七年级数学期中考试试题(满分100分 时间90分钟)
- 格式:doc
- 大小:119.00 KB
- 文档页数:4
2023学年第一学期七年级数学期中练习(完卷时间90分钟 满分100分)一、填空题:(每题2分,共28分)[不必写过程,直接填入答案]1.设甲数为a ,乙数为b ,那么“甲数与乙数和的倒数”用代数式表示为__________.2.计算:__________.3.计算:__________.4.把多项式按字母的升幂排列是__________.5.已知与是同类项,则__________.6.若一个多项式减去的差等于,则这个多项式是__________.7.计算:__________.8.若,,则的值为__________.9.因式分解:__________.10.书店九月份的营业额为a 万元,十月份比九月份增长了10%,则十月份的营业额为_________元.11.若可以用完全平方公式因式分解,则的值是__________.12.若,,则__________.13.若的展开式化简后不含项,则常数的值是__________.14.如图,两个正方形的边长分别为a 、b ,如果,,则阴影部分面积为_________.二、选择题:(每题3分,共12分)15.下列代数式中,是单项式的有( )个.①;②;③;④0;⑤;⑥;⑦.A .3B .4C .5D .6232x xy ⋅=(5)(2)x y x y -+=2322ab a a b -+a 322m x y23n x y -m n +=2223y x +222x y -202420231(5)5⎛⎫-⨯= ⎪⎝⎭34x =35y=3x y+225204x x -+=216x mx -+m 3a b +=23a b -=222021a b -+=()2()31x a x x --+2x a 7a b +=11ab =6x +3x y π223a b +53x 32x y16.下列计算正确的是( ).A .B .C .D .17.下列等式从左到右的变形,是因式分解的是( ).A .B .C .D .18.如果一个数等于两个连续奇数的平方差,则称这个数为“幸福数”,下列数中为“幸福数”的是( )A .270B .308C .330D .360三、简答题:(每题5分,共计40分)19.计算:20.计算:21.计算:22.计算:23.简便计算:24.因式分解:25.因式分解:26.因式分解:四、解答题:(6分+6分+8分,共计20分)27.先化简,再求值:,其中,.28.如图所示,学校有一块长为米,宽为米的长方形空地,现想要开辟用于种植.为了方便通行,横向修一条宽为米的一个长方形小路,纵向再修一条宽为米的一个长方形小路,剩余部分作为种植园地,求种植园地的面积.(用含有a 、b 、c 的多项式表示)29.如图,正方形是由两个长为a 、宽为b 的长方形和两个边长分别为a 、b 的正方形拼成的.235a a a +=235()()a a a-⋅-=()22436aa =()236aa =2(2)(2)4a a a +-=-21(1)1m m m m --=--221142x x x ⎛⎫-+=- ⎪⎝⎭23232x x x x x ⎛⎫--=--⎪⎝⎭223472ab ab ab ab --+-()()322322()x yx y y-+--()22(25)32a b a ab b -⋅-+(2)(2)x y z x y z -++-98102⨯2()()ab a b b a b ---2()16()x m n n m -+-()222936x x +-()222342()ab a ba b ++-+13a =1b =-()a b +()a b -c ()c b a <<c ABCD(1)根据上图,利用正方形面积的不同表示方法,直接写出、、ab 之间的关系式,这个关系式是__________;(2)若满足,请利用(1)中的数量关系,求的值;(3)如图所示,正方形、长方形、长方形和正方形的面积分别为、、和.已知,.求及的值.2023学年第一学期期中考试七年级数学参考答案(考试时间90分钟,满分100分)一、填空题(每题2分,共28分)1、1a +b; 2、6x 3y ; 3、2x 2−9xy −5y 2; 4、ab 2+2a 2b −a 3;5、46、5x 2+y 2;7、−15; 8、20; 9、(5x −2)2;10、110%a (1.1a 或1110a );11、±8; 12、2023; 13、−3; 14、8二、选择题(每小题3分,满分共12分)15、B ;16、D ;17、C ;18、D三、简答题(每小题5分,共40分 )19、解:原式=−3ab +7ab −4ab 2−2ab 2…………………1分=(−3+7)ab +(−4−2)ab 2…………………2分=4ab −6ab 2………………………2分20、解:原式=−8x 6y 3+x 6y 3………………………4分=−7x 6y 3……………………1分21、解:原式=2a·3a 2−2a·2ab +2a·b 2−5b·3a 2+5b·2ab −5b·b 2……2分=6a 3−4a 2b +2a b 2−15a 2b +10ab −5b 3…………1分=6a 3−19a 2b +12a b 2−5b 3…………2分22、解:原式=[(x−(y−2z )][x +(y −2z )]......2分=x 2−(y−2z )2............1分=x 2−(y 2−4yz +4z 2)............1分=x 2−y 2+4yz−4z 2 (1)分ABCD 2()a b +22a b +x 22(1026)(1025)2023x x -+-=(1026)(1025)x x --AEMG EBHM GMFD MHCF 1S 2S 3S 4S 2334S =4GM HM -=14S S +14S S -23、解:原式=(100−2)×(100+2)……2分=1002−22…………2分=9996…………1分24、解:原式=b(a−b)·a(a−b)−b(a−b)·1…………2分=b(a−b)·[a(a−b)−1]…………1分=b(a−b)(a2−ab−1)…………2分25、解:原式=x2(m−n)−16(m−n)……1分=(m−n)(x2−16)…………2分=(m−n)(x+4)(x−4)…………2分26、解:原式=(x2+9)2−(6x)2……1分=(x2+6x+9)(x2−6x+9)…………2分=(x+3)2(x−3)2…………2分四、解答题(6分+6分+8分,共20分)27、解:原式=3ab+(4a2+4b2)−2(a2+2ab+b2)……1分=3ab+4a2+4b2−2a2−4ab−2b2…………1分=2a2+2b2−ab…………2分当a=13,b=−1时原式=2×(13)2+2×(−1)2−13×(−1)…………1分= 239…………1分28、解:S长=(a+b)(a−b)=a2−b2……1分S1=(a+b)c=ac+bc……1分S2=(a−b)c=ac−bc……1分S正=c2……1分S阴= S长−S1−S2+S正=a2−b2−(ac+bc)−(ac−bc)+c2=a2−b2+c2−2ac……1分答:阴影部分的面积为(a2−b2+c2−2ac)……1分29、解:(1)(a+b)2=a2+2ab+b2……1分(2)[(1026−x)+(x−1025)]2=(1026−x+x−1025)2……1分(1026−x)2+2(1026−x)(x−1025)+(x−1025)2=1 ……1分(1026−x)2+(x−1025)2+2(1026−x)(x−1025)=12(1026−x)(x−1025)=1−2023(1026−x)(x−1025)=−1011……1分所以(1026−x)(x−1025)=−1011(3)S2=ab=334GM−HM=a−b=4 ……1分a 2+b 2=(a−b )2+2ab =652 ……1分(a +b )2=a 2+b 2+2ab =652+332=49a +b=7……1分a 2−b 2=(a−b )(a +b )=28……1分=+41S S =-41S S。
松山区2023-2024学年度上学期期中考试七年级数学(时间:90分钟,满分:100分)一、选择题(本大题有12个小题,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某中学积极响应“双减”政策,开展丰富多彩的课余活动,购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()A.B.C.D.2.用四舍五入法按要求对分别取近似值,其中错误的是()A.(精确到)B.(精确到千分位)C.(精确到百分位)D.(精确到)3.设P、Q都是关于x的4次多项式,关于P与Q的和,说法正确的是()A.8次多项式B.4次多项式C.次数可能大于4D.次数不大于44.2021年松山区GTP总值达到亿元,位居赤峰市第二位,其中亿用科学记数法表示为()A.B.C.D.5.赤峰市某天的最高气温是,最低气温是,这一天的最高气温与最低气温的差是()A.B.C.D.6.数轴上表示的点到某点的距离为,则该点表示的数是()A.B.C.或D.或7.飞机无风时的航速为,风速为,则飞机顺风飞行的行程可表示为()A.B.C.D.8.有理数,在数轴上的位置如图所示,下列各式正确的是()A.0B.C.D.9.已知代数式的值为9,则的值为(),则的值..果两个数的和是正数,那么这两个数中至少有一个正数;⑤一定在原点的左边..如图,则第个图形中三角形的个数(A.B.C.D.二、填空题(本大题有4个小题,每题3分,共12分.)13.2020年11月19日,由我国自主研制的“大国重器”——“奋斗者”号载人潜水器成功坐底马里亚纳海沟,度记为米,那么.如图是一数值转换机,若输入的为,则输出的结果为15.如果a、16.一组按规律排列的式子:则第三、解答题(本大题共.计算:.先化简,再求值:,其中.:,,,,,,,.若清扫车每行驶千米耗油升,上午共耗油多少升?已知两个多项式,,试求.”其中多项式的)小马虎看答案以后知道,请你替小马虎求出系数“”小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.22.“双节”期间,王老师计划组织朋友去乌兰布统游览两日“草原秋景”,经了解,有甲、乙两家旅行社针对组团两日游的游客报价均为每人元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过人,每人都按九折收费,超过人,则超出部分每人按八折收费.假设组团参加甲,乙两家旅行社两日游的人数均为人.(1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.23.阅读下面材料并回答问题.(1)点A、B在数轴上分别表示数a、b,A、B两点之间的距离表示为.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,;②如图3,点A、B都在原点的左边,;③如图4,点A、B在原点的两边,.