2015—2016学年第一学期数学期中质量分析
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
2015-2016学年重庆市南开中学高一(上)期中数学试卷一、选择题(本大题共12个小题,每小题5分,共60分,每小题只有一个选项符合要求)1.下列说法正确的是()A.﹣1∈N B.∈Q C.π∉R D.∅⊆Z2.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},如图中阴影部分所表示的集合为()A.{1}B.{0,1} C.{1,2} D.{0,1,2}3.给定映射f:(x,y)→(x+2y,2x﹣y),在映射f下(3,1)的原象为()A.(1,3) B.(3,1)C.(1,1) D.4.设a,b∈R,则“a+b>2”是“a>1且b>1"的()A.充分非必要条件B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件5.已知函数y=,其定义域为()A.(﹣∞,1]B.(﹣∞,2]C.(﹣∞,﹣2)∪(﹣2,1]D.[1,2)∪(2,+∞)6.已知函数f(x+1)=3x+1,则f(x)的解析式为()A.f(x)=3﹣2x B.f(x)=2﹣3x C.f(x)=3x﹣2 D.f(x)=3x7.已知y=f(x+1)是R上的偶函数,且f(2)=1,则f(0)=()8.函数y=的单调递增区间是()A.(﹣∞,1)B.(﹣2,1)C.(1,4)D.(1,+∞)9.已知奇函数f(x)在(0,+∞)上的图象如图所示,则不等式的解集为()A.(﹣3,﹣1)∪(0,1)∪(1,3)B.(﹣3,﹣1)∪(0,1)∪(3,+∞)C.(﹣∞,﹣3)∪(﹣1,0)∪(3,+∞) D.(﹣∞,﹣3)∪(﹣1,0)∪(0,1)10.已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意x1∈R,都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),则实数a的取值范围是()A. B.(0,+∞) C.D.11.已知集合A={x|x2﹣2x﹣3>0},B={x|ax2+bx+c≤0,a,b,c∈R,ac≠0},若A∩B=(3,4],A∪B=R,则的最小值是()A.3 B.C.1 D.12.设集合A={x|1≤x≤6,x∈N},对于A的每个非空子集,定义其“交替和"如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数(如:{1,2,5}的“交替和”是5﹣2+1=4,{6,3}的“交替和"就是6﹣3=3,{3}的“交替和”就是3).则集合A的所有这些“交替和”的总和为()二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡上相应位置(只填结果,不写过程)13.设函数f(x)=,则f(2018)=.14.计算:=.15.函数f(x)=2x﹣的值域为.16.若函数f(x)=||﹣a的图象与x轴恰有四个不同的交点,则实数a的取值范围为.三、解答题:(本大题共6个小题,共70分)各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程)17.已知集合A=,集合B={x||2x﹣1|<3}.(1)分别求集合A、B;(2)求(∁R A)∩B.18.已知函数f(x)的定义域为(0,4),函数g(x)=的定义域为集合A,集合B={x|a <x<2a﹣1},若A∩B=B,求实数a的取值范围.19.已知函数f(x)=.(1)求函数f(x)在区间[0,2]上的最值;(2)若关于x的方程(x+1)f(x)﹣ax=0在区间(1,4)内有两个不等实根,求实数a的取值范围.20.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数h(x)=f(x)﹣(2t﹣3)x在[0,1]上的最小值g(t).21.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=﹣2.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)求f(x)在区间[﹣2,2]上的最大值;(Ⅲ)若a≥0,解关于x的不等式f(ax2)﹣2f(x)<f(ax)+4.22.对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对";设函数f(x)的定义域为R+,且f(1)=3.(Ⅰ)若(a,b)是f(x)的一个“P数对”,且f(2)=6,f(4)=9,求常数a,b的值;(Ⅱ)若(﹣2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k﹣|2x﹣3|,求k的值及f (x)在区间[1,2n)(n∈N*)上的最大值与最小值.2015—2016学年重庆市南开中学高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,每小题只有一个选项符合要求)1.下列说法正确的是()A.﹣1∈N B.∈Q C.π∉R D.∅⊆Z【考点】元素与集合关系的判断.【专题】应用题;集合思想;分析法;集合.【分析】根据常见集合和空集即可判断.【解答】解:N为自然数集,Q为有理数集,R为实数集,Z为整数集,所以:A,B,C错误,因为空集是任何非空集合的子集,故D正确,故选:D.【点评】本题考查了常见的基本集合和空集的问题,属于基础题.2.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},如图中阴影部分所表示的集合为()A.{1} B.{0,1} C.{1,2}D.{0,1,2}【考点】Venn图表达集合的关系及运算;交、并、补集的混合运算.【专题】计算题.【分析】先观察Venn图,得出图中阴影部分表示的集合,再结合已知条件即可求解.【解答】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.又A={1,2,3,4,5},B={x∈R|x≥2},则右图中阴影部分表示的集合是:{1}.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.3.给定映射f:(x,y)→(x+2y,2x﹣y),在映射f下(3,1)的原象为()A.(1,3) B.(3,1) C.(1,1) D.【考点】映射.【专题】计算题.【分析】由已知中:(x,y)在映射f的作用下的象是(x+2y,2x﹣y),设(3,1)的原象(a,b),根据已知中映射的对应法则,我们可以构造一个关于a,b的方程组,解方程组即可求出答案.【解答】解:∵(x,y)在映射f的作用下的象是(x+2y,2x﹣y)设(3,1)的原象(a,b)则a+2b=3,2a﹣b=1故a=1,b=1故(3,1)的原象为(1,1)故选C.【点评】本题考查的知识点是映射,其中根据已知中映射的对应法则,设出原象的坐标,并构造出相应的方程(组)是解答本题的关键.4.设a,b∈R,则“a+b>2”是“a>1且b>1”的()A.充分非必要条件B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】利用不等式的性质,结合充分条件和必要条件的定义进行判断.【解答】解:若a>1且b>1时,a+b>2成立.若a=0,b=3,满足a+b>1,但a>1且b>1不成立,∴“a+b>2”是“a>1且b>1”的必要不充分条件.【点评】本题主要考查充分条件和必要条件的应用,以及不等式的性质的判断,比较基础.5.已知函数y=,其定义域为()A.(﹣∞,1]B.(﹣∞,2]C.(﹣∞,﹣2)∪(﹣2,1]D.[1,2)∪(2,+∞)【考点】函数的定义域及其求法.【专题】函数思想;综合法;函数的性质及应用.【分析】根据二次个数的性质且分母不为0,求出函数的定义域即可.【解答】解:由题意得:,解得:x≤1且x≠﹣2,故选:C.【点评】本题考查了求函数的定义域问题,是一道基础题.6.已知函数f(x+1)=3x+1,则f(x)的解析式为()A.f(x)=3﹣2x B.f(x)=2﹣3x C.f(x)=3x﹣2 D.f(x)=3x【考点】函数解析式的求解及常用方法.【专题】函数思想;综合法;函数的性质及应用.【分析】将f(x+1)的解析式变成f(x+1)=3(x+1)﹣2,这样便可得出f(x)的解析式.【解答】解:f(x+1)=3x+1=3(x+1)﹣2;∴f(x)=3x﹣2.故选C.【点评】考查函数解析式的概念,将f[g(x)]中的x变成g(x)从而求f(x)解析式的方法,还可用换元法求解析式.7.已知y=f(x+1)是R上的偶函数,且f(2)=1,则f(0)=()A.﹣1 B.0 C.1 D.2【考点】函数奇偶性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据f(x+1)为偶函数便有f(x+1)=f(﹣x+1),从而f(2)=f(1+1)=f(﹣1+1),从而便可得出f(0)的值.【解答】解:f(x+1)为R上的偶函数;∴f(2)=f(1+1)=f(﹣1+1)=f(0)=1;即f(0)=1.故选:C.【点评】考查偶函数的定义,要清楚函数y=f(x+1)的自变量是什么.8.函数y=的单调递增区间是()A.(﹣∞,1) B.(﹣2,1)C.(1,4) D.(1,+∞)【考点】函数的单调性及单调区间.【专题】函数思想;综合法;函数的性质及应用.【分析】可先求出该函数的定义域为[﹣2,4],容易看出该函数是由和t=﹣x2+2x+8复合而成的复合函数,而为增函数,∴求t=﹣x2+2x+8在[﹣2,4]上的单调递增区间,从而便可得出原函数的单调递增区间.【解答】解:解﹣x2+2x+8≥0得,﹣2≤x≤4;令﹣x2+2x+8=t,则y=为增函数;∴t=﹣x2+2x+8在[﹣2,4]上的增区间便是原函数的单调递增区间;∴原函数的单调递增区间为(﹣2,1).故选:B.【点评】考查一元二次不等式的解法,复合函数的定义,以及复合函数单调区间的求法,二次函数的单调区间的求法.9.已知奇函数f(x)在(0,+∞)上的图象如图所示,则不等式的解集为()A.(﹣3,﹣1)∪(0,1)∪(1,3)B.(﹣3,﹣1)∪(0,1)∪(3,+∞)C.(﹣∞,﹣3)∪(﹣1,0)∪(3,+∞)D.(﹣∞,﹣3)∪(﹣1,0)∪(0,1)【考点】函数的图象.【专题】应用题;数形结合;分析法;函数的性质及应用.【分析】由f(x)是奇函数得函数图象关于原点对称,可画出y轴左侧的图象,利用两因式异号相乘得负,得出f(x)的正负,由图象可求出x的范围得结果.【解答】解:不等式转化为(x﹣1)f(x)<0,则,或,∴1<x<3,0<x<1,或﹣3<x<﹣1,∴等式的解集为(﹣3,﹣1)∪(0,1)∪(1,3),故选:A.【点评】本题主要考查函数奇偶性的性质以及函数图象的应用.奇函数的图象关于原点对称,偶函数的图象关于Y轴对称.10.已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意x1∈R,都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),则实数a的取值范围是()A. B.(0,+∞) C.D.【考点】全称命题.【专题】函数思想;综合法;函数的性质及应用.【分析】确定函数f(x)、g(x)的值域,根据对任意的x1∈R都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),可f(x)值域是g(x)值域的子集,从而得到实数a的取值范围.【解答】解:∵函数f(x)=x2﹣2x的图象是开口向上的抛物线,且关于直线x=1对称∴f(x)的最小值为f(1)=﹣1,无最大值,可得f(x1)值域为[﹣1,+∞),又∵g(x)=ax+2(a>0),x2∈[﹣2,+∞),∴g(x)=ax+2(a>0)为单调增函数,g(x2)值域为[g(﹣2),+∞),即g(x2)∈[2﹣2a,+∞),∵对任意的x1∈R都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),∴只需f(x)值域是g(x)值域的子集即可,∴2﹣2a<﹣1,解得:a>,故选:A.【点评】本题考查了函数的值域,考查学生分析解决问题的能力,解题的关键是对“任意”、“存在”的理解.11.已知集合A={x|x2﹣2x﹣3>0},B={x|ax2+bx+c≤0,a,b,c∈R,ac≠0},若A∩B=(3,4],A∪B=R,则的最小值是()A.3 B.C.1 D.【考点】交集及其运算;并集及其运算.【专题】计算题;转化思想;综合法;集合.【分析】求出不等式的解,根据集合关系求出a,b,c的值,利用基本不等式进行求解即可.【解答】解:A={x|x2﹣2x﹣3>0}={x|x>3或x<﹣1},∵A∩B=(3,4],A∪B=R,∴﹣1,4是方程ax2+bx+c=0的两个根,且a>0,则﹣1+4=﹣=﹣3,即b=3a,﹣1×4=,即c=﹣4a,∴=9a+≥2=,当且仅当9a=,即a=时,取等号,故最小值为,故选:B【点评】本题主要考查集合的基本运算,根与系数的关系以及基本不等式的应用,根据条件求出a,b,c的关系是解决本题的关键.12.设集合A={x|1≤x≤6,x∈N},对于A的每个非空子集,定义其“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数(如:{1,2,5}的“交替和”是5﹣2+1=4,{6,3}的“交替和”就是6﹣3=3,{3}的“交替和”就是3).则集合A的所有这些“交替和”的总和为()A.128 B.192 C.224 D.256【考点】元素与集合关系的判断.【专题】探究型;整体思想;分析法;集合.【分析】根据“交替和”的定义:求出S2、S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n即可.【解答】解:由题意,S2表示集合N={1,2}的所有非空子集的“交替和"的总和,又{1,2}的非空子集有{1},{2},{2,1},∴S2=1+2+2﹣1=4;S3=1+2+3+(2﹣1)+(3﹣1)+(3﹣2)+(3﹣2+1)=12,S4=1+2+3+4+(2﹣1)+(3﹣1)+(4﹣1)+(3﹣2)+(4﹣2)+(4﹣3)+(3﹣2+1)+(4﹣2+1)+(4﹣3+1)+(4﹣3+2)+(4﹣3+2﹣1)=32,∴根据前4项猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n=n•2n﹣1,所以S6=6×26﹣1=6×25=192,故选:B.【点评】本题主要考查了数列的应用,同时考查了归纳推理的能力.二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡上相应位置(只填结果,不写过程)13.设函数f(x)=,则f(2018)=2015.【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由已知条件利用分段函数的性质求解.【解答】解:∵f(x)=,∴f(2018)=f(2013)=2013+2=2015.故答案为:2015.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.14.计算:=2.【考点】有理数指数幂的化简求值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分数指数幂、根式的转化公式、性质及运算法则求解.【解答】解:==2.故答案为:2.【点评】本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意分数指数幂、根式的转化公式、性质及运算法则的合理运用.15.函数f(x)=2x﹣的值域为(﹣∞,2].【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】根据1﹣x≥0便可求出x和的范围,从而得出2x和﹣的范围,这样即得出f(x)的范围,即得出函数f(x)的值域.【解答】解:1﹣x≥0;∴x≤1,;∴;∴f(x)≤2;∴f(x)的值域为(﹣∞,2].故答案为:(﹣∞,2].【点评】考查函数值域的概念,一次函数的值域,以及根据不等式的性质求函数值域的方法.16.若函数f(x)=||﹣a的图象与x轴恰有四个不同的交点,则实数a的取值范围为(0,1。
某某省某某市恩阳区2015-2016学年七年级数学上学期期中试题一、选择题1.如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km2.最小的正有理数( )A.是0 B.是1 C.是0.00001 D.不存在3.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A.b>c>0>a B.a>0>c>b C.b>a>c>0 D.c<0<a<b4.下列各组中互为相反数的是( )A.﹣2与B.|﹣2|和2 C.﹣2.5与|﹣2| D.与5.若a+b<0,ab<0,则下列说法正确的是( )A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能6.用四舍五入法,把数4.803保留三个有效数字,得到的近似数是( )7.“a,b两数的平方和”用代数式表示为( )A.a2+b2 B.(a+b)2C.a+b2D.a2+b8.下列各组数中,不相等的一组是( )A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.(﹣2)和﹣2 D.|﹣2|3和|2|39.在多项式2x2﹣xy3+18中,次数最高的项是( )A.2 B.18 C.2x2D.﹣xy310.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚二、填空题__________,相反数是__________,倒数是__________.[来源:Zxxk.]13.单项式﹣a2b3c的系数是__________,次数是__________次.14.地球离太阳约有150000000万千米,用科学记数法表示为__________万千米.15.在数轴上,与表示﹣3的点的距离是4数为__________.16.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了__________元.17.规定a﹡b=﹣a+2b,则(﹣2)﹡3的值为__________.18.若(x﹣2)2+|y+3|=0,则y x=__________.19.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是__________.20.一列数据:2,4,6,8,…;按此排列,那么,第7个数据是__________,第n个数据是__________.三、解答题:11.﹣1﹣(﹣3)=__________.21.(25分)计算.(1)(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)(2)﹣99×9(3)(﹣1)10×2+(﹣2)3÷4(4)(﹣1)3﹣〔2﹣(﹣3)2〕÷(﹣)(5)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].22.