】(1)连接OE ,根据切线性质和圆周角定理证得△AED=△OED=90°,再根据等边对等角和等角的余角相等即可证得结论;(2)根据平行线的判定与性质证得△CAE=△AEO ,再根据等角对等边和角平分线的性质定理即可证的结论;(3)连接PF ,根据等角的余角相等和等角对等边证得CE=CF ,证明CF△EP ,根据菱形的判定与性质证明四边形CFPE 是菱形求得CF=PF ,再利用勾股定理求得CF 即可.(1)证明:(1)连结OE,△BC与△O相切于点E,△OE△BC,△△OED=△BED+△OED=90°,△AD是直径,△△AED=90°,△△EAD+△ADE=90°,△OE=OD,△△OED=△ADE,△△BED=△EAD;(2)证明:△AC△BC,OE△BC,△AC△OE,△△CAE=△AEO,△OA=OE,△△EAO=△AEO,△△CAE=△EAO,又△EP△AB,EC△AC,△CE=EP;(3)解:连结PF,△△ACB=90°,CG△AB ,△△CAE+△AEC=△AFG+△EAP=90°,△△CAE=△EAP ,△△AEC=△AFG =△CFE ,△CF=CE ,△CE=EP ,△CF=PE ,△CG△AB ,EP△AB ,△CF△EP ,△四边形CFPE 是平行四边形,又△CE=EP ,△平行四边形CFPE 是菱形,△CF=PF ,设CF x =,则PF x =,8FG x =-,在Rt△PFG 中,由勾股定理可得:222(8)6x x =-+, 解得:254x =, △2575642S CF PG =⨯=⨯=菱形. 【点睛】本题考查切线性质、圆周角定理、等角的余角相等、等腰三角形的判定与性质、平行线的判定与性质、角平分线的性质定理、平行四边形的判定、菱形的判定与性质、勾股定理等知识,熟练掌握相关知识的联系与运用是解答的关键.24.(1)2000;(2)△3元或7元,△y=-10x 2+100x+2000,当x=5时,商店所获利润最大【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式:y=(90﹣70﹣x)(100+10x),再依据函数的增减性求得最大利润.【详解】(1)100×(90﹣70)=2000;(2)设:商品每件降价x元,商场一天可获利润y元.△依题意得:(90﹣70﹣x)(100+10x)=2210解得:x1=3,x2=7.经检验:都是方程的解,且符合题意.答:商店经营该商品一天要获利润2270元,则每件商品应降价3元或7元.△依题意得:y=(90﹣70﹣x)(100+10x)y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250△a=﹣10<0,函数在顶点处有最大值,即:当x=5时,商店所获利润最大.25.(1)见解析;(2)4.【分析】(1)如图1,连结OC,根据直角三角形斜边中点的性质得出OC=OA=OB,进一步得出点C在△O上,由等边对等角得出△A=△D,然后通过证得△ACB△△DCO,得出△DCO=△ACB=90°,即可证得CD是△O的切线;(2)解直角三角函数即可求得.【详解】(1)证明:如图1,连结OC,△点O为直角三角形斜边AB的中点,△OC=OA=OB.△点C在△O上,△BD=OB,△AB=DO,△CD=CA,△△A=△D,△△ACB△△DCO,△△DCO=△ACB=90°,△CD 是△O 的切线;(2)如图2,在Rt△ABC 中,BC=ABsin△A=2×8×sin30°=8,△△ABC=90°-△A=90°-30°=60°, △BE=BCcos60°=8×12=4.26.(1)点B 的坐标为(﹣2,﹣.(2)此抛物线的解析式为y=(3)存在.点P 的坐标为(2,﹣.【分析】(1)首先根据OA 的旋转条件确定B 点位置,然后过B 做x 轴的垂线,通过构建直角三角形和OB 的长(即OA 长)确定B 点的坐标.(2)已知O 、A 、B 三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P 点的坐标,而O 、B 坐标已知,可先表示出△OPB 三边的边长表达式,然后分△OP=OB 、△OP=BP 、△OB=BP 三种情况分类讨论,然后分辨是否存在符合条件的P 点.【详解】解:(1)如图,过B 点作BC△x 轴,垂足为C ,则△BCO=90°.△△AOB=120°,△△BOC=60°.又△OA=OB=4,△OC=12OB=12×4=2,BC=OB•sin60°=4.△点B 的坐标为(﹣2,﹣.(2)△抛物线过原点O 和点A .B ,△可设抛物线解析式为y=ax 2+bx ,将A (4,0),B (﹣2,﹣得16a+4b=0{4a 2b=--a={.△此抛物线的解析式为y=(3)存在.如图,抛物线的对称轴是x=2,直线x=2与x 轴的交点为D , 设点P 的坐标为(2,y ).△若OB=OP ,则22+|y|2=42,解得y=±当y=在Rt△POD 中,△PDO=90°,sin△POD=PD OP =,△△POD=60°△△POB=△POD+△AOB=60°+120°=180°,即P 、O 、B 三点在同一直线上.△y=△点P 的坐标为(2,﹣.△若OB=PB ,则42+|y+2=42,解得y=﹣ △点P 的坐标为(2,﹣.△若OP=BP ,则22+|y|2=42+|y+2,解得y=﹣ △点P 的坐标为(2,﹣.综上所述,符合条件的点P 只有一个,其坐标为(2,﹣.。