综上,数轴上A、B两点之间的距离=______.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______;②数轴上表示x和﹣1的两点A和B之间的距离是______,如果=2,那么x为______.③当式子取最小值时,相应的x的取值范围是______,最小值是______.参考答案与解析1.A解析:解:∵,不足或超过的部分的绝对值越小越接近标准,∴最接近标准质量的是选项A.故选A.2.B解析:解:、(精确到),本选项正确,故不符合题意;、(精确到千分位),而不是,本选项错误,故符合题意;、(精确到百分位),本选项正确,故不符合题意;、(精确到),本选项正确,故不符合题意.故选:.3.D解析:∵P,Q最高项的次数都为4,∴若P,Q最高次项是同类项,且系数互为相反数时,四次项合并为零,此时和的最高项的次数就低于4次,其它情况最高次项不能合并时和的次数仍为4次,∴P与Q的和的次数不大于4.故选:D4.B解析:解:亿,故选:B.5.D解析:解:由题意得:;故选D.6.C解析:解:在数轴上与表示的点距离是个单位长度的点所表示的数是或.∴点表示的数是或.故选:C.7.A解析:解:飞机无风时的航速为,风速为,顺风的速度为:,飞机顺风飞行的行程.故选:A.8.B解析:解:由数轴上点的位置得:,,,∴,,,,故选:B.9.D解析:解:,,.故选:D.10.A解析:解:∵每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,∴每个三角形各顶点上数字之和相等,如图1中,,则,即:相邻两个三角形中非公共点的两个顶点数字之和相等,∴在图2中,,解得:,∴,故选:A.11.A解析:解:①整数和分数统称为有理数,故①正确;②一个有理数可能不是正数也不是负数,比如0,故②错误;③没有最小的正数,也没有最大的负数,故③错误;④如果两个数的和是正数,那么这两个数中至少有一个正数,故④正确;⑤,一定在原点的右边,故⑤错误.其中正确的个数为2个.故选A.12.D解析:解:∵第一个图形有个三角形,即有个三角形,第二个图形有个三角形,即有个三角形,第三个图形有个三角形,即有个三角形,第四个图形有个三角形,即有个三角形,∴第个图形有个三角形,故选D.13.解析:海平面为基准,记为0米,高于海平面100米的某地的高度记为米,那么“奋斗者”号坐底深度10909米处,该处的高度可记为米,故答案为:.14.解析:解:,故答案为.15.解析:解:∵a、b互为相反数,c、d互为负倒数,n为最大的负整数,m是绝对值最小的有理数,∴,,,,∴原式,故答案为:16.(n为正整数)解析:解:已知式子可写成:,分母为奇数,可写成2n-1,分子中字母a的指数为偶数2n.∴第n个式子是(n为正整数).故答案为:(n为正整数).17.解析:解:.18.,2.解析:解:,∵,∴,∴,∴原式.19.(1)环卫驿站在岗亭南边,距离岗亭千米,数轴见解析.(2)在清扫过程中,该车离开岗亭最远的距离是千米.(3)上午共耗油升.解析:(1)解:根据题意:当天上午连续行驶,最终停留在环卫驿站,则(千米)规定向北方向为正,环卫驿站在岗亭南边,距离岗亭千米,如下图,数轴上标示出环卫驿站和岗亭的位置,(2)第一次停下来与岗亭的距离为:(千米);第二次停下来与岗亭的距离为:(千米);第三次停下来与岗亭的距离为:(千米);第四次停下来与岗亭的距离为:(千米);第五次停下来与岗亭的距离为:(千米);第六次停下来与岗亭的距离为:(千米);第七次停下来与岗亭的距离为:(千米);第八次停下来与岗亭的距离为:(千米);即在清扫过程中,该车离开岗亭最远的距离是千米;(3)根据题意,当天上午连续行驶总距离为:(千米),上午共耗油:(升),答:上午共耗油升.20.(1)元;(2)当吨时,所缴水费为元,当吨时,所缴水费为元,元,吨时,所缴水费为元.(3)见解析.解析:(1)解:该用户月份应缴水费是(元);(2)解:①吨时,所缴水费为元;②吨时,所缴水费为元,元;③吨时,所缴水费为元.(3)解:同学们要积极行动起来,从我做起、从点滴做起,爱惜水、节约水、保护水.21.(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.解析:(1)由题意得,, A+2B=(4+)+2-8,4+=1,=-3,即系数为-3.(2)A+C=,且A=,C=4,A C=22.(1)甲旅行社收取组团两日游的总费用为元,若人数不超过人时,乙旅行社收取组团两日游的总费用为元,若人数超过人时,乙旅行社收取组团两日游的总费用为元;(2)王老师应选择甲旅行社.解析:(1)解:甲旅行社收取组团两日游的总费用为:元;若人数不超过人时,乙旅行社收取组团两日游的总费用为:元,若人数超过人时,乙旅行社收取组团两日游的总费用为:元;(2)解:因为王老师组团参加两日游的人数共有人,所以甲旅行社收取组团两日游的总费用为:元,乙旅行社收取组团两日游的总费用为元,,∴王老师应选择甲旅行社.23.(1)(2)①3,3,4;②,或1;③,7解析:(1)解:由图的结果可知,,故答案为:.(2)解:①数轴上表示2和5的两点之间的距离是,数轴上表示和的两点之间的距离是,数轴上表示1和的两点之间的距离,故答案为:3,3,4;②数轴上表示和的两点和之间的距离是,表示的是数轴上表示和的两点和之间的距离是2,且,,或,故答案为:,或1;③式子表示的是数轴上表示的点到表示和5的两点的距离之和,则当数轴上表示的点在表示和5的两点的中间(含两端点),即时,式子取最小值,最小值是,故答案为:,7.。
2023-2024学年度第二学期七年级期中检测数学试题(满分100分;考试时间90分钟)一、选择题(本题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列三条线段的长度,能组成三角形的是A .1,1,2B .2,3,4C .1,3,5D .3,4,82.如图,和的位置关系是A .同位角B .对顶角C .内错角D .同旁内角3.2023年9月,华为Mate60发售,销量遥遥领先,其中使用的华为新麒麟芯片突破0.000005毫米制程工艺,数据0.000005用科学记数法表示是A .B .C .D .4.一本练习本每本2.5元,买m 本共付n 元,则2.5和n 分别是A .常量,常量B .变量,常量C .变量,变量D .常量,变量5.下列计算正确的是A .B .C .D .6.如果,那么p 的值是A .B .C .2D .87.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现了记忆遗忘规律,他根据自己得到的测试数据描绘了一条曲线(如图所示),这就是非常有名的艾宾浩斯遗忘曲线,其中纵轴表示学习中的记忆保持量,横轴表示时间,则下列说法正确的是A .记忆1h 内遗忘的速度最慢B .记忆2h 后遗忘的速度最快C .记忆保持量下降到40%用了2hD .记忆4h后记忆保持量保持不变cm cm cmcm cm cm cm cm cm cm cm cm1∠2∠60.510-⨯6510-⨯50.510-⨯5510-⨯246+=a a a 236⋅=a a a 236()=a a 223)(3=a a 2(3)(5)15+-=+-x x x px 8-2-8.下列选项中可表示算式(m ,n 均为正整数)的结果是A .B .C .D .9.计算,则“?”表示的数是A .B .2C .4D .1610.如图,将一张长方形纸片沿对折,使落在的位置,再将纸片沿对折,使得落在的位置;若,的度数为,则的度数是A .B .C .D .二、填空题(本题共6小题,每小题2分,共12分)11.计算的结果是________.12.如果,那么的余角度数是________.13.已知,,那么________.14.如图,小明家在点P 处,他选择路线到达公路所用到的数学知识是________.15.如图,在中,平分,是高线,,,则的度数是________.3533335555+++⨯⨯⨯ 个个m n 35m n 35m n 35n m 35m n 24?4-⋅=m m 116EF AB 11A B GH CD 11C D 1∥EF C G 1∠40︒2∠40︒45︒50︒55︒82÷a a 40∠=︒A ∠A 2+=a b 228-=a b -=a b PB ABC △CD ∠ACB AE 60∠=︒ACB 20∠=︒EAB ∠BDC16.下图揭示了(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过天是星期________.……………………三、解答题(本题共7小题,共58分)17.(本题满分8分)(1)计算:;(2)利用整式乘法公式计算:.18.(本题满分10分)(1)化简:;(2)先化简再求值:,其中,.19.(本题满分8分)已知:如图,在四边形中,E 、F 分别在线段,上,连接,,,,试说明.解:因为(已知),所以( ① ).所以(② ).因为(已知),所以 ③ (等量代换).所以(④ ).20.(本题满分7分)如图,已知,点D 在上.(1)尺规作图:过点D 作射线,交于点E (保留作图痕迹,不写作法).(2)在(1)的条件下,若,,求的度数.21.(本题满分7分)我市在创设全国文明城市期间,在市区大道中间的隔离护栏处加装了花卉盆栽,其平面示意图如图所示,假如每个盆栽的宽度为1.2米,两个盆栽之间的距离为3米(支撑杆宽度忽略不计).盆栽个数23456…护栏总长度(米) 5.49.618…()+n a b 4511()+=+a b a b222()2+=++a b a ab b33223)33(+=+++a b a a b ab b4()+=a b 202402(1)(2024)2π--+-+5014991⨯+2)(2)(43()+--+a b a b a a b ()2223(3)5-+-÷a b a b a b ab 2=-a 1=b ABCD AB AD ED EF ∠=∠AFE ADC 180∠+∠=︒BCD DEF ∥BC DE ∠=∠AFE ADC ∥EF CD ∠=∠DEF CDE 180∠+∠=︒BCD DEF ∥BC DE ABC △AB ∥DE AC BC 30∠=︒A 45∠=︒B ∠DEB(1)根据如图所示,将表格补充完整;(2)设有x 个盆栽,护栏总长度为y 米,则y 与x 之间的关系式是________;(3)求护栏总长度为81米时盆栽的个数?22.(本题满分9分)已知,如图1,直线与直线,分别交于A ,B 两点,射线平分交直线于点D ,.(1)试说明:;(2)如图2,已知点F 是线段上一个动点,连接,的平分线交直线于M .①若,,求的度数;②若,请直接写出与的数量关系(用含代数式表示).23.(本题满分9分)现有甲、乙、丙三张卡片如图1摆放,卡片甲是边长为a 的正方形,卡片乙是边长为b 的正方形,卡片丙是长为a ,宽为b 的长方形.将卡片甲绕点B 顺时针旋转,点A 恰好与点D 重合,得到图2;将卡片丙绕点E 逆时针旋转,点F 恰好与点C 重合得到图3;将卡片乙绕点C 逆时针旋转,得到图4;图2,图3,图4的阴影部分面积分别记为,,.