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.23.(14分)已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.24.已知﹣2x m y n+1的次数为10,求2m+2n﹣1的值.25.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:[来源:Zxxk.]+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?26.X叔叔在南涧“龙凤丽都”房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用式子表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?27.(16分)某餐厅中1X餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4X桌子拼在一起可坐多少人?nX桌子呢?对于方式二呢?(2)该餐厅有40X这样的长方形桌子,按方式一每5X拼成一X大桌子,则40X桌子可拼成8X大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8X拼成一X大桌子,则两种方式分别可坐多少人?2015-2016学年某某省某某市恩阳区七年级(上)期中数学试卷一、选择题1.如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答】解:如果向东走2km表示+2km,那么﹣3km表示向西走3km.故选C.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.最小的正有理数( )A.是0 B.是1 C.是0.00001 D.不存在【考点】有理数.【分析】根据大于零的有理数是正有理数,可得答案.【解答】解:没有最小的正有理数,故D正确.故选:D.【点评】本题考查了有理数,没有最小的正有理数,也没有最大的有理数.3.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A.b>c>0>a B.a>0>c>b C.b>a>c>0 D.c<0<a<b【考点】有理数大小比较.【分析】数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.【解答】解:∵数轴上的数,右边的数总比左边的数大,∴b>c>0>a.故选A.【点评】本题考查了利用数轴比较有理数的大小,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大.4.下列各组中互为相反数的是( )A.﹣2与B.|﹣2|和2 C.﹣2.5与|﹣2| D.与【考点】相反数.【分析】两数互为相反数,它们的和为0.本题可对四个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.【解答】解:A、﹣2+(﹣)≠0,故﹣2与﹣一定不互为相反数,故选项错误;B、|﹣2|=2,2和2不是互为相反数,故选项错误;C、|﹣2|=2,与﹣2.5不是互为相反数,故选项错误;D、|﹣|=,+(﹣)=0,它们是互为相反数,故选项正确.故选:D.【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0.5.若a+b<0,ab<0,则下列说法正确的是( )A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.【点评】本题考查了有理数的乘法,有理数的加法运算,熟记运算法则是解题的关键.6.用四舍五入法,把数4.803保留三个有效数字,得到的近似数是( )【考点】近似数和有效数字.【分析】根据有效数字的定义,把千分位上的数字3进行四舍五入即可.【解答】解:4.803≈4.80(保留三个有效数字).故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.“a,b两数的平方和”用代数式表示为( )A.a2+b2 B.(a+b)2C.a+b2D.a2+b【考点】列代数式.【分析】“a,b两数的平方和”是先平方再相加.【解答】解:“a,b两数的平方和”代数式表示为用a2+b2.故选A.【点评】注意掌握代数式的意义.8.下列各组数中,不相等的一组是( )A.(﹣2)3和﹣23B.(﹣2)2和﹣22C.(﹣2)和﹣2 D.|﹣2|3和|2|3【考点】有理数的乘方.【分析】根据乘方的运算法则算出各自结果,然后进行比较得出答案.【解答】解:A中都是﹣8,B中一个是4一个是﹣4,C,D也都相等.故选B.【点评】解决此类题目的关键是熟记有理数的乘方运算法则和绝对值的定义.负数的奇数次幂是负数,负数的偶数次幂是正数.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.9.在多项式2x2﹣xy3+18中,次数最高的项是( )A.2 B.18 C.2x2D.﹣xy3【考点】多项式.【分析】此多项式共五项:2x2、﹣xy3、18.最高次项为﹣xy3;【解答】解:由上面分析得多项式2x2﹣xy3+18中最高次数项是多项式﹣xy3;故选:D.【点评】本题考查了对多项式的项的系数和次数定义的掌握情况,熟练掌握单项式次数是解题关键.10.用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子( )A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚【考点】规律型:图形的变化类.【分析】每增加一个数就增加四个棋子.【解答】解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选A.【点评】主要培养学生的观察能力和空间想象能力.二、填空题,相反数是,倒数是﹣2.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】求一个数的相反数时在这个数的前面加上负号即可;求一个数的倒数只需将其分子分母交换位置.【解答】解:|﹣0.5|=﹣(﹣0.5)=0.5,∴﹣0.5的绝对值是0.5,相反数为:0.5;﹣0.5的倒数为:=﹣2,故答案为:0.5;0.5;﹣2.【点评】本题考查了求一个数的相反数、绝对值及倒数,属于较简单的题目,但考查的频率较高.13.单项式﹣a2b3c的系数是﹣,次数是六次.【考点】多项式.【分析】根据单项式的系数与次数的定义求解.【解答】解:单项式﹣a2b3c的系数是﹣,次数是六次.故答案为﹣,六.【点评】本题考查了单项式:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.地球离太阳约有150000000万千米,用科学记数法表示为1.5×108万千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000000用科学记数法表示为:1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.在数轴上,与表示﹣3的点的距离是4数为1或﹣7.【考点】数轴.【专题】常规题型.【分析】此题注意考虑两种情况:该点在﹣3的左侧,该点在﹣3的右侧.【解答】解:根据数轴的意义可知,在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故答案为:1或﹣7.【点评】本题主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.16.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了0.8m+2n元.【考点】列代数式.【分析】根据总花费=买铅笔用的钱+买练习本用的钱,列代数式.【解答】解:总花费=0.8m+2n.故答案为:0.8m+2n.【点评】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.17.规定a﹡b=﹣a+2b,则(﹣2)﹡3的值为8.【考点】有理数的混合运算.【专题】新定义.【分析】利用已知a﹡b=﹣a+2b得出(﹣2)﹡3=﹣(﹣2)+2×3进而求出即可.【解答】解:∵a﹡b=﹣a+2b,∴(﹣2)﹡3=﹣(﹣2)+2×3=8.故答案为:8.【点评】此题主要考查了新运算以及有理数的混合运算,根据已知得出(﹣2)﹡3变形后等式是解题关键.18.若(x﹣2)2+|y+3|=0,则y x=9.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵(x﹣2)2+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴y x=(﹣3)2=9.故答案为9.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是﹣1﹣ab2+3a2b﹣a3.【考点】多项式.【分析】先分清多项式的各项,然后按多项式降升幂排列的定义排列.【解答】解:多项式3a2b﹣a3﹣1﹣ab2按字母a的升幂排列是:﹣1﹣ab2+3a2b﹣a3.故答案是::﹣1﹣ab2+3a2b﹣a3.【点评】我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.20.一列数据:2,4,6,8,…;按此排列,那么,第7个数据是14,第n个数据是2n.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,这是一列从2开始的偶数列,然后解答即可.【解答】解:∵2,4,6,8,…,∴按此排列,第7个数据是14;第n个数据是2n.故答案为:14;2n.【点评】本题是对数字变化规律的考查,观察出是偶数列是解题的关键.三、解答题:11.﹣1﹣(﹣3)=2.【考点】有理数的减法.【专题】计算题.【分析】根据有理数减法法则:减去一个数,等于加上这个数的相反数计算.【解答】解:﹣1﹣(﹣3)=﹣1+3=2.故答案为2.【点评】本题考查了有理数的减法.注意:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).21.(25分)计算.(1)(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)(2)﹣99×9(3)(﹣1)10×2+(﹣2)3÷4(4)(﹣1)3﹣〔2﹣(﹣3)2〕÷(﹣)(5)﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)利用加法交换律与结合律简算;(2)利用乘法分配律简算即可;(3)先算乘法,再算乘除,最后算加法;(4)先算乘方,再算除法,最后算减法;(5)先算乘方和括号里面的减法,再算乘法,最后算减法.【解答】解:((1)原式=(﹣3.14)+(+2.14)+(﹣7.96)+(+4.96)=﹣1﹣3=﹣4;(2)原式=﹣100×9+×9=﹣900+=﹣899;(3)原式=1×2+(﹣8)÷4=2﹣2=0;(4)原式=﹣1﹣〔2﹣9〕÷(﹣)=﹣1+7×(﹣2)=﹣1﹣14=﹣15;(5)原式=﹣1﹣××[2﹣9]=﹣1+=.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.22.将下列各数在数轴上表示出来,并用“<”连接:﹣22,﹣(﹣1),0,|﹣3|,﹣2.5.【考点】有理数大小比较;数轴.【专题】数形结合.【分析】先画出数轴并表示出各数,根据数轴的特点用“<”把各数连接起来.【解答】解:画出数轴并表示出各数如图:从左到右用“<”把各数连接起来为:﹣22<﹣2.5<0<﹣(﹣1)<|﹣3|.【点评】本题考查的是有理数的大小比较,引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(14分)已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.【考点】代数式求值;数轴;相反数;倒数.【专题】计算题.【分析】(1)根据m所表示的点到点3距离4个单位,确定出m即可;(2)利用相反数,倒数的定义求出a+b,,cd的值,代入原式计算即可得到结果.【解答】解:(1)根据题意得:m=﹣1或7,a+b=0,=﹣1,cd=1;(2)当m=﹣1时,原式=2(a+b)+﹣3cd﹣m=﹣1﹣3+1=﹣3;当m=7时,原式=﹣1﹣3﹣7=﹣11.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.24.已知﹣2x m y n+1的次数为10,求2m+2n﹣1的值.【考点】代数式求值;单项式.【分析】由﹣2x m y n+1的次数为10,可求得m+n=9,继而可求得2m+2n﹣1的值.【解答】解:∵﹣2x m y n+1的次数为10,∴m+n+1=10,∴m+n=9,∴2m+2n﹣1=2(m+n)﹣1=2×9﹣1=17.【点评】此题考查了代数式的求值,此题难度不大,注意掌握整体思想的应用.25.出租车司机李师傅一天下午的营运全是在东西走向的路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点什么方向?距离出发点多少米?(2)如果汽车耗油量为0.2升/千米,那么这天下午汽车共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得李师傅距下午出发地有多远;(2)根据行车路程×0.2,可得耗油量.【解答】解:(1)8+(﹣6)+(﹣5)+10+(﹣5)+3+(﹣2)+6+2+(﹣5)=6(米).答:若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅在出发点东方,距下午出发地有6米远;(2)|8|+|﹣6|+|﹣5|+|+10|+|﹣5|+|+3|+|﹣2|+|+6|+|+2|+|﹣5|=10.4(升).答:这天下午汽车共耗油10.4升.【点评】本题考查了正数和负数,有理数的加法是解题关键,注意不论向哪行驶都耗油.26.X叔叔在南涧“龙凤丽都”房地产公司买了一套经济适用房,他准备将地面铺上地砖,这套住宅的建筑平面图(由四个长方形组成)如图所示(图中长度单位:米),解答下列问题:(1)用式子表示这所住宅的总面积.(2)若铺1平方米地砖平均费用120元,求当x=6时,这套住宅铺地砖总费用为多少元?【考点】列代数式;代数式求值.【分析】(1)根据总面积等于四部分的面积之和列式整理即可得解;(2)把x=6代入代数式求出总面积,再乘以120计算即可得解.【解答】解:(1)总面积=2x+x2+4×3+2×3=x2+2x+18;(2)x=6时,总面积=62+2×6+18=36+12+18=66m2,所以,这套住宅铺地砖总费用为:66×120=7920元.【点评】本题考查了列代数式和代数式求值,比较简单,主要利用了长方形的面积和正方形的面积公式,准确识图是解题的关键.27.(16分)某餐厅中1X餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4X桌子拼在一起可坐多少人?nX桌子呢?对于方式二呢?(2)该餐厅有40X这样的长方形桌子,按方式一每5X拼成一X大桌子,则40X桌子可拼成8X大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8X拼成一X大桌子,则两种方式分别可坐多少人?【考点】规律型:图形的变化类.【分析】(1)仔细观察图形并找到规律求解即可.(2)分别代入4n+2时和2n+4时两种情况求得数值即可;(3)解法同第(2)题;【解答】解:(1)第一种中,只有一X桌子是6人,后边多一X桌子多4人.4X桌子可以坐18人,有nX桌子时是6+4(n﹣1)=4n+2.第二种中,有一X桌子是6人,后边多一X桌子多2人,四桌子可以坐12人,nX桌子可以坐6+2(n﹣1)=2n+4.(2)方式一:40X桌子拼成8X大桌子可以坐8×[6+16]=176人,方式二:40X桌子拼成8X大桌子可以坐8×[6+8]=112人;(3)方式一:40X桌子拼成8X大桌子可以坐5×[4×8+2]=170人;方式二:40X桌子拼成5X大桌子可以坐5×[6+14]=100人.【点评】本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律,难度不大.。
2015----2016学年度第一学期九年级二班数学期中考试质量分析一、基本情况:本次考试九二班参考31人,及格11人,及格率35.48%,优秀3人,优秀率9.68%,平均分52.61分。
各项指标排名均处于全市的中下位次,优秀率和平均分还未达到平均线。
二、试卷及答题情况分析:1.试卷分析:本套试卷总分100分,分为A、B卷,A卷45分,B卷55分。
题目难度适中,有较好的区分度。
对学生的前半期学习有较全面的考查,与平时练习题目相似度高,无偏题怪题出现。
题型分为选择题、填空题、简答题三部分,赋分分别为30分、15分、55分。
考查内容为九年级上册第二十一章《一元二次方程》、第二十二章《二次函数》、第二十三章《旋转》三章知识。
具体分值见下表:附表1总体来说,试卷贴近教材,覆盖面广。
重视对基础知识、基本技能的考核。
同时,试卷重视合情推理,注意联系实际,关注学生解决实际问题的能力、贴近新的课标要求和新的理念,适当降低了有关解题技能的难度。
2.答题情况分析:班内学生选择题完成相对较好,其他题目完成不佳。
尤其是简答题完成很差,这充分说明学生对于知识的理解还很肤浅,没有真正将知识内化,形成自身解决问题的综合能力。
通过对试卷所考查的三章内容的得分统计,发现学生对于《一元二次方程》和《二次函数》两章仍然存在着许多问题。
这两章的失分特别严重,而对于《旋转》章节学生整体掌握相对较好。
从学生的答卷用时来看,班内有大部分学生在两个小时的时间内未完成试卷中的全部题目。
这个问题也暴露出自己在平时的教学中对学生的学情把握不够准确,没有对学生的解题速度进行量化要求。
三、存在问题:1.学生存在问题:优等生和准优生:平时的学习上对自己要求不高,得过且过情绪较严重,没有树立高远的目标来推动自己的学习,在解题方法上缺少比较系统的总结,解题速度没有针对性的量化要求。
尤其是在做解答题时,思考不充分就急于下笔,导致所完成的题目会而不全、全而不对。
2015~2016学年度第一学期阶段性质量调研九年级数学试题一、选择题(每题2分,共16分)1.⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是 -------------------------------------- 【 】A .5B .6C .7D .82.方程x 2+6x -5=0的左边配成完全平方后所得方程为 ------------------------------------ 【 】A .2)3(+x =14B .2)3(-x =14C .2)6(+x =21D .2)3(+x =43.下列方程中,没有实数根的是 -------------------------------------------------------------------- 【 】 A .2x -4x +4=0 B .2x -2x +5=0C .2x -2x =0D .2x -2x -3=0 4.已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是 --------- 【 】A .2B .-2C .1D .-15.如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的大小为 --------------------------------- 【 】A .40°B .50°C .80°D .100° 6.如图,扇形的圆心角为60°----------------------- 【 】 ABCD7.如果等腰三角形的两边长分别是方程x 2-10x +21=0的两根,那么它的周长为 - 【 】A .17B .15C .13D .13或178.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是 ---- 【 】A .221x =B .1(1)212x x -= C .21212x = D .(1)21x x -=二、填空题(每题2分,共16分)9.一元二次方程2x 2-3x +1=0的二次项系数为 ,一次项系数为 ,常数项为 .10.方程(2)(3)2x x x +-=+的解是 .11.若关于x 的一元二次方程x 2+4x -a =0有两个实数根,则a 的取值范围是 . 12.如图,是一个简单的数值运算程序.则输入x 的值为 .2015.1113,则该圆锥的侧面积为 .14.为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元.设该校为新增电脑投资的年平均增长率为x ,根据题意得方程为:. 15.如图,点A ,B ,C 是⊙O 上的点,AO =AB ,则∠ACB = 度.16.如图,在直角坐标系中,点A ,B ,C 的坐标分别为(0,3),(4,3),(0,-1),则△ABC外接圆的圆心坐标为 .三、解下列方程(每题4分,共16分)17.⑴ 2)2(+x =3⑵ 2x -5x -6=0⑶ 2x -6x -6=0⑷ 32x -x -1=0四、解答题(8小题,共52分)18.(6分)已知关于x 的方程0222=-++a x x .⑴ 若该方程有两个不相等的实数根,求实数a 的取值范围; ⑵ 若该方程的一个根为1,求a 的值及该方程的另一根.第13题图 y 第16题图第15题图19.(6分)小明家的玉米产量从2012年的5吨增加到2014年的6.05吨,平均每年增长的百分率是多少?20.(6分)如图,AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,AE是⊙O的切线,∠CAE=60°.⑴求∠D的度数;⑵当BC=4时,求劣弧AC的长.21.(6分)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,那么道路的宽度应该是多少?22.(6分)如图,△ABC 中,∠C =90°,AC =8cm ,BC =4cm .一动点P 从点C 出发沿着CB 方向以1cm /s 的速度运动,另一动点Q 从A 出发沿着AC 方向以2cm /s 的速度运动.P ,Q 两点同时出发,运动时间为t (s ). ⑴ 若△PCQ 的面积是△ABC 面积的41,求t 的值; ⑵ △PCQ 的面积能否为△ABC 面积的一半?若能,求出t 的值; 若不能,说明理由.23.(6分)商场销售某种冰箱,该种冰箱每台进价为2500元.已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x 元. ⑴ 填表(不需化简):⑵ 商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?AC P BQ24.(8分)如图,△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO延长线于点M,CM交⊙O于点D.⑴AM与AC相等吗?为什么?⑵若AC=3,求MC的长.25.(8分)如图,直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,OA =5.AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C . ⑴ AB 与AC 相等吗?为什么? ⑵ 若PC=O 的半径. 九年级数学参考答案及评分建议一、选择题(每题2分,共16分) 1.A 2.A C .B 4.D 5.C 6.C 7.A 8.B二、填空题(每题2分,共16分)9.2,-3,1 10.-2或4 11.a ≥-4 12. 1±3 13.3 14.112)1(x +=18.59 15.150 16.(2,1) 注:第9题,对而不全1分.三、解下列方程(每题4分,共16分)17.⑴ x =-2±3⑵ 1x =-1,2x =6 ⑶ x =3±15 ⑷ x =6131±过程2分,结果2分.结果正确,没有过程,只给2分.四、解答题(8小题,共52分)18.解:⑴ ∵0412)2(14)2(422>-=-⨯⨯--=-a a ac b ,解得:3<a . ------- 2分∴a 的取值范围是3<a . ----------------------------------------------------------- 3分⑵ 将x =1代入原方程得21+2×1+a -2=0,a =-1 -------------------------- 4分 将a =-1代入原方程得2x +2x -3=0 ----------------------------------------- 5分则a 的值是-1,该方程的另一根为-3. ---------------------------------------- 6分19.解:设平均每年增长的百分率为x ,则根据题意可列方程为:52)1(x +=6.05, ----------------------------------------- 3分 解得:x 1=0.1,x 2=-2.1(舍去) --------------------------------------------------- 5分 答:平均每年增长的百分率为10%. ------------------------------------------------ 6分20.解:⑴ ∵AE 是⊙O 的切线,∴AB ⊥AE , ∴∠BAE =90°, ∵∠CAE =60°,∴∠BAC =∠BAE -∠CAE =90°-60°=30°,∵AB 是⊙O 的直径, ∴∠ABC =90°, ∴∠B =60°, --------------- 2分 ∵∠D =∠B , ∴∠D =60° ------------------------------------------------------ 3分 ⑵ 连接OC , ∵OB =OC ,∠B =60°, ∴△OBC 是等边三角形,∵BC =4, ∴OB =BC =4,∠BOC =60°, --------------------------------- 4分 ∴∠AOC =120°, -------------------------------------------------------------------- 5分∴劣弧AC 的长是:1804120⨯π=π38. ----------------------------------------- 6分21.解:设道路的宽应为x 米,由题意有:(22-x )(17-x )=300, ----------------- 3分解得:x 1=37(舍去),x 2=2. --------------------------------------------------------------- 5分 答:修建的路宽为2米. ----------------------------------------------------------------------- 6分22.解:⑴ ∵S △PCQ =21t (8-2t ),S △ABC =21×4×8=16, ∴21t (8-2t )=16×41, 整理得 t 2-4t +4=0, -------------------------------------------------------------- 2分解得 t =2. ----------------------------------------------------------------------------- 3分⑵ 当S △PCQ =21S △ABC 时,21t (8-2t )=16×21, 整理得t 2-4t +8=0, ------------------------------------------------------------------ 4分 △=(-4)2-4×1×8=-16<0, --------------------------------------------- 5分 ∴此方程没有实数根,∴△PCQ 的面积不可能是△ABC 面积的一半. ------------------------------- 6分23.解:⑴ 填表如下:解得:x =150. ------------------------------------------------------------------------- 5分 ∴实际售价定为:2900-150=2750(元) .答:每台冰箱的实际售价应定为2750元. ------------------------------------- 6分24.⑴ 解:AM 与AC 相等.理由如下: -------------------------------------------------------- 1分连接OA , ∵AM 是⊙O 的切线,∴∠OAM =90°,∵∠B =60°,∴∠AOC =120°, ------------------------- 2分 ∵OA =OC ,∴∠OCA =∠OAC =30°, ------------------- 3分 ∴∠AOM =60°,∴∠M =30°,∴∠OCA =∠M , -------------------------------------------- 4分∴AM =AC ------------------------------------------------------ 5分⑵ 作AG ⊥CM 于G , ∵∠OCA =30°,AC =3,∴AG =23, 由勾股定理得,CG =233, ----------------------------- 7分则MC =2CG =33. ---------------------------------------- 8分25.解:⑴ AB 与AC 相等.理由如下:------------------------------------------------------------ 1分如图,连接OB . ∵AB 切⊙O 于B ,OA ⊥AC ,∴∠OBA =∠OAC =90° ∴∠OBP +∠ABP =90°,∠ACP +∠APC =90°, ∵OP =OB ,∴∠OBP =∠OPB ,∵∠OPB =∠APC , -------------------------------------- 2 ∴∠ACP =∠ABC ,∴AB =AC ------------------------------ 4 ⑵ 如图,设圆半径为r ,则OP =OB =r ,P A =5-r , ----------- 5分 由⑴可知 AB =AC而222AB OA OB =-=225r -,因此2AC =225r - ---------------------- 6分∵ △P AC 中,∠P AC =90° ∴ 222PC PA AC =+∴ (225r -)+2)5(r -=2)52( --------------------------------------------- 7分解得:r =3.即⊙O 的半径为3. ------------------------------------------------------------------- 8分九年级数学参考答案及评分建议一、选择题(每题2分,共16分)1.A 2.A C .B 4.D 5.C 6.C 7.A 8.B二、填空题(每题2分,共16分)9.2,-3,1 10.-2或4 11.a ≥-4 12. 1±3 13.3 14.112)1(x +=18.59 15.150 16.(2,1) 注:第9题,对而不全1分.三、解下列方程(每题4分,共16分)17.⑴ x =-2±3⑵ 1x =-1,2x =6 ⑶ x =3±15 ⑷ x =6131±过程2分,结果2分.结果正确,没有过程,只给2分.四、解答题(8小题,共52分)18.解:⑴ ∵0412)2(14)2(422>-=-⨯⨯--=-a a ac b ,解得:3<a . ------- 2分∴a 的取值范围是3<a . ----------------------------------------------------------- 3分⑵ 将x =1代入原方程得21+2×1+a -2=0,a =-1 -------------------------- 4分 将a =-1代入原方程得2x +2x -3=0 ----------------------------------------- 5分则a 的值是-1,该方程的另一根为-3. ---------------------------------------- 6分19.解:设平均每年增长的百分率为x ,则根据题意可列方程为:52)1(x +=6.05, ----------------------------------------- 3分 解得:x 1=0.1,x 2=-2.1(舍去) --------------------------------------------------- 5分 答:平均每年增长的百分率为10%. -6分 20.解:⑴ ∵AE 是⊙O 的切线,∴AB ⊥AE , ∴∠BAE =90°, ∵∠CAE =60°,∴∠BAC =∠BAE -∠CAE =90°-60°=30°,∵AB 是⊙O 的直径, ∴∠ABC =90°, ∴∠B =60°, --------------- 2分 ∵∠D =∠B , ∴∠D =60° ------------------------------------------------------ 3分 ⑵ 连接OC , ∵OB =OC ,∠B =60°, ∴△OBC 是等边三角形,∵BC =4, ∴OB =BC =4,∠BOC =60°, --------------------------------- 4分∴∠AOC =120°, -------------------------------------------------------------------- 5分∴劣弧AC 的长是:1804120⨯π=π38. ----------------------------------------- 6分21.解:设道路的宽应为x 米,由题意有:(22-x )(17-x )=300, ----------------- 3分解得:x 1=37(舍去),x 2=2. --------------------------------------------------------------- 5分 答:修建的路宽为2米. ----------------------------------------------------------------------- 6分22.解:⑴ ∵S △PCQ =21t (8-2t ),S △ABC =21×4×8=16, ∴21t (8-2t )=16×41, 整理得 t 2-4t +4=0, -------------------------------------------------------------- 2分解得 t =2. ----------------------------------------------------------------------------- 3分⑵ 当S △PCQ =21S △ABC 时,21t (8-2t )=16×21, 整理得t 2-4t +8=0, ------------------------------------------------------------------ 4分 △=(-4)2-4×1×8=-16<0, --------------------------------------------- 5分 ∴此方程没有实数根,∴△PCQ 的面积不可能是△ABC 面积的一半. ------------------------------- 6分23.解:⑴ 填表如下:解得:x =150. ------------------------------------------------------------------------- 5分 ∴实际售价定为:2900-150=2750(元) .答:每台冰箱的实际售价应定为2750元. ------------------------------------- 6分24.⑴ 解:AM 与AC 相等.理由如下: -------------------------------------------------------- 1分连接OA , ∵AM 是⊙O 的切线,∴∠OAM =90°,∵∠B =60°,∴∠AOC =120°, ------------------------- 2分 ∵OA =OC ,∴∠OCA =∠OAC =30°, ------------------- 3分 ∴∠AOM =60°,∴∠M =30°,∴∠OCA =∠M , -------------------------------------------- 4分∴AM =AC ------------------------------------------------------ 5分⑵ 作AG ⊥CM 于G , ∵∠OCA =30°,AC =3,∴AG =23, 由勾股定理得,CG =233, ----------------------------- 7分则MC =2CG =33. ---------------------------------------- 8分25.解:⑴ AB 与AC 相等.理由如下:------------------------------------------------------------ 1分如图,连接OB . ∵AB 切⊙O 于B ,OA ⊥AC ,∴∠OBA =∠OAC =90° ∴∠OBP +∠ABP =90°,∠ACP +∠APC =90°, ∵OP =OB ,∴∠OBP =∠OPB ,∵∠OPB =∠APC , -------------------------------------- 2 ∴∠ACP =∠ABC ,∴AB =AC ------------------------------ 4 ⑵ 如图,设圆半径为r ,则OP =OB =r ,P A =5-r , ----------- 5分由⑴可知 AB =AC而222AB OA OB =-=225r -,因此2AC =225r - ---------------------- 6分∵ △P AC 中,∠P AC =90° ∴ 222PC PA AC =+∴ (225r -)+2)5(r -=2)52( --------------------------------------------- 7分解得:r =3.即⊙O 的半径为3. ------------------------------------------------------------------- 8分。