(1)计算:________,________(用含a 、b 代数式表示);(2)若边长,,则________;(3)探究,,的数量关系,并说明理由.GH AC BD AE ∠BAC BD 2∠=∠GBD BAE ∥BD AC AD BF ∠AFB FM AC 100∠=︒GBD 35∠=︒BFM ∠DBF α∠=GBD ∠DBF ∠AMF α90︒90︒90︒1S 2S 3S 1=S 2=S 5=a 3=b 3=S 1S 2S 3S福鼎市2023-2024学年第二学期期中七年级质量检测数学试题参考答案及评分标准(1)本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.(2)对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.(3)解答右端所注分数表示考生正确作完该步应得的累加分数.(4)评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题3分,满分30分)1.B 2.A 3.B 4.D 5.C 6.B 7.C 8.C 9.A 10.D二、填空题:(本大题有6小题,每小题2分,满分12分)11. 12.50 13.4 14.垂线段最短 15.80 16.天(日)三、解答题(本大题共7题,满分58分)17.(本题满分8分)解:(1)原式(2)原式18.(本题满分10分)解:(1)原式(2)原式.6a 1114=++94=(5001)(5001)1=+⨯-+250011=-+250000=222443=---a b a ab23=--b ab222695=-++-a ab b ab a 29=-b ab当,时,原式19.(本题满分8分)解:①同位角相等,两直线平行②两直线平行,内错角相等③④同旁内角互补,两直线平行20.(本题满分7分)(1)解:正确作出图形.就是所求作的射线(2)解: 21.(本题满分7分)解:(1)13.8 22.2(2)y 与x 之间的关系式是;(3)当时解得答:护栏总长度为81米时盆栽的个数为20.22.(本题满分9分)(1)证明:射线平分(2)①解法一:,平分2=-a 1=b 291(2)1=⨯--⨯11=180∠+∠=︒BCD CDE ∴DE ∠∥ DE AC 30∠=︒A 30∴∠=∠=︒EDB A 45∠=︒B 1801803045105∴∠=︒-∠-∠=︒-︒-︒=︒DEB B EDB 4.23=-y x 81=y 81 4.23=-x 20=x AE ∠BAC2∴∠=∠BAC BAE2∠=∠ GBD BAE∴=∠BAC GBD∴∥BD AC∥ BD AC 100∠=︒GBD 100∴∠=∠=︒BAC GBD AE ∠BAC 1502∴∠=∠=︒BAD BAC平分,法二:过F 作,平分(另有其他解法,酌情给分)②23.(本题满分9分)解:(1),(2)22(3)法一:依题意得法二: FM ∠AFB 35∠=︒BFM 270∴∠=∠=︒AFB BFM 180180 50 7060∴∠=︒-∠-∠=︒-︒-︒=︒ABF BAD AFB 180 20∴∠=︒-∠-∠=︒DBF GBD ABF ∥FN AC∥ BD AC 100∠=︒GBD 100∴∠=∠=︒BAC GBD 18080∴∠=︒-∠=︒BAM BAC 1502∠=∠=︒BAE BAC FM ∠AFM35∴∠=∠=︒AFM BFM 180∠+∠+∠=︒FMA MAF AFM 1801801303515∴∠=︒-∠-∠=︒-︒-︒=︒FMA MAF AFM ∥ FN AC 15∴∠=∠=︒FMA MFN 20∴∠=︒BFN ∥ BD AC∴∥BD FN20∴∠=∠=︒DBF BFN 22α∠+∠=FMA DBF 22-a b 2-ab b ()23=---⎡⎤⎣⎦S a b b a b ()22=--a b b a 22=-+a b ab22212+=-+- S S a b ab b 222 =-+a b ab123∴+=S S S 1=-甲乙S S S 2=丙乙-S SS3()=--⎡⎤⎣⎦-甲乙丙乙S S S S S 2=-+甲乙丙S S S 123∴+=S S S。
2024学年第一学期期中检测七年级数学试卷(考试时间:90分钟 满分100分)考生注意:请将所有答案写在答题卡上,写在试卷上不计分一、选择题(本大题共6题,每题2分,共12分)1.下列单项式的次数是5次的是()A.5xy B. C. D.2.下列语句中正确的是( )A.是单项式 B.C.(a 是有理数) D.底数是3.下列多项式能用完全平方公式因式分解的是( )A. B.C. D.4.下列式子:①;②;③;④;⑤;⑥中符合平方差公式特征的有()A.2个 B.3个 C.4个D.5个5.若,则的值是( )A.0B.1C.D.26.已知实数a ,b ,c ,d 满足,且,,则( )A.a 、c 都是正数B.a 、c 都是负数C.a 、c 互为相反数D.以上都不对二、填空题(本大题共12题,每题2分,共24分)7.多项式的常数项是______8.多项式的公因式是______9.关于x 、y 的单项式与是同类项,则______10将整式按y 的升幂排列______11.已知,,则______12.若,,则______4x y -52x 32x x +13()32528a a =01a =53-3-221a a +-22x xy y -+2124a a -+2214a ab b -+()()x y x y -+()()x y x y --+()()x y y x +-()()y x y x ---()()x y y x +--()()x y x y ---250a a --=()()32a a -+1-13ac bd ≤--6a c =-4b d =+21123x x --323612a m a m am -+125n m x y -2443m x y -2m n -=322313224xyz x y z x y -+-+2351A B x x +=---2235A C x x -=-+-B C +=3m a =4n a =2m n a +=13.计算:______14.因式分解:______15.如果,,那么______16.如果关于x 的二次三项式是完全平方式,那么k 的值是______.17.已知,则______18.式子,此时,3叫做以2为底8的对数,记为(即).一般地,若(且,),则n 叫做以a 为底b 的对数,记为(即).如,则4叫做以3为底81的对数,记为,则,同理,.由此可以得到下列式子:,根据以上的信息及运算关系,若,则______三、计算题(本大题共6题,每题6分,共36分)19.计算:20.计算:21.计算:22.计算:23.因式分解:24.因式分解:四、解答题(本大题共4题,25-26每题6分,27-28每题8分,共28分)25.先化简,再求值:,其中,26.若的展开式中不含x 的二次项和一次项,求a 、b 的值.27.如图,已知长方形ABCD 的边AD 长为a ,边AB 长为b ,正方形CEFG 的边长为c ,点G 在CD 上,用a 、b 、c 表示下列图形的面积.3223223322x y x y x y ⎛⎫-÷= ⎪⎝⎭4116a -=4x y +=2214x y +=()2x y -=()2934x k x --+()()202320252024x x --=()()2220232025x x -+-=322228⨯⨯==2log 82log 83=n a b =0a >1a ≠0b >log a b log a b n =4381=3log 813log 814=3log 273=3log 31=333log 81log 27log 3=+()()333log 12log 2log 2x x x ++=+x =()22242123343xy xy x x y xy ⎛⎫⋅+-⎪⎝⎭()()()()()243562x x x x x -⋅-⋅---⋅-()()2332a b c a c b -+--()()()221233a a a +-+-()()22x x y y y x +-+()222224a b a b +-()()()222222433xy x xy y x y y x y ⎡⎤--+----⎣⎦23x =3y =-()()222x x ax b -++(1)求的面积;(2)以G 为圆心,以c 为半径画弧,求图中虚线所围图形的面积(结果保留)28.阅读理解:条件①:无论代数式A 中的字母取什么值,A 都不小于常数M ;条件②:代数式A 中的字母存在某个取值,使得A 等于常数M ;我们把同时满足上述两个条件的常数M 叫做代数式A 的下确界.例如:,,(满足条件①)当时,(满足条件②)4是的下确界.又例如:,由于,所以,(不满足条件②)故4不是的下确界.请根据上述材料,解答下列问题:(1)求的下确界.(2)若代数式的下确界是1,求m 的值.(3)求代数式的下确界.BDF △π()22222252111514x x x x x ++=+⋅⋅+-+=++()210x +≥ 2254x x ∴++≥1x =-2254x x ++=∴225x x ++()22222252111514x x x x x ++=+⋅⋅+-+=++1x ≠-2254x x ++≠225x x ++264x x -+223x mx ++223244102x y xy x y ++--+。