某某省马某某市和县2015-2016学年七年级数学上学期期中试题一、选择题(共10小题,每小题4分,满分40分)1.的相反数是( )A.B. C.D.2.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或﹣6 B.6 C.﹣6 D.3或﹣33.关于多项式3x2+x﹣2,下列说法错误的是( )A.这是一个二次三项式B.二次项系数是3C.一次项系数是1 D.常数项是24.工作人员检验4个零件的长度,超过标准长度的记作正数,不足标准长度的记作负数(单位:mm),从长度的角度看,下列记录的数据中最接近标准长度的是( )A.﹣3 B.﹣1 C.2 D.55.已知一个单项式的系数是2,次数是3,则这个单项式的可以是( )A.2ab3B.3ab2C.2ab2D.3ab6.已知单项式2x a y2与﹣3xy b是同类项,则(a﹣b)3=( )A.﹣8 B.8 C.﹣1 D.17.下列运算正确的是( )A.﹣2﹣=﹣2 B.﹣3+2=﹣5 C.﹣22÷4=1D.=﹣18.两个非零有理数的和为零,则它们的商是( )A.﹣1 B.0 C.1 D.﹣1或19.已知(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,则方框内的式子为( )A.5b+3ab B.﹣5b+3ab C.5b﹣3ab D.﹣5b﹣3ab10.在数1,2,3,4,…,405前分别加“+”或“﹣”,使所得数字之和为非负数,则所得非负数最小为( )A.0 B.1 C.2 D.3二、填空题(共4小题,每小题5分,满分20分)11.﹣2的倒数是__________.__________.13.定义一种新运算:a⊗b=a3﹣ab,如:1⊗2=13﹣1×2=﹣1,则﹣2⊗3=__________.14.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有__________(将所有正确结论的序号填写在横线上).三、解答题(共9小题,满分90分)15.计算:﹣1.16.把下列各数填在相应的括号里.2.5,2,﹣1,(﹣2)2,0,﹣(﹣3),﹣15%,﹣,|﹣8|,﹣,﹣2.3.正整数集合(…)负整数集合(…)正分数集合(…)负分数集合(…)17.在数轴上表示下列各数,并用“>”把它们连接起来.(﹣1)3,﹣|﹣4|,+(+1),0,(﹣2)2.18.观察下列算式:①(1+)(1﹣)=;②(1+)(1﹣)==1;③(1+)(1﹣)==1;…根据以上算式的规律,解决下列问题:(1)第⑩个等式为:__________;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).19.先化简,再求值:﹣x2+(2x2+5)﹣3(x2+2),其中x=﹣.20.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.21.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周某某瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销+0.4 ﹣0.6 +0.1售价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?22.某城市居民用水实行阶梯收费,每户每月用水量不超过20t时,按每吨2.5元收费.如果超过20t,超过的部分按每吨2.9元收费.(1)如果甲户某月用水量为15t,则甲应缴的水费为__________元;(2)如果乙户某月应缴水费45元,乙户该月的用水量是多少吨?(3)如果丙户某月的用水量为at,则丙户该月应缴水费多少元?(用含a的式子表示,并化简)23.(14分)阅读材料:我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)﹣(4+2﹣1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是__________.A.﹣6(a﹣b)2 B.6(a﹣b)2 C.﹣2(a﹣b)2 D.2(a﹣b)2(2)已知x2+2y=5,求3x2+6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.2015-2016学年某某省马某某市和县七年级(上)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)1.的相反数是( )A.B. C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:根据相反数的定义,得的相反数是﹣.故选D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【专题】计算题.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.【点评】主要考查了数的绝对值的几何意义.注意:与一个点的距离为a的数有2个,在该点的左边和右边各一个.3.关于多项式3x2+x﹣2,下列说法错误的是( )A.这是一个二次三项式B.二次项系数是3C.一次项系数是1 D.常数项是2【考点】多项式.【分析】直接利用多项式的定义以及其各项次数与次数的确定方法分别判断得出答案.【解答】解:A、多项式3x2+x﹣2是一个二次三项式,正确,不合题意;B、多项式3x2+x﹣2,二次项系数是3,正确,不合题意;C、多项式3x2+x﹣2一次项系数是1,正确,不合题意;D、常数项是﹣2,故此选项错误,符合题意.故选;D.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.4.工作人员检验4个零件的长度,超过标准长度的记作正数,不足标准长度的记作负数(单位:mm),从长度的角度看,下列记录的数据中最接近标准长度的是( )A.﹣3 B.﹣1 C.2 D.5【考点】正数和负数.【分析】根据绝对值的意义,可得答案.【解答】解:|5|>|﹣3|>|2|>|﹣1|,绝对值越小越接近标准,故选:B.【点评】本题考查了正数和负数,绝对值越小越接近标准,误差越小.5.已知一个单项式的系数是2,次数是3,则这个单项式的可以是( )A.2ab3B.3ab2C.2ab2D.3ab【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、2ab2系数是2,次数是4,错误;B、3ab2系数是3,错误;C、2ab2系数是2,次数是3,正确;D、3ab系数是3,次数是2,错误;故选C.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.6.已知单项式2x a y2与﹣3xy b是同类项,则(a﹣b)3=( )A.﹣8 B.8 C.﹣1 D.1【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得a和b的值,从而代入(a﹣b)3求值.【解答】解:∵单项式2x a y2与﹣3xy b是同类项,∴a=1,b=2,∴(a﹣b)3=(1﹣2)3=﹣1,故选C.【点评】本题考查了同类项的知识,掌握同类项中的两个相同是关键,①所含字母相同,②相同字母的指数相同.7.下列运算正确的是( )A.﹣2﹣=﹣2 B.﹣3+2=﹣5 C.﹣22÷4=1D.=﹣1【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣3,错误;B、原式=﹣1,错误;C、原式=﹣4÷4=﹣1,错误;D、原式=﹣1,正确,故选D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.两个非零有理数的和为零,则它们的商是( )A.﹣1 B.0 C.1 D.﹣1或1【考点】相反数.【分析】利用两个非零有理数的和为零,得出这两个数是相反数,进而得出答案.【解答】解:∵两个非零有理数的和为零,∴这两个数是互为相反数,∴它们的商是:﹣1.故选:A.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.9.已知(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,则方框内的式子为( )A.5b+3ab B.﹣5b+3ab C.5b﹣3ab D.﹣5b﹣3ab【考点】整式的加减.【分析】根据题意列出整式相加减的式子,再先去括号,再合并同类项即可.【解答】解:∵(8a﹣7b)﹣(4a+□)=4a﹣2b+3ab,∴4a+□=(8a﹣7b)﹣(4a﹣2b+3ab),∴□=(8a﹣7b)﹣(4a﹣2b+3ab)﹣4a=8a﹣7b﹣4a+2b﹣3ab﹣4a=﹣5b﹣3ab.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.在数1,2,3,4,…,405前分别加“+”或“﹣”,使所得数字之和为非负数,则所得非负数最小为( )A.0 B.1 C.2 D.3【考点】有理数的加减混合运算.【分析】根据有理数的加减法,可得答案.【解答】解:1+(2﹣3﹣4+5)+(8﹣7﹣8+9)+…(402﹣403﹣404+405)=1,故选:B.【点评】本题考查了有理数的加减混合运算,利用结合律是解题关键.二、填空题(共4小题,每小题5分,满分20分)11.﹣2的倒数是.【考点】倒数.【分析】根据倒数定义可知,﹣2的倒数是﹣.【解答】解:﹣2的倒数是﹣.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.6.8×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6.8亿=680000000=6.8×108.故答案为:6.8×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.定义一种新运算:a⊗b=a3﹣ab,如:1⊗2=13﹣1×2=﹣1,则﹣2⊗3=﹣2.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:﹣2⊗3=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2.故答案为:﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有①③④(将所有正确结论的序号填写在横线上).【考点】有理数的混合运算.【分析】根据绝对值的性质对各小题进行逐一分析即可.【解答】解:①∵x﹣y=0,∴x与y相等或互为相反数,∴a=b,∴a﹣b=0,故本小题正确;②∵a﹣b=0,∴x与y相等或互为相反数,当x、y互为相反数时x﹣y≠0,故本小题错误;③∵a+b=0,∴x=y=0,∴x+y=0,故本小题正确;④∵x2﹣y2=0,∴x2=y2,∴a=b,∴a﹣b=0,故本小题正确.故答案为:①③④.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.三、解答题(共9小题,满分90分)15.计算:﹣1.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=2﹣18﹣5=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.把下列各数填在相应的括号里.2.5,2,﹣1,(﹣2)2,0,﹣(﹣3),﹣15%,﹣,|﹣8|,﹣,﹣2.3.正整数集合(…)负整数集合(…)正分数集合(…)负分数集合(…)【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:正整数集合{(﹣2)2,﹣(﹣3),|﹣8|};负整数集合{﹣1,﹣};正分数集合{ 2.5,2};负分数集合{﹣15%,﹣,﹣2.3};故答案为:(﹣2)2,﹣(﹣3),|﹣8|;﹣1,﹣;2.5,2;﹣15%,﹣,﹣2.3.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.17.在数轴上表示下列各数,并用“>”把它们连接起来.(﹣1)3,﹣|﹣4|,+(+1),0,(﹣2)2.【考点】有理数大小比较;数轴.【分析】首先在数轴上表示出各数,再根据在数轴上右边的点表示的数大于左边的点表示的数利用“>”把它们连接起来即可.【解答】解:如图所示:,(﹣2)2>+(+1)>0>(﹣1)3>﹣|﹣4|.【点评】此题主要考查了有理数的比较大小,以及数轴,关键是掌握在数轴上右边的点表示的数大于左边的点表示的数.18.观察下列算式:①(1+)(1﹣)=;②(1+)(1﹣)==1;③(1+)(1﹣)==1;…根据以上算式的规律,解决下列问题:(1)第⑩个等式为:(1+)×(1﹣)=×=1;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).【考点】有理数的混合运算.【专题】计算题;规律型.【分析】(1)归纳总结得到一般性规律,写出第10个等式即可;(2)原式结合后,利用得出的规律变形,计算即可得到结果.【解答】解:(1)根据题意得:第⑩个等式为(1+)×(1﹣)=×=1;故答案为:(1+)×(1﹣)=×=1;(2)原式=[(1+)×(1﹣)]×[(1+)×(1﹣)]×…×[(1+)×(1﹣)]=1×…×1×1=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.先化简,再求值:﹣x2+(2x2+5)﹣3(x2+2),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣x2+2x2+5﹣3x2﹣6=﹣2x2﹣1,当x=﹣时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【考点】整式的加减;绝对值;非负数的性质:偶次方;代数式求值.【分析】(1)先用a,b表示出三角形其余两边的长,再求出其周长即可;(2)根据非负数的性质求出ab的值,代入(1)中三角形的周长式子即可.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周某某瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销+0.4 ﹣0.6 +0.1售价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量量,可得销售额,根据销售额减去成本,可得答案.【解答】解:(1)1.5+0.3+0.4=2.2元,到星期二时,每公斤的黄瓜售价是2.2元;(2)1.5+0.3+0.4﹣0.5﹣0.6﹣0.7=0.4元,本周最低售价是每公斤0.5元;(3)周六的价格是0.4+0.1=0.5元,300×0.5+935﹣1000×1.5=﹣415元.故该超市本周销售黄瓜亏了415元.【点评】本题考查了正数和负数,利用有理数的加法是解题关键,销售额减去成本等于盈利.22.某城市居民用水实行阶梯收费,每户每月用水量不超过20t时,按每吨2.5元收费.如果超过20t,超过的部分按每吨2.9元收费.(1)如果甲户某月用水量为15t,则甲应缴的水费为元;(2)如果乙户某月应缴水费45元,乙户该月的用水量是多少吨?(3)如果丙户某月的用水量为at,则丙户该月应缴水费多少元?(用含a的式子表示,并化简)【考点】列代数式;代数式求值.【专题】应用题.【分析】(1)甲户某月用水量为15t,按每吨2.5元收费,所以用水量乘以单价即得到甲应缴的水费;(2)先判断乙户该月的用水量没有超过20t,则按每吨2.5元收费,然后用水费除以单价即可得到乙户该月的用水量;(3)分类讨论:当a≤20时,水费为2.5a元;当a>20时,丙户该月应缴水费分两部分:20吨按每吨2.5元收费,(a﹣20)吨按每吨2.9元收费.【解答】解:(1)甲户某月用水量为15t,则甲应缴的水费为2.5×15=37.5(元);故答案为37.5;(2)因为45<20×2.5,所以乙户该月的用水量没有超过20t,所以乙户该月的用水量==18(吨);(3)当a≤20时,丙户该月应缴水费为2.5a元;当a>20时,丙户该月应缴水费为2.5×20+2.9(a﹣20)=(2.9a﹣8)元.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是各用水量的单价.23.(14分)阅读材料:我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)﹣(4+2﹣1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是C.A.﹣6(a﹣b)2 B.6(a﹣b)2 C.﹣2(a﹣b)2 D.2(a﹣b)2(2)已知x2+2y=5,求3x2+6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【考点】代数式求值.【专题】计算题;整体思想.【分析】(1)把(a﹣b)看做一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是﹣2(a﹣b)2,故选:C;(2)∵x2+2y=5,∴原式=3(x2+2y)﹣21=15﹣21=﹣6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴原式=a﹣c+2b﹣d﹣2b+c=a﹣d=a﹣2b+2b﹣c+c﹣d=(a﹣2b)+(2b﹣c)+(c﹣d)=3﹣5+10=8.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.。
word某某省某某市雅礼教育集团2015-2016学年度七年级数学上学期期中试题一、选择题(在下列各题的四个选项中,只有一像是符合题意的,共10小题,每小题3分,满分30 分)1.在下列有理数中,﹣、2.03456、6、0、,正分数的个数为()A.4 B.3 C.2 D.12.下列关于单项式的说法中,正确的是()A.系数是1,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是33.下列说法正确的是() A.0 是最小的有理数 B.一个有理数不是正数就是负数C.分数不是有理数 D.没有最大的负数4.我国第一艘航空母舰某某航空舰的电力系统可提供14 000 000 瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106 ×107 ×108 ×1085.下列方程中,是一元一次方程的是()A.x+y=1 B.x2﹣x=1C.+1=3x D.+1=36.已知x=2是关于x的方程2x﹣m=1 的解,则m的值是()A.﹣3 B.3 C.2 D.77.如果a﹣b=0,那么下列结论中不一定成立的是()A.=1 B.a2=b2C.2a=a+b D.a2=ab8.若x为有理数,则丨x丨﹣x表示的数是()A.正数B.非正数C.负数D.非负数9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点MB.点NC.点P D.点Q10.如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个相同长方形的两边长(x>y),给出以下关系式:①x+y=m;②x﹣y=n;③xy=.其中正确的关系式的个数有()A.0 个 B.1 个 C.2 个 D.3个二、填空题(本大题共8小题,每小题3分,共24分)11.写出一个比﹣1大的负数.12.某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是元.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.如果关于x、y的单项式﹣x2y m+2与x n y的和仍然是一个单项式,则m+n的值是.15.当x=1时,代数式x2+x+m的值是7,则当x=﹣1时,这个代数式的值是.16.定义一种新的运算“*”,a*b=a•b,则方程(x*3)*2=1的解为.17.观察一组等式的规律:1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52…,则第n个等式为:.18.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是.三、解答题(本大题共7 小题,总分66 分,满分66分)19.计算:(1)0.1+(﹣0.001)×|﹣+ |;﹣22+4+(﹣3)3×(﹣)2;(3)﹣x+﹣(3x+5);(4)﹣4(﹣x2+).20.解方程(1)9﹣3a=5a+5;﹣b+1=b+×6.21.先化简,再求值:5x2y+4﹣3x2y﹣(5xy2+2x2y﹣5)+4xy2,其中 x=3,y=﹣1.22.有理数a、b、c在数轴上的位置如图所示,试化简:|c﹣b|﹣|a﹣b|+|c|.23.某校2015~2016学年度七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?24.(1)比较下列各式的大小(用<或>或=连接)①|﹣2|+|3||﹣2+3|;②|﹣2|+|﹣3||﹣2﹣3|;③|﹣2|+|0||﹣2+0|;通过以上的特殊例子,请你分析、补充、归纳,当a、b为有理数时,|a|+|b|与|a+b|的大小关系;(3)根据上述结论,求当|x|+2015=|x﹣2015|时,x的取值X围.25.点A 从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点的距离是15,已知点B的速度是A的速度的4 倍(1)求出点A、点B 的速度,并在数轴上标出A、B 两点从原点出发运动3秒时的位置.若 A、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?某某省某某市雅礼教育集团2015~2016学年度七年级上学期期中数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一像是符合题意的,共10小题,每小题3分,满分30 分)1.在下列有理数中,﹣、2.03456、6、0、,正分数的个数为()A.4 B.3 C.2 D.1【考点】正数和负数;有理数.【分析】根据有理数的分类,直接判断即可.【解答】解:根据有理数的分类,既是正数又是分数,正分数有:2.03456、,有两个.故选:C.【点评】本题主要考查有理数的分类,熟记有理数的分类是解决此类问题的关键.2.下列关于单项式的说法中,正确的是()A.系数是1,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式的数字因数是﹣,所有字母指数的和=1+2=3,∴此单项式的系数是﹣,次数是3.故选D.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.3.下列说法正确的是() A.0 是最小的有理数 B.一个有理数不是正数就是负数C.分数不是有理数 D.没有最大的负数【考点】有理数.【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【解答】解:A、没有最小的有理数,故本选项错误; B、一个有理数不是正数就是负数或0,故本选项错误; C、分数是有理数,故本选项错误; D、没有最大的负数,故本选项正确;故选D.【点评】此题考查了有理数,掌握有理数的分类和定义是本题的关键,是一道基础题.4.我国第一艘航空母舰某某航空舰的电力系统可提供14 000 000 瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106 ×107 ×108 ×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000000有8位,所以可以确定n=8﹣1=7.【解答】解:14 000×107.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.下列方程中,是一元一次方程的是()A.x+y=1 B.x2﹣x=1C.+1=3x D.+1=3【考点】一元一次方程的定义.【分析】根据一元一次方程的定义对各选项进行逐一分析即可.【解答】解:A、是二元一次方程,故本选项错误;B、是二元二次方程,故本选项错误; C、符合一元一次方程的定义,故本选项正确; D、是分式方程,故本选项错误.故选C.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.6.已知x=2是关于x的方程2x﹣m=1 的解,则m的值是()A.﹣3 B.3 C.2 D.7【考点】一元一次方程的解.【分析】把x=2代入方程,即可得出关于m的方程,求出方程的解即可.【解答】解:∵x=2是关于x的方程2x﹣m=1的解,∴代入得:4﹣m=1,解得:m=3,故选B.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能根据题意得出关于m的方程是解此题的关键.7.如果a﹣b=0,那么下列结论中不一定成立的是()A.=1 B.a2=b2C.2a=a+b D.a2=ab【考点】等式的性质.【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0 数(或字母),等式仍成立,可得答案.【解答】解:A、b=0时,两边都除以b无意义,故A符合题意;B、相等两数的平方相等,故B正确;C、两边都加(a+b),故C正确;D、两边都加b 都乘以a,故D 正确;故选:A.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.若x为有理数,则丨x丨﹣x表示的数是()A.正数B.非正数C.负数D.非负数【考点】合并同类项;绝对值.【分析】先根据绝对值的定义化简丨x丨,再合并同类项.【解答】解:(1)若x≥0 时,丨x丨﹣x=x﹣x=0;若x<0时,丨x丨﹣x=﹣x﹣x=﹣2x>0;由(1)可得丨x 丨﹣x表示的数是非负数.故选D.【点评】解答此题要熟知绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点MB.点NC.点P D.点Q【考点】有理数大小比较.【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.【解答】解:∵点 M,N表示的有理数互为相反数,∴原点的位置大约在 O点,∴绝对值最小的数的点是P点,故选C.【点评】本题考查了数轴,相反数,绝对值,有理数的大小比较的应用,解此题的关键是找出原点的位置,注意数形结合思想的运用.10.如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个相同长方形的两边长(x >y),给出以下关系式:①x+y=m;②x﹣y=n;③xy= .其中正确的关系式的个数有()A.0 个 B.1 个 C.2 个 D.3个【考点】平方差公式的几何背景.【分析】利用大正方形的边长=长方形的长+长方形的宽,小正方形的边长=长方形的长一长方形的宽,大正方形的面积一小正方形的面积=4个长方形的面积判定即可.【解答】解:由图形可得:①大正方形的边长=长方形的长+长方形的宽,故x+y=m正确;②小正方形的边长=长方形的长一长方形的宽,故x﹣y=n正确;③大正方形的面积一小正方形的面积=4 个长方形的面积,故xy=正确.所以正确的个数为3.故选:D.【点评】本题主要考查了平方差的几何背景,解题的关键是正确分析图形之间的边长及面积关系.二、填空题(本大题共8小题,每小题3分,共24分)11.写出一个比﹣1大的负数﹣(答案不唯一).【考点】有理数大小比较.【专题】开放型.【分析】根据有理数的大小比较法则即可得出答案.【解答】解:根据两个负数比较大小,绝对值大的反而小,如:﹣,答案不唯一.故答案为:﹣,答案不唯一.【点评】此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是本题的关键.12.某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是0.8b﹣10 元.【考点】列代数式.【专题】推理填空题.【分析】根据某种商品原价每件b元,第一次降价打八折,可知第一次降价后的价格为0.8b,第二次降价每件又减10元,可以得到第二次降价后的售价.【解答】解:∵某种商品原价每件 b元,第一次降价打八折,∴第一次降价后的售价为:0.8b.∵第二次降价每件又减 10元,∴第二次降价后的售价是0.8b﹣10.故答案为:0.8b﹣10.【点评】本题考查列代数式,解题的关键是明确题意,能列出每次降价后的售价.13.在数轴上,与表示﹣3 的点距离 2 个单位长度的点表示的数是﹣5或﹣1 .【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3 的哪侧不能确定,所以应分在﹣3 的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5 或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.如果关于x、y的单项式﹣x2y m+2与x n y的和仍然是一个单项式,则m+n的值是 1 .【考点】同类项.【分析】根据同类项的定义,单项式x2y m+2与﹣3x n y的和仍然是一个单项式,意思是x2y m+2与﹣3x n y 是同类项,根据同类项中相同字母的指数相同得出.【解答】解:∵关于x、y 的单项式﹣x2y m+2与x n y的和仍然是一个单项式,∴单项式﹣x2y m+2 与 x n y是同类项,∴n=2,m+2=1,∴m=﹣1,n=2,∴m+n=1,故答案为:1.【点评】此题主要考查了同类项定义,同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了2016届中考的常考点.15.当x=1时,代数式x2+x+m的值是7,则当x=﹣1时,这个代数式的值是5 .【考点】代数式求值.【分析】将x=1代入得到关于m的方程,从而可求得m的值,然后将x=﹣1代入计算即可.【解答】解:将x=1代入得:12+1+m=7,解得:m=5.所以代数式x2+x+m=x2+x+5.当x=﹣1时,x2+x+5=(﹣1)2+(﹣1)+5=5.故答案为:5.【点评】本题主要考查的是求代数式的值,求得m的值是解题的关键.16.定义一种新的运算“*”,a*b=a•b,则方程(x*3)*2=1的解为.【考点】解一元一次方程.【专题】新定义.【分析】利用题中的新定义化简所求方程,求出方程的解即可.【解答】解:根据题中的新定义化简(x*3)*2=1得:3x•2=1,解得:x=;故答案为:.【点评】本题考查了新定义运算、一元一次方程的解法;根据新定义运算得出方程是解决问题的关键.17.观察一组等式的规律:1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52…,则第 n 个等式为:n(n+2)+1=(n+1)2 .【考点】规律型:数字的变化类.【分析】根据1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52…,判断出每个加数、和的特征,求出第n 个等式即可.【解答】解:∵1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52…,∴第n个等式为:n(n+2)+1=(n+1)2.故答案为:n(n+2)+1=(n+1)2.【点评】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律.18.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是1 .【考点】整式的加减.【分析】先根据题意列出整式相加减的式子,再合并同类项,令xy的系数为0即可得出k的值.【解答】解:﹣(﹣4kxy+5)=2x2﹣4xy﹣y2+4kxy﹣5=2x2﹣(4﹣4k)xy﹣y2+﹣5,∵多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,∴4﹣4k=0,解得k=1.故答案为:1.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.三、解答题(本大题共7 小题,总分66 分,满分66分)19.计算:(1)0.1+(﹣0.001)×|﹣+|;﹣22+4+(﹣3)3×(﹣)2;(3)﹣x+﹣(3x+5);(4)﹣4(﹣x2+).【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式先计算绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】×=0.1﹣0.0008=0.0992;原式=﹣4+4﹣12=﹣12;(3)原式=﹣x+2x﹣2﹣3x﹣5=﹣2x﹣7;(4)原式=2x2﹣+4x2﹣2=6x2﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程(1)9﹣3a=5a+5;﹣b+1=b+×6.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把a系数化为1,即可求出解;方程去分母,去括号,移项合并,把b 系数化为1,即可求出解.【解答】解:(1)移项合并得:8a=4,解得:a=0.5;去分母得:﹣3b+6=4b+24,移项合并得:7b=﹣18,解得:b=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:5x2y+4﹣3x2y﹣(5xy2+2x2y﹣5)+4xy2,其中 x=3,y=﹣1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=5x2y+4﹣3x2y﹣5xy2﹣2x2y+5+4xy2=﹣xy2+9,当x=3,y=﹣1时,原式=﹣3+9=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.有理数a、b、c在数轴上的位置如图所示,试化简:|c﹣b|﹣|a﹣b|+|c|.【考点】整式的加减;数轴;绝对值.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,c<b<0<a,∴c﹣b<0,a﹣b>0,∴原式=b﹣c﹣a+b﹣c=﹣a+2b﹣2c.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.23.某校2015~2016学年度七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【考点】一元一次方程的应用.【专题】销售问题.【分析】设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.【解答】解:设每件衬衫降价x元,依题意有120×400+(120﹣x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出合适的等量关系,列出方程求解.24.(1)比较下列各式的大小(用<或>或=连接)①|﹣2|+|3| >|﹣2+3|;②|﹣2|+|﹣3| = |﹣2﹣3|;③|﹣2|+|0| = |﹣2+0|;通过以上的特殊例子,请你分析、补充、归纳,当a、b为有理数时,|a|+|b|与|a+b|的大小关系;(3)根据上述结论,求当|x|+2015=|x﹣2015|时,x的取值X围.【考点】绝对值.【分析】(1)依据绝对值的性质计算即可;通过计算找出其中的规律即可得出答案;(3)依据结论求解即可.【解答】解:(1)①|﹣2|+|3|=2+3=5,|﹣2+3|=1,故|﹣2|+|3|>|﹣2+3|;②|﹣2|+|﹣3|=2+3=5,|﹣2﹣3|=|﹣5|=5,故|﹣2|+|﹣3|=|﹣2﹣3|;③|﹣2|+|0|=2,|﹣2+0|=2,故|﹣2|+|0|=|﹣2+0|.故答案为:①>;②=;③=.当a,b异号时,|a|+|b|>|a+b|,当a,b 同号时(包括零),|a|+|b|=|a+b|,∴|a|+|b|≥|a+b|;(3)∵|x|+2015=|x﹣2015|,∴|x|+|﹣2015|=|x﹣2015|.由可知:x 与﹣2015同号,∴x≤0.【点评】本题主要考查的是绝对值的性质,找出其中的规律是解题的关键.25.点A 从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点的距离是15,已知点B的速度是A的速度的4 倍(1)求出点A、点B 的速度,并在数轴上标出A、B 两点从原点出发运动3秒时的位置.若 A、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?【考点】一元一次方程的应用;数轴.【分析】(1)设点A的速度为每秒t 个单位,则点B的速度为每秒4t 个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;设x秒时原点恰好处在点A、点B的正中间,根据两点离原点的距离相等建立方程求出其解即可.【解答】解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4 个单位长度.如图:设x秒时原点位于线段AB 之间且分线段AB为1:2,由题意,得 3+x=12﹣4x,解得:x=1.8,秒时,原点恰好处在点A、点B 的正中间.【点评】本题考查了列一元一次方程解实际问题的运用、数轴的运用、行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.。