七年级数学试题(时间:90分钟 满分:100分)卷面要求:1.整张试卷整洁美观,格式规范,布局和谐;2.字迹清晰工整,标点符号准确;3.避免随意勾画,胡乱涂改.卷首语:相信你会静心、尽力做好答卷,动手就有希望,努力就会成功!一、 选择题:本大题共10道小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填入下表,每小题选对得3分、不选或选出的答案超过一个均记零分,本大题共30分.题号 1 2 3 4 5 6 7 8 9 10 答案1. 在跳远测试时,合格的标准是4.00米,王杨跳出了4.20米,记为+0.2米,小伟跳出了3.95米,记作:A.-0.05米B.-3.95米C.+0.05米D.+3.95米 2. 下列各组数中相等的是:A.-2与)2(--B.-2与2-C.2-与2--D.2-与2 3. 如果x=2是方程21x+a=-1的解,则a 的值是( ) A.0 B.2 C.-2 D.-6 4.下列变形正确的是:A.由3+x=7,得x=7+3B. 由3=x-2,得x=2+3C. 由3x=-2,得x=23-D. 由3443=x ,得x=1 5. 已知a 、b 都是有理数,且021=++-b a ,则a+b 的值是: A.-1 B.1 C.3 D.5 6.下列各式中正确的是:A.33a a = B.a 3=(-a)3 C. –a 2=2a - D. a 2=(-a)27.用四舍五入法按要求对0.05019分别取近似值,其中错误的是: A.0.1(精确到0.1) B.0.05(精确到百分位) C.0.05(精确到千分位) D.0.0502(精确到0.0001) 8. 计算20092008)1()1(-+-所得结果是:A.-2B.0C.1D.29. 一个两位数,十位数字是x ,个位数字比十位数字的2倍少3,这个两位数是: A.x(2x-3) B.x(2x+3) C. 12x+3 D. 12x-310.如图是超市中“丝美”洗发水的价格标签,服务员不小心将墨水滴在了标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是: A.22元 B.23元 C.24元 D.26元二、填空题:本大题共8道小题,每小题3分,共24分,要求只写出最后结果.11. 已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高m. 12. 太阳光的速度是300000000米/秒,用科学记数法表示为米/秒. 13. 设三个连续整数的中间一个数是n,则它们三个数的和是. 14.比较有理数的大小:109-1110-. 15. 计算⨯++-)6143121(12=. 16. 规定一种关于a 、b 的运算:a*b=22b a -,那么3 *(-2)=. 17.如果a=b,那么=1-43b. 18.甲、乙两人都从A 地去B 地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时行 千米.三、解答题:本大题共7道小题,满分46分,解答应写出文字说明和推理步骤. 19.(6分)计算: (1)214314)211(321-+-+ (2)()2431513297-⨯--÷-)(20.(4分)解方程:3x+7=32-2x21.(6分)(1)在数轴上表示出:0, -1.5, -2, 311; (2)将(1)中各数用“<”号连接起来.22.(4分)求.32,2)3123()31(22122=-=+-+--y x y x y x x 的值,其中23.(8分)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9. (1)最后一名老师送到目的地时,小王距出租车出发点的距离是多少?在什么地方?(2)若汽车耗油量为0.4升/千米,这天下午小王的汽车共耗油多少升?24.(8分)某金融机构发行两种债券:甲种债券面值1000元,买入价为1000元,一年到期本息和为1140元;乙种面值为1000元,但买入价为880元,一年到期本息和为1000元,收益率=(到期本息和-买入价)÷(到期日期-买入日期)÷买入价×100%,日期以年为单位,你能利用已学过的知识分析哪种债券收益率更大吗?25.(10分)下表所示是某年11月份的日历表.星期六星期日星期一星期二星期三星期四星期五1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 2829 30请回答下列问题:(1)若一竖列的三个数的和为42,则这三个数分别是多少?若和为44,你能求出这三天是几号吗?为什么?(2)若一竖列的四个数之和为74,这四个数分别是多少?(3)若上表中一个2×2的矩形块四个数之和为80,求出这四个数;七年级数学参考答案及评分标准一、选择题:ACCBA DCBDC二、填空题:11、350 12、3×108 13、3n 14、> 15、10 16、5 17、1―a 4318、30. 解答题:19.解:(1)214314)211(321-+-+=)()(214211314321+-+…………………2分 =6―6=0……………………………3分 (2)()2431513297-⨯--÷-)(=3161531097--÷……………………………2分 =311-……………………………3分 20.解:移项,得 3x+2x=32―7, ……………………………2分 合并,得 5x=25, ……………………………3分 系数化为1,得 x=5……………………………4分 21.解:(1)表示正确,……………………………3分(2)―2<―1.5<0<321.……………………………6分 22.解:)3123()31(22122y x y x x +-+--=22312332221y x y x x +-+- =23y x +-……………………………3分当x=―2,y=32时,原式=―3×(―2)+232)(=946……………………………4分23.解(1)+5+(―4)+3+(―10)+3+(―9)= ―12∴最后一名老师送到目的地时,小王在出租车出发点西12米的地方.………………………4分 (2)4.09310345⨯-+++-+++-++)( =34×0.4=13.6(升).∴这天下午小王的汽车共耗油13.6升. ……………………………8分 24.解:甲种债券的收益率=(1140-1000)÷1÷1000×100% =140÷1000×100%=14%……………………………3分乙种债券的收益率=(1000-880)÷1÷880×100%=120÷880×100%≈13.64%……………………………7分∴甲种债券的收益率更大些. …………………………………………8分25.解:(1)设中间的一个数为x,则上面的一个数为x-7,下面的一个数为x+7.根据题意,得x-7+ x + x+7=42,解得x=14,因此这三天分别是7号、14号、21号. ……………………………3分若和为44,则x的解不是整数,所以不能求出这三天是几号. ……………………………4分(2)设这四个依次是为:x+14,x+7,x,x-7.根据题意,得x+14+x+7+x+x-7=74,解得x=15,因此这四天分别是8号、15号、22号、29号. ……………………………7分(3)设这四个数分别是x,x+1,x+7,x+8.根据题意,得x+ x +1 + x +7+x+8=80,解得x=16,因此这四天分别是16号、17号、23号、24号. ……………………………10分。
2020~2021学年度上学期期中阶段质量检测试题七年级数学2020.11注意事项:1.本试卷分第Ⅰ 卷(选择题)和第Ⅱ 卷(非选择题)两部分,共6页,满分100分,考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置.考试结束后,将本试卷和答题纸一并交回.2.答题注意事项见答题纸,答在本试卷上不得分.第Ⅰ 卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡中.1.-12的相反数是A.2B.-2C.-12D.122.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是3.这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载,积极打卡,兴起了一股全民学习的热潮.据不完全统计,截止4月2号,华为官方应用市场“ 学习强国APP”下载量已达8830万次,将8830万次用科学记数法表示为A.0.883× 109次B.8.83× 108次C.8.83× 107次D.88.3×106次4.下列说法中,正确的是狓+狔是单项式不是单项式A.2B.-5C.-π 狓2的系数为-1D.-π 狓2的次数为25.下列各式中,不是同类项的是A.-2019和2020B.犪和πC.-4狓3狔2和5狓3狔2D.犪2犫和-3犫犪26.若数轴上点犃表示的数是-3,则与点犃相距4个单位长度的点表示的数是A.±4B.±1C.-7或1D.-1或77.设狓,狔,犮是实数,下列说法正确的是A.若狓=狔,则狓犮=狔犮B.若狓=狔,则狓+犮=狔-犮C.若狓=狔,则狓=狔犮犮D.若狓=狔2犮3犮,则2狓=3狔8.下列去括号正确的是A.犪+(-3犫+2犮-犱)=犪-3犫+2犮-犱B.-(-狓2+狔2)=-狓2-狔2C.犪2-(2犪-犫+犮)=犪2-2犪-犫+犮D.犪-2(犫-犮)=犪+2犫-犮狓20219.若狓,狔满足|狓-3|+(狔+3)2=0则(狔)的值是A.1B.-1C.2019D.-201910.观察图中正方形四个顶点所标的数字规律,可知数2020应标在A.第505个正方形的左下角B.第505个正方形的右下角C.第506个正方形的右下角D.第506个正方形的左下角(第 Ⅱ 卷 ( 非 选 择 题 共 70 分 )注 意 事 项 :1 .第 Ⅱ 卷 分 填 空 题 和 解 答 题 .2 .第 Ⅱ 卷 所 有 题 目 的 答 案 ,考 生 须 用 0 .5 毫 米 黑 色 签 字 笔 答 在 答 题 纸 规 定 的 区 域 内 , 在 试 卷 上 答 题 不 得 分 .二 、填 空 题 (本 题 共 6 小 题 ,每 小 题 3 分 ,共 18 分 )11 . 已 知 多 项 式 - 3 2 犿 3 狀 2 + 2 犿 狀 2 - 12 , 它 是次 三 项 式 , 最 高 次 项 的 系 数 是, 常 数 项 为.12 . 如 果 | 狓 | = | - 5| , 那 么 狓 等 于.13 . 绝 对 值 大 于 4 且 小 于 7 的 所 有 整 数 之 和 是.14 . 已 知 关 于 狓 的 方 程 3 狓 - 2 犽 = 2 的 解 是 狓 = 2 , 则 犽 的 值 是 .15 . 一 个 两 位 数 , 个 位 数 字 为 犪 , 十 位 数 字 为 犫 , 把 这 个 两 位 数 的 个 位 数 字 与 十 位 数 字 交 换 ,得 到 新 的 两 位 数 , 则 新 数 比 原 数 大.16 . 若 犪 + 犫 = 2019 ,犮 + 犱 = 2 , 则 (犪 - 3 犮 )- (3 犱 - 犫 )= .三 、解 答 题 (本 大 题 共 7 小 题 ,共 52 分 )17 .(本 题 满 分 5 分 )在 数 轴 上 表 示 下 列 各 数 ,并 将 它 们 用 “> ”连 接 :(- 2 )2 , - (+ 5 ) , - - 1 12) , 0 ,- | - 3 .5| .18 .(本 题 满 分 10 分 )计 算 : (1 )- 1 2 - (1 - 0 .5 )÷ 1 5× 2 ;(2 )- 11 × - 22 + 19 × - 22+ 6 × -22.( 7 ) ( 7 ) ( 7 )19.(本题满分6分)先化简,再求值:-1(狓狔-狓2)+3狔2-1狓2+21狓狔-1狔2,其中狓=2,狔=1.2(2)(42)220.(本题满分6分)临沂兰山区李官镇的黄桃闻名全国.现有20筐黄桃,以每筐25千克为标准,超过或不足的千克数分别用正数或负数来表示,记录如下:(1)与标准重量比较,20筐黄桃总计超过或不足多少千克?(2)若黄桃每千克售价4元,则这20筐可卖多少元?如图所示,池塘边有块长为20米,宽为10米的长方形土地,现在将其余三面留出宽都是狓米的小路,中间余下的长方形部分做菜地.(1)用含狓的式子表示菜地的周长;(2)求当狓=1米时,菜地的周长.22.(本题满分9分)某工厂第一车间有狓人,第二车间比第一车间人数的2少30人,如果从第二车间调3出10人到第一车间,那么(1)两个车间共有人;(2)调动后,第一车间的人数为人,第二车间的人数为人;(3)求调动后,第一车间的人数比第二车间的人数多几人?(要求:答案用含有狓的代数式表示)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款;现某客户要到该卖场购买微波炉10台,电磁炉狓台(狓>10).(1)若该客户按方案一、方案二购买,分别需付款多少元(用含狓的式子表示)?(2)若狓=30,通过计算说明此时哪种方案购买较为合算?(3)当狓=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?(2020 ~ 2021 学 年 度 上 学 期 期 中 阶 段 质 量 检 测 试 题七年级数学参考答案及评分标准2020. 11一 、选 择 题 (每 小 题 3 分 ,共 30 分 )1 .D 2 .A 3 .C 4 .D 5 .B 6 .C 7 .A 8 .A 9 .B 10 .A 二 、填 空 题 (每 小 题 3 分 ,共 18 分 ) 11 .五- 9 - 1212 .± 5 13 .0 14 .2 15 .9 犪 - 9犫 16 .2013三 、 解 答 题 ( 共 52 分 )17 .………………………… 3 分(- 2 )2 > - - 1 12)> 0 > - | - 3 .5| > - (+ 5 ). …………………………… 5 分 18 .(1 )- 1 2 - (1 - 0 .5 )÷ 1× 25= - 1 - 12 = - 1 - 12× 5 × 2 × 5 × 2 ………………………………………………………………… 2 分………………………………………………………………… 3 分= - 1 - 5 = - 6 ; ………………………………………………………………………… 4 分 …………………………………………………………………………… 5 分 (2 )- 11 × - 22 + 19 × - 22 + 6 × - 22( 7 )( 7 ) ( 7 ) = [(- 11 )+ 19 + 6 ]× - 22 ………………………………………………… 2 分 ( 7 ) = 14 × - 22…………………………………………………………………… 4 分( 7 )= - 44 . …………………………………………………………………………… 5 分19 . 解 : 原 式 = - 1 狓 狔 + 1 狓 2 + 3 狔 2 - 3 狓 2 + 1狓 狔 - 狔 22 2 2 2 = - 狓 2 + 2 狔 2. ……………………………………………………………… 3 分当 狓 = - 2 ,狔 = 1 , 2原 式 = - 4 + 2 × 1 4 = - 4 + 1 2= - 3 .5 . ………………………………………… 6 分20 .解 :(1 )1 × (- 3 )+ 4 × (- 2 )+ 2 × (- 1 .5 )+ 3 × 0 + 2 × 1 + 8 × 2 .5= - 3 - 8 - 3 + 2 + 20 = 8 (千 克 ). …………………………………………… 2 分(答:20筐南果梨总计超过8千克.……………………………………………3分(2)4× (25× 20+8)=2032(元).……………………………………………… 5分答:这20筐南果梨可卖2032元.…………………………………………… 6分21.解:(1)设菜地的长犪m,菜地的宽犫m,菜地的长犪=(20-2狓)m,菜地的宽犫=(10-狓)m,…………………………………………………… 2分所以菜地的周长为2(20-2狓+10-狓)=(60-6狓)m.…………………… 4分(2)当狓=1时,菜地的周长犆=60-6× 1=54(m).………………………… 6分22.(1)5狓狓-30);……………………………………………………………………… 2分(2)(狓+10);2狓-40;…………………………………………………………… 6分(3)(3)根据题意可得:(狓+10)-2狓-40=1狓+50,(3)3则调动后,第一车间的人数比第二车间的人数多1狓+50人.…………… 9分(3)23.(1)方案一:800× 10+200(狓-10)=200狓+6000(元),方案二:(800× 10+200狓)× 90%=180狓+7200(元);………………………… 4分(2)当狓=30时,方案一:200× 30+6000=12000(元),方案二:180× 30+7200=12600(元),………………………………………… 6分所以,按方案一购买较合算.…………………………………………………… 7分(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台微波炉,共10×800+200×20×90%=11600(元).……………………………………10分。
苏州市2024-2025学年上学期初一数学期中模拟卷(考试时间:90分钟 试卷满分:100分)一、选择题,本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填涂在答题卷相应位置上......... 1. 2的相反数是( )A. 2B. 12C. 2−D. 4−【答案】C【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:2的相反数是-2,故选C .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 下列计算正确的是( )A. 326=B. 2416−=−C. 880−−=D. 523−−=− 【答案】B【解析】【分析】根据有理数的加法法则和减法法则与乘方法则进行计算即可.【详解】解:A. 328=,故错误;B. 2416−=−,故正确;C. 88-16−−=,故错误;D. 527−−=−,故错误.故选B.【点睛】本题主要考查了有理数与实数的运算,熟练掌握运算法则是解题的关键. 3. 单项式32−23x y z 的系数和次数分别为( ) A. ﹣3,5 B. 32−,5 C. ﹣3,6 D. 32−,6 【答案】D【解析】【分析】根据单项式系数和次数的定义计算即可. 【详解】∵32−23x y z 的系数和次数分别为32−,6, 故选D .【点睛】本题考查了单项式的概念,熟练掌握单项式的系数即单项式中的数字因数,单项式的次数即单项式中所有字母的指数和是解题的关键.4. 化简()221x x −−++的结果为( )A. 221x x −++B. 221x x −+C. 221x x −−D. 221x x −−+ 【答案】C【解析】【分析】根据去括号法则“如果括号外因数是负数,去括号后原括号内各项的符号与原来符号相反”化简,选择答案即可.【详解】解: 222121x x x x ,故选:C .【点睛】本题主要考查了整式的化简,熟记去括号法则是解题的关键.5. 下列说法中正确的是( )A. 2不是单项式B. 2abc −的系数是12−C. 单项式23r 的次数是3D. 多项式25612a ab −+的次数是4 【答案】B【解析】【分析】本题考查单项式与多项式定义,涉及单项式识别、单项式系数、次数及多项式次数等知识,熟记单项式及多项式定义,逐项验证是解决问题的关键.【详解】解:A 、2是单项式,该选项错误,不符合题意;B 、2abc −的系数是12−,该选项正确,符合题意; C 、单项式23r 的次数是2,该选项错误,不符合题意;D 、多项式25612a ab −+的次数是25a 或6ab 的次数,是2,该选项错误,不符合题意;故选:B .的6. 已知有理数a b 、,则a b b a b a a b +−−+、、在数轴上表示的点在原点右侧的个数为( ) A. 0个B. 1个C. 2个D. 无法确定 【答案】B【解析】 【分析】本题考查了有理数符号的判断,需分类讨论,当a b 、同号时,当a b 、异号且0a b +>时,当a b 、异号且0a b +<时,分别判断即可.【详解】解:当a b 、同号时,a b a b a b +--+、是负数,b a是正数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +>时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +<时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,综上所述,在数轴上表示的点在原点右侧的个数为1个.故选:B .7. 某临江的县城为进一步提升旅游业质量和档次,满足游客消费需求,开通了甲、乙两地沿江旅游航线,已知游艇在江中来往航行于甲、乙两地之间,顺流航行全程需2小时,逆流航行全程需3小时(实际船速=静水船±水速).已知水流速度为每小时3km ,求该县甲、乙两地的距离,若设该县甲、乙两地的距离为km x ,则所列方程为( ) A. 323x x += B. 923xx =+ C. 3323x x −=+ D. 3323x x +=− 【答案】C【解析】【分析】本题主要考查了由实际问题抽象出一元一次方程,明确题意,准确得到等量关系是解题的关键.设甲、乙两地的距离为km x ,根据题意,列出方程,即可求解.【详解】解:设甲、乙两地的距离为km x , 根据题意得:3323x x −=+. 故选:C .8. 已知方程()||110k k x −+=是关于x 的一元一次方程,则方程的解等于( ) A. 1B. 0C. 1−D. 12 【答案】D【解析】【分析】本题考查的是解一元一次方程和一元一次方程的定义,掌握一元一次方程的定义与求解是解题的关键.根据一元一次方程的定义,即含有1个未知数,且未知数的最高次数是1的整式方程是一元一次方程,据此求出k 的值,然后再求解方程即可.【详解】解:根据一元一次方程的定义可知,||1k =且10k −≠,解得:1k =−,原方程为:210x −+=, 解得:12x =, 故选:D9. 对于有理数a 、b ,定义一种新运算“※”,规定:a ※b =|a|﹣|b|﹣|a ﹣b|,则2※(﹣3)等于( )A. ﹣2B. ﹣6C. 0D. 2 【答案】B【解析】【分析】根据a ※b=|a|-|b|-|a-b|,可以求得所求式子的值.【详解】解:∵a ※b=|a|-|b|-|a-b|,∴2※(-3)=|2|-|-3|-|2-(-3)|=2-3-|2+3|=2-3-5=-6,故选:B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10. 已知一列数123a a a ,,,…,具体如下规律:2112n n n n n a a a a a ++=+=,(n 是正整数).若11a =,则61a 的值为( )A. 9B. 10C. 11D. 12【答案】A【解析】【分析】根据数列中的各项关系求出61a 和1a 的关系即可.