2015—2016学年度第一学期期中质量调研检测试卷七年级数学一、选择题(每小题2分,共12分) 1.4-的绝对值是( )A .4-B .4C .14-D .142.据统计,我国2013年全年荒废造林面积约6090000公顷,6090000用科学记数法可表示为( ) A .6.09105⨯ B .66.0910⨯ C .460910⨯ D .560.910⨯3.下列各组数中,相等的一组是( ) A .42-与()42- B .35与53 C .()3--与3--D .()51-与()20131-4.下列计算正确的是( )A .2325a a a +=B .33a a -=C .333235a a a +=D .2222a b a b a b -+= 5.下列说法:①a -表示负数;②最大的负整数是1-;③数轴上表示数2和2-的点到原点的距离相等;④多项式232xy xy -的次数是2,其中正确的个数为( )A .1个B .2个C .3个D .4个6.如图所示的运算程序中,若开始输入的x 值为24,则第1次输出的结果为12,第2次输出的结果为6,……第2000次输出的结果为( )A .1B .3C .4D .6二、填空题(每小题2分,共20分)7.13-的相反数是__________,例数是__________.8.单项式23xy -的系数是__________,次数是__________.9.某日,天气预报显示:高淳2--9℃,则该日高淳的温差是__________℃. 10.在下列数中,①3.14; ②5-; ③0.12;④1.010010001…;⑤π;⑥227,其中,无理数是__________.(填序号)11.比较大小:45-__________35-.12.若27m x y -与33n x y -是同类项,则m n -=__________.13.今年小丽a 岁,她的数学老师年轻比小丽年龄的3倍小3岁,小丽的数学老师的年龄用代数式表示为__________岁.14.实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为__________.第14题图15.已知21x y -=,则324x y +-的值为__________.16.数轴上有A 、B 两点,A 、B 两点间的距离为3,其中点A 表示数1-,则点B 表示的数是__________. 三、解答题(本大题共10小题,共68分) 17.计算(每小题4分,共16分)(1)()()435-+---; (2)()1822⎛⎫-÷⨯- ⎪⎝⎭;(3)()()34324⨯---÷;(4)()2411136⎡⎤--⨯--⎣⎦.18.计算(每小题4分,共8分) (1)3531a b a b --+++;(2)()()2222243a b ab ab a b ---.19.(6分)先化简,再求值:已知()()222242x x y x y --+-,其中1x =-,12y =. 20.(4分)任意想一个数,把这个数乘2后减8,然后除以4,再减去原来所想的那个数的12,小时说所得结果一定是2-,请你通过列式计算说明小明说的正确. 21.(4分)自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆,由于各种原因,实际每天的生产量与计划每天的产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,(1)该厂星期一生产电动车__________辆;(2)生产量最多的一天比生产量最少的一天多生产电动车__________辆;(3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元? 22.(5分)一辆货车从超市出发,向东走了3千米到达小彬家,继续向东走2千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家、小彬家、小颖家的位置;(2)小明家距小彬家多远?(要求写出解答过程)-4-17623.(5分)如图,图①是一个五边形,分别连接这个五边形各边中点得到图②,再分别连接图②中小五边形各边中点得到图③.第23题图③②①n(3)能否分出246个二角形?简述你的理由.24.(6分)第二章,我们学习了有理数的相关运算,在探究“有理数加法法则”的过程中,我们只要通过对几类算式的运算进行归纳总结,就可以得出该法则。
江西省新余市新钢中学2015-2016学年七年级数学上学期期中试题一、选择题(本大题共8小题,每题3分,共24分,每小题只有一个正确选项)1.下列各式中,正确的是()A.2a+3b=5ab B.a3+a2=a5C.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y2.在下列选项中,具有相反意义的量是()A.盈利3万元与支出3万元B.气温升高3℃与气温为﹣3℃C.胜二局与负三局D.甲乙两队篮球比赛比分分别为65:60与60:653.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为()A.0.428×107B.4.28×106C.4.28×105D.428×1044.若m为实数,则代数式|m|+m的值一定是()A.正数 B.0 C.负数 D.非负数5.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5 B.它的系数是﹣,次数是5C.它的系数是﹣,次数是6 D.它的系数是﹣π,次数是56.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④ C.②③④D.①③④7.在代数式xy2中,x与y的值各减少50%,则代数式的值()A.减少50% B.减少其值的C.减少其值的D.减少75%8.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A.1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分)9.比较大小,用“<、>、=”填空:﹣﹣1.3.10.用四舍五入法,把20049精确到百位为.11.数轴上A、B两点所表示的有理数的和是.12.每件a元的上衣先提价10%,再打九折以后出售的价格是元/件.13.若3a2﹣a﹣2=0,则5+6a2﹣2a= .14.已知a、b互为倒数,c、d互为相反数,且m是最大的负整数,则2ab﹣m2﹣﹣m2013= .15.小明在求一个多项式减去x2﹣3x+5时,误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则正确的答案是.16.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,则a12的值是三、(本大题共2小题,每小题5分,共20分)17.画出数轴,把下列各数0,2,(﹣1)2,﹣|﹣3|,﹣2.5在数轴上分别用点A,B,C,D,E表示出来;按从小到大的顺序用“<”号将各数连接起来.18.计算:(1)(﹣7)+5﹣(﹣3)+(﹣4)(2)﹣14+(1﹣2)2÷(﹣)×4(3)4xy﹣(3x2﹣3xy)﹣7yx+2x2.四、(本大题共3小题,每小题8分,共24分)19.已知:|a|=3,b2=4,ab<0,求a﹣b的值.20.已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.21.某数学俱乐部有一种“秘密”的记账方法,当他们收入300元时,记为﹣250元;当他们用去300时,记为+350续:猜一猜,当他们用去150元时,可能记为多少?当他们收入150元时,可能记为多少?说说你的理由.五、(本大题共2小题,每小题9分,共18分)22.定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.23.一个三位数,它的个位数字是a,十位数字是个位数字的3倍少1,百位数字比个位数字大5.(1)用a的式子表示此三位数;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字比原来的三位数减少了多少?(3)请你根据题目的条件思考,a的取值不可能是多少?此时相应的三位数是多少?六、(本大题共10分)24.问题解决:2015年6月,江西省制定了“居民生活用电试行阶梯电价实施方案”,其标准为:第一档电量维持现行价格不变,即每度0.60元;第二档电量在现行电价的基础上,每度提高0.05元,即每度0.65元;第三档电量在现行电价的基础上,每度提高0.30元,即每度0.90元.(说明:用电量取整数)问:(1)8月10日,陈先生的电费单上显示7月份用电量为299度,陈先生7月份的电费应为多少元?(2)陈先生8月份交了299.55元电费,请计算陈先生8月份的用电量应为多少度?(3)如果陈先生某月份的用电量为x度,请用含x的代数式,表示出他应交多少元电费?2015-2016学年江西省新余市新钢中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分,每小题只有一个正确选项)1.下列各式中,正确的是()A.2a+3b=5ab B.a3+a2=a5C.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则分别进行判断.【解答】解:A、2a与3b不能合并,所以A选项错误;B、a3与a2不能合并,所以B选项错误;C、7ab﹣3ab=4ab,所以C选项错误;D、x2y﹣2x2y=﹣x2y,所以D选项正确.故选D.【点评】本题了考查了合并同类项:把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.2.在下列选项中,具有相反意义的量是()A.盈利3万元与支出3万元B.气温升高3℃与气温为﹣3℃C.胜二局与负三局D.甲乙两队篮球比赛比分分别为65:60与60:65【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,本题收入与支出具有相反意义.【解答】解:A、盈利3万元与支出3万元具有相反意义,符合题意,此选项正确;B、气温升高3℃与气温为﹣3℃不具有相反意义,不符合题意,此选项错误;C、胜二局与负三局不具有相反意义,不符合题意,此选项错误,D、甲乙两队篮球比赛比分分别为65:60与60:65不具有相反意义,不符合题意,此选项错误,故选:A.【点评】此题考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为()A.0.428×107B.4.28×106C.4.28×105D.428×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4280000用科学记数法表示为4.28×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若m为实数,则代数式|m|+m的值一定是()A.正数 B.0 C.负数 D.非负数【考点】非负数的性质:绝对值.【分析】根据负数的绝对值是它的相反数,零的绝对值是零,正数的绝对值是它本身,可得答案.【解答】解:当m>0时,|m|+m=m+m=2m>0,当m=0时,|m|+m=0+0=0,当m<0时,|m|+m=﹣m+m=0,综上所述:m为实数,则代数式|m|+m的值一定是非负数,故选:D.【点评】本题考查了绝对值,分类讨论是解题关键,以防遗漏.5.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5 B.它的系数是﹣,次数是5C.它的系数是﹣,次数是6 D.它的系数是﹣π,次数是5【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣的数字因数是,所有字母的指数和为3+2=5,所以它的系数是,次数是5.故选:D.【点评】此题考查的知识点是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④ C.②③④D.①③④【考点】数轴.【分析】根据数轴可得a>0,b<0,|b|>|a|,从而可作出判断.【解答】解:由数轴可得,a>0,b<0,|b|>|a|,故可得:a﹣b>0,|b|>a,ab<0;即②③④正确.故选C.【点评】本题考查了数轴的知识,根据图形得出a>0,b<0,|b|>|a|,是解答本题的关键.7.在代数式xy2中,x与y的值各减少50%,则代数式的值()A.减少50% B.减少其值的C.减少其值的D.减少75%【考点】代数式求值.【分析】x与y的值各减少50%,则原式可变为()2,从而可作出判断.【解答】解:x与y的值各减少50%,则原式=()2=.xy2﹣=xy2.故选:B.【点评】本题主要考查的是代数式求值,列出x与y的值各减少50%后的代数式是解题的关键.8.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A.1 B.2 C.3 D.4【考点】有理数的混合运算.【专题】新定义.【分析】根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.【解答】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选D.【点评】本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.二、填空题(本大题共8小题,每小题3分,共24分)9.比较大小,用“<、>、=”填空:﹣>﹣1.3.【考点】有理数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵|﹣|=,|﹣1.3|=1.3,∴﹣>﹣1.3,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,能熟记有理数的大小比较法则是解此题的关键.10.用四舍五入法,把20049精确到百位为 2.00×104.【考点】近似数和有效数字.【分析】把十位上的数字4进行四舍五入即可.【解答】解:20049≈2.00×104.故答案为:2.00×104.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.11.数轴上A、B两点所表示的有理数的和是﹣1 .【考点】有理数的加法;数轴.【分析】此题借助数轴用数形结合的方法求解.由数轴可知点A表示的数是﹣3,点B表示的数是2,所以A,B两点所表示的有理数的和是﹣1.【解答】解:由数轴得,点A表示的数是﹣3,点B表示的数是2,∴A,B两点所表示的有理数的和是﹣3+2=﹣1.【点评】本题考查数轴的有关知识.借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.12.每件a元的上衣先提价10%,再打九折以后出售的价格是0.99a 元/件.【考点】列代数式.【专题】经济问题.【分析】售价=原价×(1+10%)×0.9,把相关数值代入计算即可.【解答】解:提价后的价格为a×(1+10%)=1.1a,∴再打九折以后出售的价格为1.1a×90%=0.99a,故答案为0.99a.【点评】考查列代数式,得到出售价格的等量关系是解决本题的关键;注意9折是原来价格的90%.13.若3a2﹣a﹣2=0,则5+6a2﹣2a= 9 .【考点】代数式求值.【专题】计算题.【分析】由已知等式求出3a2﹣a的值,原式变形后,代入计算即可求出值.【解答】解:∵3a2﹣a﹣2=0,即3a2﹣a=2,∴原式=5+2(3a2﹣a)=5+4=9.故答案为:9.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.已知a、b互为倒数,c、d互为相反数,且m是最大的负整数,则2ab﹣m2﹣﹣m2013=2 .【考点】代数式求值;有理数;相反数;倒数.【专题】计算题.【分析】利用倒数,相反数的性质求出ab,c+d的值,确定出最大的负整数求出m的值,代入原式计算即可.【解答】解:根据题意得:ab=1,c+d=0,m=﹣1,则原式=2﹣1+0﹣(﹣1)=2﹣1+1=2.故答案为:2.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.15.小明在求一个多项式减去x2﹣3x+5时,误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则正确的答案是3x2+4x﹣6 .【考点】整式的加减.【专题】应用题.【分析】根据题目的条件,先求出原式,再按照题目给的正确做法求出正确结果.【解答】解:误认为加上x2﹣3x+5,得到的答案是5x2﹣2x+4,则原式为5x2﹣2x+4﹣(x2﹣3x+5)=4x2+x﹣1.然后用原式按照正确的方法减去x2﹣3x+5,得3x2+4x﹣6.故答案为3x2+4x﹣6.【点评】本题主要考查得是整式的加减,题目新颖.16.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,则a12的值是156【考点】规律型:图形的变化类.【分析】观察可得边数与扩展的正n边形的关系为n×(n+1),把n=5代入求解即可.【解答】解:∵n=3时,边数为3×4=12;n=4时,边数为4×5=20;n=5时,边数为5×6=30;…∴a12=12×13=156.故答案为:156.【点评】本题考查了图形的变化规律性,得到边数与扩展的正n边形的关系是解决本题的关键.三、(本大题共2小题,每小题5分,共20分)17.画出数轴,把下列各数0,2,(﹣1)2,﹣|﹣3|,﹣2.5在数轴上分别用点A,B,C,D,E表示出来;按从小到大的顺序用“<”号将各数连接起来.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,在从左到右用“<”连接起来即可.【解答】解:如图所示,,故D<E<A<C<B.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.18.计算:(1)(﹣7)+5﹣(﹣3)+(﹣4)(2)﹣14+(1﹣2)2÷(﹣)×4(3)4xy﹣(3x2﹣3xy)﹣7yx+2x2.【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣7+5+3﹣4=﹣11+8=﹣3;(2)原式=﹣1﹣16=﹣17;(3)原式=4xy﹣3x2+3xy﹣7xy+2x2=﹣x2.【点评】此题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.四、(本大题共3小题,每小题8分,共24分)19.已知:|a|=3,b2=4,ab<0,求a﹣b的值.【考点】有理数的减法;绝对值;有理数的乘法.【分析】本题涉及平方根的概念,绝对值的性质,因为ab<0,可确定a、b的取值,则a ﹣b的值可求.【解答】解:∵|a|=3,b2=4,∴a=±3,b=±2,又∵ab<0,∴当a=3,b=﹣2时,a﹣b=5;当a=﹣3,b=2时,a﹣b=﹣5.∴a﹣b=±5.【点评】本题综合考查平方根,绝对值的性质.绝对值等于一个正数的数有两个.一个正数有两个平方根,它们互为相反数.20.已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.【考点】整式的加减.【分析】(1)原式去括号合并后,根据结果与x取值无关,即可确定出a与b的值;(2)原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:(1)原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b) x2+(a+3)x﹣6y+7,由结果与x取值无关,得到a+3=0,2﹣2b=0,解得:a=﹣3,b=1;(2)原式=3a2﹣3ab+3b2﹣3a2﹣ab﹣b2=﹣4ab+2b2,当a=﹣3,b=1时,原式=﹣4×(﹣3)×1+2×12=12+2=14.