【详解】∵2112n n n n n a a a a a ++=+=,(n 是正整数), ∴613031a a a =+151516a a a =++1582a a +()7842a a a =++74222a a a =++()344122a a a a =+++()1222122a a a a a =++++()1111122a a a a a =++++111232a a a =×++19a =∵11a =,∴619a =,故选:A .【点睛】此题考查了数字的变化规律,根据数列中的各项关系得到61a 和1a 的关系是解题的关键.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卷相应位置上......... 11. 单项式23ax −的系数和次数依次是________.【答案】-3,3【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:单项式23ax −的系数和次数依次是-3,3,故答案:-3,3.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数是解题关键.12. 比较大小:()8−+______9−−; 23−______3(4−填“>”、“<”、或“=”符号). 【答案】 ①. > ②. >【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小.①首先化简,然后比较大小即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出答案. 【详解】解:()88−+=− ①,99−=−,89−>−, ()89∴−+>−;2283312−== ②,3394412−==,891212 , 2334∴−>−. 故答案为:>;>.【点睛】本题主要考查了有理数大小比较,熟练掌握有理数比较大小的方法是解题关键.13. 台湾省自古以来就是中国领土不可分割的一部分,祖国统一是两岸人民的共同心愿.据统计,2022年台湾省常住人口总数约为23410000人,数据23410000用科学记数法可表示为______.【答案】72.34110×【解析】【分析】根据绝对值大于1的数表示为科学记数法的形式为10n a ×,n 为整数位数减去1,据此求解即可.【详解】723410000 2.34110=×,故答案为:72.34110×.【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示方法是解题关键. 14. 若x 与3互为相反数,则6x +的值为______.【答案】3【解析】为【分析】根据相反数的定义可得3x =−,再代入所求式子计算即可.【详解】解:x 与3互为相反数,3x ∴=−,6363x ∴+=−+=.故答案为:3.【点睛】本题考查了相反数,掌握相反数的定义是解答本题的关键.15. 按如图所示的程序计算,当输入x 的值为3−时,输出的值为_____.【答案】63【解析】【分析】本题主要与程序流程图有关的有理数计算,先输入3−,计算出结果,如果大于10则输出,如果小于10,则把计算的结果作为新的数输入,如此往复,直至计算的结果大于10进行输出即可.【详解】解:当输入3−时,计算的结果为()23191810−−=−=<,当输入8时,计算的结果为()2816416310−=−=>,∴输出结果为63,故答案为:63. 16. 已知23x y +=,则124x y −−=______. 【答案】5−【解析】【分析】本题考查了已知式子的值求代数式的值,先整理()124122x y x y −−=−+,再代入23x y +=,即可计算进行作答.【详解】解:∵23x y +=. ∴()1241221235x y x y −−=−+=−×=−,故答案为:5−.17. 关于x ,y 的代数式2232axy x xy bx y −+++中不含二次项,则()2023a b +=______.【答案】1【解析】【分析】将原式进行合并同类项,由题意可知,所有二次项的系数为0,则可确定a 、b 的值,再代入()2023a b +求值即可,本题考查了合并同类项,解题的关键是:充分理解多项式系数的定义.【详解】将代数式2232axy x xy bx y −+++合并同类项得: ()()223a xy b x y ++−+,由题意得二次项系数为0,则:20a +=,30b −=, 解得:2a =−,3b =,代入()2023a b +得:()202320233112=+=−,故答案为:1.18. 已知x ,a ,b 为互不相等的三个有理数,且a b >,若式子x a x b −+−的最小值为3,则2020a b +−的值为______.【答案】2023【解析】 【分析】本题考查绝对值,有理数的减法,由数轴上x a x b −+−表示的几何意义,求出a b −的值,即可得到答案. 【详解】解:∵x a x b −+−的最小值为3,且a b >,∴3a b −=,∴2020a b +−20203+2023=,∴2020a b +−的值为2023.故答案为:2023.三、解答题:本大题共8小题,共64分.19. 计算:(1)()11324234 +−×−; (2)()()2213442−×+−÷−. 【答案】(1)2−(2)172【解析】【分析】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,然后算加法即可.【小问1详解】 解:()11324234 +−×− 113(24)(24)(24)234×−+×−−×− 12(8)18=−+−+2;=−【小问2详解】 解:()()2213442−×+−÷− 1916(4)2=−×+÷− 9(4)2=−+− 17.2=− 20. 解方程:(1)2(1)25(2)x x −=−+;(2)5172124x x ++−=. 【答案】(1)67x =− (2)43x =【解析】 【分析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【小问1详解】解: 2(1)25(2)x x −=−+,∴222510x x −=−−,∴252102x x +=−+,∴76x =−, ∴67x =−; 【小问2详解】 解:5172124x x ++−=, ∴2(51)(72)4x x +−+=, ∴102724x x +−−=,∴107422x x −=−+,∴34x =, ∴43x =. 21. 先化简再求值:(3a 2b -2ab 2)-2(ab 2-3a 2b ),其中12,2a b == 【答案】2294a b ab −,16【解析】 【分析】先去括号,再合并同类项,然后将12,2a b ==代入,即可求解. 【详解】解:原式=22223226a b ab ab a b −−+=2294a b ab −当2a =,12b =时, 原式=2211924222××−××()=16. 【点睛】本题主要考查了整式加减混合运算中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.22. 已知()2120a b −++=,c 和d 互为倒数,e 和f 互为相反数,求()35332a cd e b f +−+−值. 【答案】4−的【解析】【分析】先根据非负数性质求解1a =,2b =−,再根据倒数,相反数的含义求解1cd =,0e f +=,再把原代数式变形,再代入求值即可.【详解】解:∵ ()2120a b −++=,∴10a −=,20b +=, 解得:1a =,2b =−,∵c 和d 互为倒数,e 和f 互为相反数, ∴1cd =,0e f +=, ∴()35332a cd e b f +−+−()3653a b cd e f =++−+31250=−+−4=−.【点睛】本题考查的是倒数,相反数的含义,绝对值,偶次方的非负性的应用,求解代数式的值,掌握“代入法求解代数式的值”是解本题的关键.23. 高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):17+,9−,10+,15−,3−,11+,6−,8−,(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.1升/千米,则这次养护共耗油多少升?(3)养护过程中,最远处离出发点有多远?【答案】(1)养护小组最后到达的地方在出发点的西方,距出发点3千米(2)这次养护小组的汽车共耗油7.9升(3)最远处离出发点有18千米【解析】【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果.(2)利用绝对值性质以及有理数加法法则求出即可;(3)分别求出每次养护距离出发点的距离,进而作出比较.【小问1详解】解:1791015311683−+−−+−−=−(千米), 所以养护小组最后到达的地方在出发点的西方,距出发点3千米;的的【小问2详解】 解:17910153116879+−++−+−++−+−=(千米), 790.17.9×=(升); 所以这次养护小组的汽车共耗油7.9升;【小问3详解】解:第一次:17,第二次:1798−=;第三次:81018+=;第四次:18153−=;第五次:330−=;第六次:01111+=;第七次:1165−=;第八次:583−=−;所以养护过程中,最远处离出发点有18千米.【点睛】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.24. 学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b −米.(1)求护栏的总长度;(2)若3010a b =,,每米护栏造价80元,求建此停车场所需的费用.【答案】(1)()411a b +米(2)建此停车场所需的费用为18400元.【解析】【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【小问1详解】解:由题意可得宽为:()()23234a b a b a b a b a b +−−=+−+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b =+++()411a b +米;【小问2详解】解:由(1)得:当3010a b =,时,原式4301110230=×+×=(米), ∵每米护栏造价80元,∴2308018400×=(元), 答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.25. 已知数轴上两点A ,B 对应的数分别为1−,3,点P 为数轴上一动点,其对应的数为x .(1)若点P 为AB 的中点,则点P 对应的数是 .(2)数轴的原点右侧有点P ,使点P 到点A ,点B 的距离之和为8.请你求出x 的值.(3)现在点A ,点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,直接写出点P 对应的数.【答案】(1)1 (2)x 的值是5(3)点P 对应的数是3−或27−【解析】【分析】本题考查数轴上点表示的数及两点间距离,解题的关键是掌握点运动后表示的数与运动前表示的数的关系.(1)根据点P 为AB 的中点列方程即可解得答案;(2)分两种情况,当P 在线段AB 上时,由()()1348PA PB x x +=−−+−=≠ ,知这种情况不存在;当P 在B 右侧时,()()138x x −−+−=,求解即可; (3)设运动的时间是t 秒,表示出运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −,根据点A 与点B 之间的距离为3个单位长度得:()()1230.53t t −+−+=,解出t 的值,即可得到答案.【小问1详解】解:∵A ,B 对应的数分别为1−,3,点P 为AB 的中点,∴()31x x −=−−,解得1x =,∴点P 对应的数是1;【小问2详解】解:当P 在线段AB 上时,()()1348PA PB x x +=−−+−=≠ , ∴这种情况不存在;当P 在B 右侧时,()()138x x −−+−=, 解得5x =,答:x 的值是5;【小问3详解】解:设运动的时间是t 秒,则运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −, 根据题意得:()()1230.53t t −+−+=, 解得23t =或143t =, 当23t =时,P 表示的数是2161633t −=−×=−, 当143t =时,P 表示的数是141616273t −=−×=−, 答:点P 对应的数是3−或27−.26. 观察下列新的定义心运算:(2)(10)12 ++=+☆;(2)(10)12 −−=+☆;(4)(6)10++=+☆;(8)(2)10−−=+☆;(2)(10)12−+=−☆;(2)(10)12+−=−☆;(4)(6)10−+=−☆;(8)(2)10 +−=−☆. 0(12)12−=+☆;0(12)12+=+☆;(8)08+=+☆;(8)08−=+☆;(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆运算时,异号两数运算结果取 号,并把 ;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于 ;(2)计算:()()902 −−=☆☆ ; (3)若()3314a a ×−=☆,试判断a 的值能否为0?若不能,求出a 符合条件所有可能的值. 【答案】(1)负,绝对值相加,这个数的绝对值(2)11−(3)a 的值不能为0,a 的值为8或10−【解析】【分析】本题考查了新定义,根据所给算式总结出运算法则是解答本题的关键. (1)观察所给算式总结即可;(2)根据新定义运算即可;(3)先判断a 不等于0,再根据新定义转化为一元一次方程求解即可.【小问1详解】两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值. 故答案为:负,绝对值相加,这个数的绝对值【小问2详解】()()()929211−+=−+=−☆. 故答案为:11−;【小问3详解】当0a =时,∵()3313318a ×−=×−=☆,40a =,∴()3314a a ×−≠☆.∴a 的值不能为0.当0a >时,∵()3314a a ×−=☆,∴()3314a a ×−=+, ∴8a =;当0a <时, ∵()3314a a ×−=☆, ∴()3314a a ×−−−= , ∴10a =−. ∴a 的值为8或10−.。
2023~2024学年第一学期七年级期中质量监测试题(卷)数学说明:1.本试卷满分为100分,考试时间为90分钟.2.书写认真,字迹工整,答题规范,卷面整洁不扣分.否则,将酌情扣分,书写与卷面扣分最多不得超10分.一、选择题(每小题2分,共20分.下列各小题均给出四个备选答案,请将符合题意选项的字母代号,填写在下面方格内)1.的绝对值是()A.B.C.D.20232.下列单项式中,与是同类项的是()A.xy B.C.D.3.中国人很早就开始使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图,其记录主要体现的数学思想是()A.方程思想B.类比思想C.从特殊到一般思想D.数形结合思想二、填空题(每小题3分,共15分)11.比较大小:________(填“,,或”)12.化简:________.13.国庆节期间,某家电市场搞促销活动,一种原价为x元的商品,九折优惠后再降88元,那么这种商品现在的售价是________元.14.若,则________.15.如图是用火柴棍拼成的一组有规律的图案,第1个图案需要10根火柴棍,第2个图案需要16根火柴棍,第3个图案需要22根火柴棍……按此规律拼下去,第n个图案需要________根火柴棍.(用含n的代数式表示)三、解答题(本大题共7个小题,共55分.解答题应写出文字说明、证明过程或演算步骤)16.(5分)点A,B,C在数轴上的位置如图所示,请观察数轴并解答下列问题:(1)表示的点是________,点A表示的数是________;A,C两点之间的距离是________个单位长度;(2)在数轴上用点M表示,用点N表示.17.计算(每小题4分,共16分)(1)(2)(3)(4)18.(5分)先化简,再求值:,其中,.19.(8分)“十一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(单位:万人):日期1日2日3日4日5日6日7日人数变化 1.50.80.50.2已知9月30日的游客人数为0.5万人,请回答下列问题:(1)10月2日的游客有________万人;(2)这七天内游客人数最多的是哪天,最少的是哪天?(3)若该景区的票价为100元/人,求这7天该景区门票的总收入是多少万元?20.(6分)下面是晓彬同学进行整式的加减的过程,请认真阅读并完成相应任务.任务一:①以上步骤第一步是进行________,用到的运算律是________;②第二步用到的运算律是________.任务二:①以上步骤第________步出现了错误,错误的原因是________;②请直接写出正确的结果________.21.(8分)篮球馆推出了两种收费方式:方式一:顾客购买会员卡,每张会员卡100元,仅限本人一年内使用,凭会员卡打球,每次再付费5元;方式二:顾客不购买会员卡,每次打球付费10元.设小明在一年内来此篮球馆打球的次数为x次.(1)选择方式一的总费用为________元,选择方式二的总费用为________元.(2)当时,选择哪种方式省钱?(3)当时,选择哪种方式省钱?22.(7分)综合与实践如图,用正方形硬纸板做三棱柱盒子,每个盒子由3个形状大小完全相同的长方形侧面和2个大小相等的等边三角形底面组成.硬纸板按如图所示的两种方法裁剪,A方法:将一个正方形纸板分成6个形状大小完全相同的长方形;B方法:将一个正方形纸板分成4个形状大小完全相同的长方形(与A方法分成的长方形形状大小也相同),和5个大小相等的等边三角形(裁剪后边角料不再利用).现有10张硬纸板,裁剪时,x张用A方法,剩余的用B方法.(1)用含x的式子表示裁剪出的侧面的总个数为________,底面的总个数为________.(直接写出答案)(2)若时,最多能做多少个三棱柱盒子?数学参考答案一、选择题(每小题2分,共20分)题号12345678910答案B C D B B C D D A D 二、填空题(每小题3分,共15分)11.12.13.14.15.三、解答题(共55分)16.(1)B 7;(2)17.(1)(2)(3)8(4)(每小题4分,阅卷组自行制定评分细则)18.解:原式当,时,原式19.(1)2.8;(2)解:1日游客人数:万人,2日游客人数:万人,3日游客人数:万人,4日游客人数:万人,5日游客人数:万人,6日游客人数:万人,7日游客人数:万人.所以,这七天内游客人数最多的是10月3日,最少的是10月7日(3)这七天游客总数为万人,万元.答:这七天该景区门票的总收入为1610万元.20.任务一:①去括号,分配律②加法交换律(交换律)任务二:①三,合并同类项系数相加错误②3b21.(1),10x(2)解:当时,方式一的费用为:元;方式二的费用为:元.因为175元>150元,所以当时,方式二省钱;(3)解:当时,方式一的费用为:元,方式二的费用为:元.因为500元<800元,所以当时,方式一省钱;22.(1),(2)当时,侧面总数为个,底面总数为个因为一个三棱柱由3个侧面和2个底面组成,,所以最多能做15个三棱柱.。
七年级(上)期中考试数学试卷(全卷满分100,考试时间90分钟)一、选择题(每小题3分,共36分)1.升降机运行时,如果上升36米记作“+36米”,那么当它下降19米时,记作()米.A.+19 B.-19 C.+36 D.-362.(-2)3的相反数是()A.-8 B.8 C.-6 D.63.下列式子符合书写要求的是()A.xy3 B.213x C.25xy2D.3xy÷24.计算-(-2)+|-2|,其结果为()A.-4 B.4 C.0 D.-25.计算13×(-3)÷(-13)×3的结果是()A.1 B.9 C.-3 D.-66.下列运算正确的是()A.4a+5b=9ab B.-3xy-3xy=0C.3a+4a=7a2D.4x2y-3yx2=x2y7.数据21020000用科学记数法可表示为()A.2.102×107B.2.102×106C.0.2102×108D.21.02×106 8.下列说法正确的是()A.单项式225x y-的系数是-2,次数是3 B.单项式x的系数是0,次数是0C.6xy2+3xy-4x是二次三项式D.单项式-324xy的次数是2,系数是-29.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1 10.按规律排列的一列数:1,-2,4,-8,16…中,第7与第8个数分别为()A .64,-128B .-64,128C .-128,256D .128,-25611.若a -b =-1,则(a -b )3-3a +3b 的值是( )A .3B .2C .1D .-112.某件商品按原售价降低a 元后,又降20%,现售价为b 元,那么该商品的原价为( )A .元B .元C .(5b +a )元D .(5a +b )元二、填空题(每小题3分,共12分)1.−3的倒数是_______.2.在数轴上到原点的距离等于5的点表示的数为_______.3.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则式子2cd -3a b m ++m 2的值为_______.4.若“△”是新规定的某种运算符号,设a △b =3a -4b ,则(x -y )△(x +y )运算后的结果为_______.三、解答题(共52分)1.(12分)计算题:(1)11+(-23)-(+9)-(-12);(2)(56-13-25)×30; (3)-12-112×[9-(-3)3]; (4)(-2)4÷(23)2-12×(-13)+|-22-4|.2.