【点评】此题考查了整式的加减及化简求值,熟练掌握运算法则是解本题的关键.21.某数学俱乐部有一种“秘密”的记账方法,当他们收入300元时,记为﹣250元;当他们用去300时,记为+350续:猜一猜,当他们用去150元时,可能记为多少?当他们收入150元时,可能记为多少?说说你的理由.【考点】正数和负数.【分析】直接利用已知当他们收入300元时,记为﹣250元;当他们用去300时,记为+350,进而得出答案.【解答】解:﹣250+300=50,记收入50元为0,并规定用去为正,收入为负.用去150元时,记作:+150+50=+200(元),收入150元时,记作:﹣150+50=﹣100(元).答:用去150元,可能记为+200元;收入150元时,可能记为﹣100元.【点评】此题主要考查了正数与负数,正确掌握正负数的意义是解题关键.五、(本大题共2小题,每小题9分,共18分)22.定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=4a+b ;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.【考点】规律型:数字的变化类.【专题】新定义.【分析】(1)根据提供的信息,⊙的运算法则是⊙前面的数乘以4再加上运算符号后面的数,然后写出即可;(2)根据运算规则把a⊙b和b⊙a分别进行计算并相减得到a、b的差,然后即可比较大小;(3)先根据运算规则与已知条件求出a、b的关系,然后再根据运算规则计算(a﹣b)⊙(2a+b)并把a、b的关系代入整理后的算式计算即可求解.【解答】解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.【点评】本题是对数字变化问题的考查,认真观察所给式子,发现并应用规律(4乘以第一个数再加上第二个数)做题是正确解答本题的关键.23.一个三位数,它的个位数字是a,十位数字是个位数字的3倍少1,百位数字比个位数字大5.(1)用a的式子表示此三位数;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字比原来的三位数减少了多少?(3)请你根据题目的条件思考,a的取值不可能是多少?此时相应的三位数是多少?【考点】列代数式;整式的加减.【专题】计算题.【分析】(1)根据三位数的表示方法得到100•(a+5)+10(3a﹣1)+a,然后去括号合并即可;(2)根据题意表示出新三位数,然后用原来的三位数减去新三位数得到131a+490﹣,再去括号合并即可;(3)根据各数位上的数字特征易得a=1、2、3,然后分别写出对应的三位数.【解答】解:(1)个位数字是a,则十位数字为3a﹣1,百位数字为a+5,所以这个三位数为100•(a+5)+10(3a﹣1)+a=131a+490;(2)若交换个位数字和百位数字,其余不变,新得到的三位数为100a+10(3a﹣1)+a+5=131a ﹣5,131a+490﹣=131a+490﹣131a+5=495,所以新得到的三位数字比原来的三位数减少了495;(3)因为a,3a﹣1和a+5都是个位整数,所以a可取1,2,3,当a=1时,相应的三位数是621;当a=2时,相应的三位数是752;当a=3时,相应的三位数是883.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了整式的加减.六、(本大题共10分)24.问题解决:2015年6月,江西省制定了“居民生活用电试行阶梯电价实施方案”,其标准为:第一档电量维持现行价格不变,即每度0.60元;第二档电量在现行电价的基础上,每度提高0.05元,即每度0.65元;第三档电量在现行电价的基础上,每度提高0.30元,即每度0.90元.(说明:用电量取整数)问:(1)8月10日,陈先生的电费单上显示7月份用电量为299度,陈先生7月份的电费应为多少元?(2)陈先生8月份交了299.55元电费,请计算陈先生8月份的用电量应为多少度?(3)如果陈先生某月份的用电量为x度,请用含x的代数式,表示出他应交多少元电费?【考点】列代数式;代数式求值.【分析】(1)299度位于第二档,其中179度的单价为0.6元,度的单价为0.65元;(2)依据陈先生8月份交了299.55元电费,先估算出陈先生用电的范围,然后在进行计算即可;(3)依据x的取值范围进行分类计算即可.【解答】解:(1)由题意可得:179×0.6+×0.65=185.4元;(2)179×0.6+×0.65=218.55元,218.55<299.55,所以第三档用电量为÷0.9=90度349+90=439度.(3)当x<180时,应交电费0.6x元;当180≤x≤350时,应交电费为179×0.6+(x﹣179)×0.65=0.65x﹣8.95(元);当x>350时,应交电费为179×0.6+×0.65+0.9×(x﹣350)=218.55+0.9(x﹣350)=0.9x﹣96.45(元).【点评】本题主要考查的是代数式求值,分类讨论是解题的关键.。
2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。
1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。
9.如果将盈利2万元记作2万元,那么-4万元表示_________________。
10. 绝对值等于6的数是___________。
11. 2ab+b 2+( )=3ab-b 2。
12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。
北京市西城区三帆中学2015-2016学年七年级数学上学期期中试题一、单项选择题(每题3分,共30分.请将选项填在题后括号内.)1.﹣的相反数是()A.3 B.﹣3 C.D.﹣2.2014年北京市专利申请总件数是138111件,把138111写成科学记数法为()A.13.8111×104B.1.38111×106C.13.8111×105D.1.38111×1053.单项式﹣2xy2的次数是()A.﹣2 B.2 C.3 D.44.方程3﹣2x=﹣1的解为()A.x=1 B.x=2 C.x=3 D.x=45.点A在数轴上距离原点5个单位长度,且位于原点左侧,若将点A向右移动7个单位长度到点B,此时点B表示的数是()A.2 B.﹣2 C.﹣12 D.126.下列说法中,正确的是()A.一个数的绝对值等于它本身,则这个数一定是正数B.没有最小的有理数,也没有绝对值最小的有理数C.有理数的绝对值一定是正数D.如果,那么a<07.若|x+3|+(y﹣2)2=0,则x+y的值是()A.﹣1 B.﹣5 C.5 D.18.有x辆客车,若每辆客车乘50人,则还有10人不能上车;若每辆车乘52人,则只有2人不能上车,下列4个方程正确的是()A.50x+10=52x﹣2 B.50x﹣10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+29.a,b,c,d在数轴上的对应点位置如图所示,且|a|=|b|,则下列各式中正确的是()A.b+c>0 B.a+b+c<0 C.a+c<b+c D.|a+b|>010.一个近似数的“有效数字”是这样定义的:一个近似数,从左边第一个非0数字起,到末位数字止,所有的数字都是这个数的“有效数字”.如近似数0.0302,它有3位“有效数字”,是从左边第一个非0数字3起,到末位的2止,也就是数字3,0,2.则近似数0.040的“有效数字”的个数是()A.1 B.2 C.3 D.4二、填空题(每空2分,共20分.请将答案写在题目的横线上.)11.199.53精确到个位是.12.一件商品标价a元,打八折后获利5元,用代数式表示该商品的进价为元.13.下列各式中:①x+3=5﹣x;②﹣5﹣4=﹣9;③3x2﹣2x=4x;④x=5,是一元一次方程的有(写出对应的序号).14.比较下列两组有理数的大小,用>、<或=填空.,﹣3.14 ﹣π15.若关于x的多项式(m﹣2)x3+3x n+1﹣5x的次数是2,则m+n= .16.已知x=3是方程3ax﹣6a=﹣﹣2的解,则 a= .17.计算(﹣7.3)×(﹣42.07)+2.07×(﹣7.3)时,使用运算律会方便不少,所使用的运算律是,计算的结果是.18.如下表所示,有按规律排列的A、B两组数:列数 1 2 3 4 5 6 …A组2015 2014 2013 2012 2011 2010 …B组3 6 9 12 15 18 …已知A组的某个数与B组同一列的数相等,则这个数是.三、计算题(15分)19.(1)(2)(3).四、解答题(每题5分,共10分)20.化简:a2﹣2ab+b2﹣2a2+2ab﹣4b2.21.先化简,再求值:2(2x2+3x﹣1)﹣(x2+2x+2),其中x=﹣1.五、解方程(每题5分,共10分)22.解方程:(1)3(4x﹣1)=7(2x﹣1)+1(2).六、解答题(每题5分,共15分)23.已知有理数m,n满足|mn+4|+(m+n)2=0,化简整式(mn+10n)+[6m﹣2(2mn+2n)],并求值.24.探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.25.定义“*运算”:a*b=ab+ma+2b,其中m为常数.(1)求 3*(﹣2);(用含m的式子表示)(2)若“*运算”对于任意的有理数a,b都满足“交换律”,请你探索并确定m的值.七、附加题26.”运算:(+3)⊕(+5)=+8;(﹣4)⊕(﹣7)=+11;(﹣2)⊕(+4)=﹣6;(+5)⊕(﹣7)=﹣12;0⊕(﹣5)=(﹣5)⊕0=+5;(+3)⊕0=0⊕(+3)=+3.(1)归纳⊕运算的法则:两数进行⊕运算时,.特别地,0和任何数进行⊕运算,或任何数和0进行⊕运算,.(2)计算:(+1)⊕[0⊕(﹣2)]= .(3)是否存在有理数a,b,使得a⊕b=0,若存在,求出a,b的值,若不存在,说明理由.27.(2015秋西城区校级期中)阅读下面材料,回答问题.中国自古便有“十天干”与“十二地支”的说法,简称“干支”,源于树木的干和枝.十天干依次为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支依次为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.十位天干和十二位地支依次顺位相搭配,即:甲子、乙丑、丙寅、丁卯、戊辰、己巳、庚午、辛未、壬申、癸酉、甲戌、乙亥、丙子、丁丑…辛酉、壬戌、癸亥、甲子、乙丑…后来天干地支被用以记录时间,即纪年、纪月、纪日、纪时,其中纪年法使用最广泛,如今我国仍然沿用夏历(农历)的纪年方法,即“干支纪年法”,称为农历(夏历)某某干支年(严格说,农历年与公历年并不完全重合).如公历2013年是农历癸巳年;再如,今年10月初在我国黄海打捞的致远舰遗骸,记载的是历史上著名的中日甲午海战,发生于公历1894年.十二地支又与十二生肖依次顺位相对应:子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪.根据以上材料,填空:(1)十位天干和十二位地支依次顺位相搭配,年为一个最小循环;(2)获得诺贝尔医学奖的中国科学家屠呦呦生于公历1930年12月30日,用干支纪年法她生于年;(3)祖冲之(公元429年4月~500年)是中国古代的杰出数学家、天文学家,他生活在南北朝时期(公元386~589年),请问他的生肖为.28.(2015秋西城区校级期中)如图,已知大长方形ACFH的面积为572,被分割成六个小正方形,设最小的正方形边长a,第二小的正方形边长为b.(1)a与b的关系为;(2)求a.2015-2016学年北京市西城区三帆中学七年级(上)期中数学试卷参考答案与试题解析一、单项选择题(每题3分,共30分.请将选项填在题后括号内.)1.﹣的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是,故选C【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.2014年北京市专利申请总件数是138111件,把138111写成科学记数法为()A.13.8111×104B.1.38111×106C.13.8111×105D.1.38111×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将138111用科学记数法表示为1.38111×105.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.单项式﹣2xy2的次数是()A.﹣2 B.2 C.3 D.4【考点】单项式.【分析】根据单项式的概念求解.【解答】解:单项式﹣2xy2的次数是3.故选C.【点评】本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.4.方程3﹣2x=﹣1的解为()A.x=1 B.x=2 C.x=3 D.x=4【考点】解一元一次方程.【分析】根据解方程步骤移项、合并同类项以及系数化为1即可求出方程的解.【解答】解:移项得:﹣2x=﹣1﹣3,合并同类项得:﹣2x=﹣4,系数化为1得:x=2,故选B.【点评】本题考查解一元一次方程的知识,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.5.点A在数轴上距离原点5个单位长度,且位于原点左侧,若将点A向右移动7个单位长度到点B,此时点B表示的数是()A.2 B.﹣2 C.﹣12 D.12【考点】数轴.【专题】计算题;推理填空题.【分析】首先根据点A在数轴上距离原点5个单位长度,且位于原点左侧,可得点A表示的数是﹣5;然后根据数轴上“右加左减”的规律,用点A表示的数加上7,求出点B表示的数是多少即可.【解答】解:∵点A在数轴上距离原点5个单位长度,且位于原点左侧,∴点A表示的数是﹣5,∵将点A向右移动7个单位长度到点B,∴此时点B表示的数是:﹣5+7=2.故选:A.【点评】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:在数轴上,向右为正,向左为负.6.下列说法中,正确的是()A.一个数的绝对值等于它本身,则这个数一定是正数B.没有最小的有理数,也没有绝对值最小的有理数C.有理数的绝对值一定是正数D.如果,那么a<0【考点】绝对值.【分析】根据绝对值的意义进行判断即可.【解答】解:A、一个数的绝对值等于它本身,则这个数一定是非负数;故错误;B、没有最小的有理数,绝对值最小的有理数是0,;故错误;C、有理数的绝对值一定是非负数;故错误;D、如果,那么a<0;故正确.【点评】此题主要考查了有理数的分类、绝对值、以及有理数的加法,关键是熟练掌握各知识点.7.若|x+3|+(y﹣2)2=0,则x+y的值是()A.﹣1 B.﹣5 C.5 D.1【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x+3=0,y﹣2=0,解得x=﹣3,y=2,则x+y=﹣1.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.有x辆客车,若每辆客车乘50人,则还有10人不能上车;若每辆车乘52人,则只有2人不能上车,下列4个方程正确的是()A.50x+10=52x﹣2 B.50x﹣10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2【考点】由实际问题抽象出一元一次方程.【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后列出方程解答即可.【解答】解:设有x辆客车,根据题意可得:50x+10=52x+2.故选C.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.a,b,c,d在数轴上的对应点位置如图所示,且|a|=|b|,则下列各式中正确的是()A.b+c>0 B.a+b+c<0 C.a+c<b+c D.|a+b|>0【考点】绝对值;数轴.【分析】直接利用绝对值的性质结合数轴上a,b,c,d的位置,分析得出答案.【解答】解:如图所示,b<c<0,b<a,∵|a|=|b|,∴a+b=0,可得:b+c<0,故选项A错误;a+b+c<0,故选项B正确;a+c>b+c,故选项C错误;|a+b|=0,故选项D错误.故选:B.【点评】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出各项符号是解题关键.10.一个近似数的“有效数字”是这样定义的:一个近似数,从左边第一个非0数字起,到末位数字止,所有的数字都是这个数的“有效数字”.如近似数0.0302,它有3位“有效数字”,是从左边第一个非0数字3起,到末位的2止,也就是数字3,0,2.则近似数0.040的“有效数字”的个数是()A.1 B.2 C.3 D.4【考点】近似数和有效数字.【分析】根据有效数字的定义求解.【解答】解:近似数0.040的“有效数字”为4、0.故选B.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.二、填空题(每空2分,共20分.请将答案写在题目的横线上.)11.199.53精确到个位是200 .【考点】近似数和有效数字.【分析】把十分位上的数字5进行四舍五入即可.【解答】解:199.53≈200(精确到个位).故答案为200.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.12.一件商品标价a元,打八折后获利5元,用代数式表示该商品的进价为(80%a﹣5)元.【考点】列代数式.【分析】利用标价乘以八折可得售价,再用售价减去利润5元可得进价.【解答】解:由题意得:80%a﹣5,故答案为:(80%a﹣5).【点评】此题主要考查了列代数式,关键是掌握标价、售价、打折、利润、进价之间的关系.标价×打折=售价,售价﹣利润=进价.13.下列各式中:①x+3=5﹣x;②﹣5﹣4=﹣9;③3x2﹣2x=4x;④x=5,是一元一次方程的有①③④(写出对应的序号).【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:①x+3=5﹣x是一元一次方程;②﹣5﹣4=﹣9是等式;③3x2﹣2x=4x是一元一次方程;④x=5是一元一次方程.故答案为:①③④.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.14.比较下列两组有理数的大小,用>、<或=填空.<,﹣3.14 >﹣π【考点】有理数大小比较.【分析】根据负数小于正数,两个负数相比较,绝对值大的其值反而小进行比较大小即可.【解答】解:﹣<+;|﹣3.14|=3.14,|﹣π|=π,∵3.14<π,∴﹣3.14>﹣π.故答案为:<;>.【点评】此题主要考查了有理数的比较大小,关键是掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.15.若关于x的多项式(m﹣2)x3+3x n+1﹣5x的次数是2,则m+n= 1 .【考点】多项式.【分析】直接利用多项式的次数与系数的定义得出m,n的值,进而得出答案.【解答】解:∵关于x的多项式(m﹣2)x3+3x n+1﹣5x的次数是2,∴m﹣2=0,n+1=2,解得:m=2,n=﹣1,故m+n=2﹣1=1.