(5分)先化简,再求值:13xy -2(xy -13y 2)+(-43xy +13y 2),其中x =3,y =-2.3.(5分)画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.-4,(-512),(-2)2,|-3|,312.4.(5分)已知47x2m-1y 8与-2x5y-3n-1是同类项,求mn+3m-7n的值.5.(8分)已知:A-2B=2a2-3ab,且B=3a2-2ab+5;(1)求A等于多少?(2)若|a-2|+(b+3)2=0,求A的值.6.(9分)某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若小明家1月份用水17吨,问小明家1月份应交水费多少元?(2)若小明家2月份交水费35元,问小明家2月份用水多少吨?(3)若小明家3月份用水x吨,问小明家3月份应交水费多少元?(用x的代数式表示)7.(12分)观察下列等式,请回答下列问题:第1个等式:a1==1-;第2个等式:a2==-;第3个等式:a3==-;第4个等式:a4==-;…(1)按以上规律列出第5个等式:a5=____________;(2)求a1+a2+a3+a4+…+a50的值;(3)已知:b1=113⨯,b2=135⨯,b3=157⨯,…,求b1+b2+b3+…+b100的值.参考答案一、选择题(每小题3分,共36分)1.B2.B3.C4.B5.B6.D7.A 8.D 9.D 10.A 11.B 12.B二、填空题(每小题3分,共12分)1.2.±53.64.-x-7y三、解答题(共52分)1.解:(1)原式=-9;(2)原式=3;(3)原式=-4;(4)原式=48.2.解:原式=-3xy+y2,当x=3,y=-2时,原式=22.3.解:(-2)2>312>|-3|>-4>(-512);画数轴略.4.解:由同类项定义得:m=3,n=-3,把m=3,n=-3代入mn+3m-7n得:mn+3m-7n=6.5.解:(1)A=8a2-7ab+10;(2)a=2,b=-3,∴A=84.6.解:(1)10×2+(17-10)×2.5=37.5(元),答:应交水费37.5元;(2)设小明家2月份用水x吨,由题意得10×2+2.5×(x-10)=35,解得x=16,答:小明家2月份用水16吨;(3)①当0≤x≤10时,应交水费为2x(元),②当x>10时,应交水费为:20+2.5(x-10)=(2.5x-5)(元).7.解:(1)由题意得:第5个等式为:a5==,故答案为:=;(2)a1+a2+a3+a4+…+a50=+…+1 5051=++…+150-151=1-1 51=50 51.(3)b1+b2+b3+b4+…+b100=12(11-13)+12(13-15)…+12(1199-1201)=12(11-13+13-15+…+1199-1201)=12(11-1201)=100 201.。
七年级数学期中考试试题(满分:100分 时间:90分钟)考号 班级 姓名一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ) (A) 12 (B)12- (C) 2 (D) -2 2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( )(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m3.如果收入15元记作+15元,那么支出20元记作( )元.(A)+5 (B )+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ) (A)3个 (B)4个 (C)5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( )(A).1p q = (B) 1q p= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( )(A )x=1 (B )x=-1 (C )x=133 (D )x=-1337.下列变形中, 不正确的是( )(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )(A) b -a>0 (B) a -b>0 (C) ab >0 (D) a +b>09取近似值, 其中错误的是( )(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字)(C)1020(精确到十位) (D)1022.010(精确到千分位)10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( )(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=411. 下列等式变形:①若a b =,则ab x x =;②若a b x x =,则a b =;③若47a b =,则74a b =;④若74a b =,则47a b =.其中一定正确的个数是( )(A)1个 (B)2个 (C)3个 (D)4个12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2cd a b x x ---的值为( )(A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13.写出一个比12-小的整数: . 14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .15.若15423-+-n m b a b a 与的和仍是一个单项式,则m +=n16.化简: =-++-)7()35(x y y x _______________.三、用心算一算(本大题有3组题, 共40分,要求写出计算步骤)17.耐心算一算(每小题5分,共20分)(1)(-3)+(-4)-(+11)-(-19) (2)3212(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦(3) -3.5÷78 ×(-87 )×|-364 | (4))60()15412132(-⨯--18.化简(本题有2小题,每小题6分,满分12分)(1)2222(43)(143)x y xy x y xy --+- (2)2243(32)2y y y y ⎡⎤---+⎣⎦19.(本题满分8分)先化简,在求值:()()22222a b+2ab -2a b-1+3ab +2,⎡⎤⎣⎦其中a=2,b=-2四、解答题(12分,要写出必要的文字说明或演算步骤)20.(本题满分10分) 已知2(3)2x y +-与互为相反数,z 是绝对值最小的有理数,求()y x y xyz ++的值.。
七年级数学期中考试试题(满分:100分 时间:90分钟)
考号 班级 姓名
一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.12
-的绝对值是( ) (A) 12 (B)12
- (C) 2 (D) -2 2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( )
(A)1.68×104m (B)16.8×103 m (C)0.168×104m (D)1.68×103m
3.如果收入15元记作+15元,那么支出20元记作( )元.
(A)+5 (B )+20 (C)-5 (D)-20
4.有理数2(1)-,3(1)-,21-, 1-,-(-1),11
--中,其中等于1的个数是( ) (A)3个 (B)4个 (C)5个 (D)6个
5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( )
(A).1p q = (B) 1q p
= (C) 0p q += (D) 0p q -= 6.方程5-3x=8的解是( )
(A )x=1 (B )x=-1 (C )x=
133 (D )x=-133
7.下列变形中, 不正确的是( )
(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d
(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d
8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )
(A) b -a>0 (B) a -b>0 (C) ab >0 (D) a +b>0
9取近似值, 其中错误的是( )
(A)1022.01(精确到0.01) (B)1.0×103(保留2个有效数字)
(C)1020(精确到十位) (D)1022.010(精确到千分位)
10.“一个数比它的相反数大-4”,若设这数是x ,则可列出关于x 的方程为( )
(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x )=4
11. 下列等式变形:①若a b =,则a
b x x =;②若a b x x =,则a b =;③若47a b =,则74a b =;④若74
a b =,则47a b =.其中一定正确的个数是( )
(A)1个 (B)2个 (C)3个 (D)4个
12.已知a 、b 互为相反数,c 、d 互为倒数,x 等于-4的2次方,则式子1()2
cd a b x x ---的值为( ) (A)2 (B)4 (C)-8 (D)8
二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)
13.写出一个比12
-小的整数: . 14.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高____________m .
15.若15423-+-n m b a b a 与的和仍是一个单项式,则m +=n
16.化简: =-++-)7()35(x y y x _______________.
三、用心算一算(本大题有3组题, 共40分,要求写出计算步骤)
17.耐心算一算(每小题5分,共20分)
(1)(-3)+(-4)-(+11)-(-19) (2)3212(10.5)2(3)3
⎡⎤---⨯⨯--⎣⎦
(3) -3.5÷78 ×(-87 )×|-364 | (4))60()15
412132(-⨯--
18.化简(本题有2小题,每小题6分,满分12分)
(1)2222(43)(143)x y xy x y xy --+- (2)
2243(32)2y y y y ⎡⎤---+⎣⎦
19.(本题满分8分)
先化简,在求值:()()22222a b+2ab -2a b-1+3ab +2,⎡⎤⎣⎦其中a=2,b=-2
四、解答题(12分,要写出必要的文字说明或演算步骤)
20.(本题满分10分) 已知2(3)2x y +-与互为相反数,z 是绝对值最小的有理数,求()y x y xyz ++的值.。