故答案为:1.【点评】此题主要考查了多项式,正确把握多项式相关定义是解题关键.16.已知x=3是方程3ax﹣6a=﹣﹣2的解,则 a= ﹣1 .【考点】一元一次方程的解.【分析】把x=3代入3ax﹣6a=﹣﹣2得a的方程,再解即可.【解答】解:把x=3代入3ax﹣6a=﹣﹣2得:9a﹣6a=﹣1﹣2,解得:a=﹣1,故答案为:﹣1.【点评】此题主要考查了一元一次方程的解,关键是掌握把方程的解代入原方程,等式左右两边相等.17.计算(﹣7.3)×(﹣42.07)+2.07×(﹣7.3)时,使用运算律会方便不少,所使用的运算律是乘法的分配律,计算的结果是292 .【考点】有理数的乘法.【分析】利用乘法的分配律,进行计算即可解答.【解答】解:(﹣7.3)×(﹣42.07)+2.07×(﹣7.3)=(﹣7.3)×(﹣42.07+2.07)=(﹣7.3)×(﹣40)=292.故答案为:乘法的分配律,292.【点评】本题考查了有理数的乘法,解决本题的关键是熟记乘法的分配律.18.如下表所示,有按规律排列的A、B两组数:列数 1 2 3 4 5 6 …A组2015 2014 2013 2012 2011 2010 …B组3 6 9 12 15 18 …已知A组的某个数与B组同一列的数相等,则这个数是1512 .【考点】规律型:数字的变化类.【分析】首先找出A,B两组数与列数之间的关系:第n列A组为2016﹣n,B组数为3n,再列方程求解即可.【解答】解:A,B两组数与列数之间的关系:第n列A组为2016﹣n,B组数为3n,2016﹣n=3n,解得:n=504,3n=3×504=1512.故答案为:1512.【点评】此题主要考查数列的规律探索与运用,熟悉常见的等差数列,并会表示运用是解题的关键.三、计算题(15分)19.(1)(2)(3).【考点】有理数的混合运算.【分析】(1)先算乘除,然后算加减即可;(2)先算乘方,再运用乘法的分配律计算即可;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)=﹣18÷3+2=﹣6+2=﹣4;(2)=(﹣+﹣)×4=﹣2+3﹣=﹣;(3)=﹣25×+×(﹣6)=﹣10﹣9=﹣19.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.四、解答题(每题5分,共10分)20.化简:a2﹣2ab+b2﹣2a2+2ab﹣4b2.【考点】合并同类项.【分析】首先找出同类项,进而合并同类项得出答案.【解答】解:a2﹣2ab+b2﹣2a2+2ab﹣4b2=(a2﹣2a2)+(﹣2ab+2ab)+(b2﹣4b2)=﹣a2﹣3b2.【点评】此题主要考查了合并同类项,正确找出同类项是解题关键.21.先化简,再求值:2(2x2+3x﹣1)﹣(x2+2x+2),其中x=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4x2+6x﹣2﹣x2﹣2x﹣2=3x2+4x﹣4,当x=﹣1时,原式=3×(﹣1)2+4×(﹣1)﹣4=3﹣4﹣4=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解方程(每题5分,共10分)22.解方程:(1)3(4x﹣1)=7(2x﹣1)+1(2).【考点】解一元一次方程.【分析】(1)去括号,移项,合并同类项,将x系数化为1,即可求出解.(2)去分母,去括号,移项,合并同类项,将x系数化为1,即可求出解.【解答】解:(1)3(4x﹣1)=7(2x﹣1)+1去括号得:12x﹣3=14x﹣7+1,移项得:12x﹣14x=﹣7+1+3,移项合并得:﹣2x=﹣3,系数化为1得:x=1.5.(2).去分母得:6﹣2(2x+1)=3(x﹣1),去括号得:6﹣4x﹣2=3x﹣3,移项得:﹣4x﹣3x=﹣3+2﹣6,合并同类项得:﹣7x=﹣7,系数化为1得:x=1.【点评】此题考查了解一元一次方程的解法;其步骤为:去分母,去括号,移项,合并同类项,将未知数系数化为1,求出解.六、解答题(每题5分,共15分)23.已知有理数m,n满足|mn+4|+(m+n)2=0,化简整式(mn+10n)+[6m﹣2(2mn+2n)],并求值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,利用非负数的性质求出m+n与mn的值,代入计算即可求出值.【解答】解:原式=mn+10n+6m﹣4mn﹣4n=6m﹣3mn+6n=6(m+n)﹣3mn,由|mn+4|+(m+n)2=0,得到m+n=0,mn=﹣4,则原式=12.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.24.探索规律:将连续的偶2,4,6,8,…,排成如下表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.【考点】一元一次方程的应用;规律型:数字的变化类.【专题】数字问题.【分析】(1)让方框中的5个数相加,看结果与中间的数的关系即可;(2)根据上下相邻的数相隔10,左右相邻的数相隔2表示出其余数,相加即可;(3)让(2)得到的式子的结果等于2010,看有没有整数解,然后看有没有存在的可能即可.【解答】解:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍;(2)设中间的数为x,则十字框中的五个数的和为:(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x;(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)得5x=2010,所以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010.【点评】解决本题的关键是得到连续偶数中左右相邻及上下相邻的数的关系;注意根据实际情况判断是否存在可以框住的数.25.定义“*运算”:a*b=ab+ma+2b,其中m为常数.(1)求 3*(﹣2);(用含m的式子表示)(2)若“*运算”对于任意的有理数a,b都满足“交换律”,请你探索并确定m的值.【考点】有理数的混合运算.【专题】新定义.【分析】(1)根据题中的新定义化简所求式子,计算即可得到结果;(2)根据“*运算”对于任意的有理数a,b都满足“交换律”,得出ab+ma+2b=ab+mb+2a,进而求解即可.【解答】解:(1)根据题意得3*(﹣2)=3×(﹣2)+3m+2×(﹣2)=﹣6+3m﹣4=﹣10+3m;(2)a*b=ab+ma+2b,b*a=ab+mb+2a,根据题意得a*b=b*a,即ab+ma+2b=ab+mb+2a,(a﹣b)m=2(a﹣b),∵“*运算”对于任意的有理数a,b都满足“交换律”,∴a≠b,∴m=2.【点评】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.七、附加题26.”运算:(+3)⊕(+5)=+8;(﹣4)⊕(﹣7)=+11;(﹣2)⊕(+4)=﹣6;(+5)⊕(﹣7)=﹣12;0⊕(﹣5)=(﹣5)⊕0=+5;(+3)⊕0=0⊕(+3)=+3.(1)归纳⊕运算的法则:两数进行⊕运算时,同号得正,异号得负,并把它们的绝对值相加.特别地,0和任何数进行⊕运算,或任何数和0进行⊕运算,都得这个数的绝对值.(2)计算:(+1)⊕[0⊕(﹣2)]= +3 .(3)是否存在有理数a,b,使得a⊕b=0,若存在,求出a,b的值,若不存在,说明理由.【考点】有理数的混合运算.【专题】新定义.【分析】(1)根据定义得出法则即可;(2)根据法则计算即可;(3)根据法则和非负数的性质,即可证得a=b=0.【解答】解:(1)归纳⊕运算的法则:两数进行⊕运算时,同号得正,异号得负,并把它们的绝对值相加.特别地,0和任何数进行⊕运算,或任何数和0进行⊕运算,都得这个数的绝对值.(2)(+1)⊕[0⊕(﹣2)]=(+1)⊕(+2)=+3;(3)当a=b=0时,a⊕b=0,根据法则:a⊕b=±(|a|+|b|),根据非负数的性质,只有a=b=0时,|a|+|b|=0.故答案为:同号得正,异号得负,并把它们的绝对值相加,都得这个数的绝对值;+3.【点评】本题考查了有理数的混合运算,根据题意得出⊕运算的法则是解题的关键.27.(2015秋西城区校级期中)阅读下面材料,回答问题.中国自古便有“十天干”与“十二地支”的说法,简称“干支”,源于树木的干和枝.十天干依次为:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支依次为:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.十位天干和十二位地支依次顺位相搭配,即:甲子、乙丑、丙寅、丁卯、戊辰、己巳、庚午、辛未、壬申、癸酉、甲戌、乙亥、丙子、丁丑…辛酉、壬戌、癸亥、甲子、乙丑…后来天干地支被用以记录时间,即纪年、纪月、纪日、纪时,其中纪年法使用最广泛,如今我国仍然沿用夏历(农历)的纪年方法,即“干支纪年法”,称为农历(夏历)某某干支年(严格说,农历年与公历年并不完全重合).如公历2013年是农历癸巳年;再如,今年10月初在我国黄海打捞的致远舰遗骸,记载的是历史上著名的中日甲午海战,发生于公历1894年.十二地支又与十二生肖依次顺位相对应:子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪.根据以上材料,填空:(1)十位天干和十二位地支依次顺位相搭配,60 年为一个最小循环;(2)获得诺贝尔医学奖的中国科学家屠呦呦生于公历1930年12月30日,用干支纪年法她生于庚午年;(3)祖冲之(公元429年4月~500年)是中国古代的杰出数学家、天文学家,他生活在南北朝时期(公元386~589年),请问他的生肖为蛇.【考点】规律型:数字的变化类.【分析】(1)首先要明确天干与地支的汉字相差2个,十二地支代表12年,则有每12年地支比天干多2,当地支比天干多10时,重新开始为一个循环,故用12×(10÷2)求解即可;(2)用1930减去1894的差除以循环周期60,看余数是多少,进行推算即可;(3)用2013减去429的差除以60,看余数是多少,再进行推算即可.【解答】解:(1)天干与地支的汉字相差2个,十二地支代表12年,则有每12年地支比天干多2,当地支比天干多10时,重新开始为一个循环,所以:12×(10÷2)=60(年).故答案为:60.(2)列举甲子表:1 甲子 13 丙子 25 戊子 37 庚子 49 壬子2 乙丑 14 丁丑 26 己丑 38 辛丑 50 癸丑3 丙寅 15 戊寅 27 庚寅 39 壬寅 51 甲寅4 丁卯 16 已卯 28 辛卯 40 癸卯 52 乙卯5 戊辰 17 庚辰 29 壬辰 41 甲辰 53 丙辰6 已巳 18 辛巳 30 癸巳 42 乙巳54 丁巳7 庚午 19 壬午 31 甲午 43 丙午 55 戊午8 辛未 20 癸未 32 乙未 44 丁未 56 已未9 壬申 21 甲申 33 丙申 45 戊申 57 庚申10 癸酉 22 乙酉 34 丁酉 46 已酉 58 辛酉11 甲戌 23 丙戌 35 戊戌 47 庚戌 59 壬戌12 乙亥 24 丁亥 36 已亥 48 辛亥 60 癸亥1930﹣1894=36(年),1894年是甲午年,排31号,31+36=67,67÷60=1…7,故与7号年份相同,故1930年是庚午年.故答案为:庚午;(3)(2013﹣429)÷60=1584÷60=26…24,2013年是农历癸巳年,排在30号,30﹣24=6,所以公元429年是已巳年,由子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪可知,公元429年是蛇年,故祖冲之生肖为:蛇.故答案为:蛇.【点评】此题主要考查规律问题的探索与运用,了解天干地支纪年法的基础知识是解题的关键.28.(2015秋西城区校级期中)如图,已知大长方形ACFH的面积为572,被分割成六个小正方形,设最小的正方形边长a,第二小的正方形边长为b.(1)a与b的关系为b=4a ;(2)求a.【考点】一元一次方程的应用.【专题】几何图形问题.【分析】(1)表示出其余正方形的边长,根据最大正方形边长的两种表示方法相等可得a 与b的关系;(2)先求出矩形的长和宽,根据矩形ACFH的面积等于572列方程求解即可.【解答】解:(1)AC=BC+AB=b+a+(b+2a)=2b+3a,CF=EF+DE+CD=2b+(b+a)=3b+a,最大正方形可表示为2b﹣a,也可表示为b+3a,2b﹣a=b+3a,解得b=4a.故a与b的关系为b=4a.(2)AB=11a,BC=13a,矩形的面积为11a×13a=572,a2=4,解得a=±2(负值舍去).故答案为:b=4a.【点评】考查长方形、正方形的面积和一元一次方程的应用;解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.得到最大正方形的两种表达形式是解决本题的突破点.。
2015—2016学年第一学期数学期中质量分析
2015—2016学年第一学期数学期中质量分析
一、试题评价
本次数学考试卷面试题满分150分。
考试内容涉及考查评价学生在数学知识与技能,数学思考解决问题,情感与态度等方面的表现,较好地体现了课标所规定学习要求,绝大部分试题的设计考虑整卷阅题,综合问题等多种形式的题目,整卷的语言图形、文字、准确和规范,试题的内容和问题科学,有利于学生展示自己在数学主题学习中取得的成就。
单独考查基础的重要的知识技能,注重考查通性通法,淡化考查特殊技巧,较为有效地确保了试卷的内容效度。
重点考查核心内容,突出考查主要的数学思想和方法,突出了对数形结合,归纳概括,转化归类,分类讨论等。
尝试考查基本数学活动经验:通过观察、操作获得一定的数学活动的经验,感受数学无处不在。
整份试卷的难度系数约为0.725 ,接近预定目标。
其中容易题占大部分,稍难题、较难题、创新题所占比例少,学生分数比较集中,区分度不够明显。
二、学生成绩分析
1、成绩统计表
年级
考试人数
平均分
及格率
优秀率
九年级
541
108.8
76.7%
48.9%
2、分数段统计
年级
考试人数
135分以上
134-120分
119-90分
89分以下
九年级
541
109
156
152
124
大部分学生的得分集中在中上分数段,但也有少部分学生得分特低,两极差距比较明显。
三、典型错误分析
1.第一大题:选择题(第1题---第10题)
选择题立足于考查基础知识和基本能力,有意控制试题难度。
着眼于考查学生在数感、符号感等方面的领悟程度,主要考查学生的基础知识与基本技能。
由于考查的知识点较为单一,难度不大,所以学生的答题质量普遍较好,得分率较高,十题全对的占大多数,但也有一少部分学生因各方面的原因造成较大失分,究其原因不外两个,其一,题目本身对学生的解题技能有一定的要求;其二,在平时的学习过程中,学生对基础知识的落实与解题能力方面训练还不够到位。
其中错误率较高的是第5、10题。
(1)第5题,考查的是圆的垂径定理及其推论和圆周角定理及其推论,本题失分的一部分原因是被图形误导,另一部分是圆的基础知识掌握的不牢固。
(2)第10题,本题主要考查的是圆的基础知识﹑正方形的性质以及学生解决综合问题的能力。
失分的主要原因是学生没有利用好已有的条件,无法转化找到半径为斜边的直角三角形,导致问题无法解决。
同时审题不清、分析不彻底等也是造成本题失分的原因。
本题是选择题中出错率最高的一个题目。
2.第二大题:填空题(第11---16题)
填空题既考察了学生对基本概念的理解,对基本技能的应用,又考察了学生对综合理论知识的应用,既灵活多变又抓住数学的本质问题,更注重数学在实际问题中应用能力的培养,具有一定的难度。
其中错误率较高的是第15、20题。
(1)第15题,本题考查的是圆的垂径定理和反比例函数的性质,难度并不大,但由于很大一部分学生不会利用垂径定理求出半径,从而P点坐标求不出来导致大面积失分。
另一部分学生则是对所求的P点坐标表示错误,导致计算出错。
(2)第20题,本题考查的是二次函数综合运用,第①题失分原因主要是部分学生对二次函数的解析式的求法掌握的不好。
第②题失分原因主要是部分学生找规律时出现问题或计算失误。
本题是整张试卷中失分最多的题目之一。
3.第三大题:解答题(第17---24题)
第18题,本题考查的是图形的旋转和弧长公式。
其原因主要是审题不细心,把将△ABC 绕点A顺指针方向画成逆时针方向了,还有一部分学生把点B所经过的路径长,理解为求BB′的长度。
第22题(3),本题考查的是弓形面积的求法,很多学生是能得分但得分不全。
其原因主要是对扇形的概念掌握不好,应该是扇形OCD的面积减去△OCD的面积,但部分学生认为是“扇形ACD“的面积减去△ACD的面积,但这个图形并不是扇形。
还有一部分学生计算失误丢分。
第23题(3),本题考查的是二次函数性质的综合运用,是失分率比较高的一个题目,部分学生对不在顶点时取最值时的情况,没有利用二次函数的增减性分析导致失分。
第24题,本题主要是体现数学的综合应用,动点问题是难点,有一部分学生掌握的不好,无从入手。
第(2)题部分学生审题不清,对题意不够理解,不懂△PBE为等腰三角形需要分三种情况进行讨论,特别是当E为顶点时,P点有两个,部分学生把在E点下方的丢掉了。
第(3)题得分率很低,大部分学生是求不出△EBQ的面积表达式,导致无法解题,本小题综合性较强。
四、本次考试学生存在的问题
1、学生双基不扎实的问题.如概念混淆不清,化简、计算、解方程错误,证明书写不
规范等,导致不必要的失分。
2、学生能力比较差的问题.学生理解题意的能力较差,知识方法稍综合的试题得分率普遍较低;学生语言表达能力较差,答卷时表达和解释不规范、欠准确;学生应用意识仍然较差,不能灵活运用所学知识解决简单的实际问题;学生综合运用所学知识,分析解决实际问题的能力有待提高,数学素养有待于进一步加强。
3、学生非智力因素的问题.好学生粗心,差学生厌学,不少学生对数学学习缺少兴趣,学习的主动性较差。
五、对今后数学教学的建议
1、面向全体,夯实基础
正确理解新课标下“双基”的含义,数学教学中应重视基本概念、基本图形、基本思想方法的教学和基本运算及分析、解决问题等能力的培养。
要面向全体学生,做到用教材教,而不是教教材,以教材的例题、习题为素材,结合学生实际,举一反三加以推敲、延伸和适当变形,以达到“人人掌握必须的数学”,同时关心数学学习困难的学生,通过学习兴趣培养、学习方法指导,使他们达到学习的基本要求,使不同的学生得到不同的发展。
2、注重应用,培养能力
在教学中应关注社会生活,注重情感培育,引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新能力的培养,激发学生的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性的解决问题,也要设计一定数量的开放性、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些问题进行探讨。
3、关注本质,指导教学
近几年的中考中有不少试题体现了数学应用思想、实践与操作、过程与方法,探究学习等新课程理念,因此,在教学中应以新课程理念为指导,重视学生动手实践、自主探索和合作交流等教学方式的运用,在教师启发引导的基础上,留给学生一定的时间和空间。
合作探究学习中,要让学生充分表达自己的思想,引导学生讨论、自主反思、归纳小结活动中隐含的或发现的数学规律,让学生真正体验和经历数学知识的变化及构建生成过程。