九年级数学下册 3_8 圆内接正多边形习题 北师大版
- 格式:ppt
- 大小:15.46 MB
- 文档页数:15
第3章圆3.8圆内接正多边形同步测试新版北师大版◆基础题1.正多边形的中心角与该正多边形一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定2.正三角形的高、外接圆半径、边心距之比为()A.3:2:1 B.4:3:2 C.4:2:1 D.6:4:33.正六边形的边心距是,则它的边长是()A.1 B.2 C.2 D.34.如图,⊙O的一条弦AB垂直平分半径OC,且AB=2,则这个圆的内接正十二边形的面积为()A.6 B.6 C.12 D.125.正八边形的中心角等于度.6.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为.7.如图,在正八边形ABCDEFGH中,若四边形BCFG的面积是12cm2,则正八边形的面积为cm2.8.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则∠ACG= °.9.如图,正三角形ABC内接于⊙O,若AB=2cm,求⊙O的半径.10.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH 于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.◆能力题1.如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A.B.2 C.D.32.若一个正多边形的中心角等于其内角,则这个正多边形的边数为()A.3 B.4 C.5 D.63.古代数学家祖冲之和他的儿子根据刘徽的“割圆术”(用圆内接正多边形的周长代替圆周长),来计算圆周率π的近似值.他从正六边形算起,一直算到正24576边形,将圆周率精确到小数后七位,在世界上领先一千多年.根据这个办法,由圆内接正六边形算得的圆周率π的近似值是()A.2.9 B.3 C.3.1 D.3.144.如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)5.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于.6.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ= .7.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.8.(1)如图1,在圆内接正六边形ABCDEF中,半径OC=4,求正六边形的边长.(2)如图2,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求证:AB=AC.◆提升题1.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于AD+CD B.FC平分∠BFDC.AC2+BF2=4CD2D.DE2=EF•CE2.如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH 的面积为何()A.40 B.50 C.60 D.80【答案】A3.小刚在纸上画了一个面积为6分米2的正六边形,然后连接相隔一点的两点得到如图所示的对称图案,他发现中间也出现了一个正六边形,则中间的正六边形的面积是分米2.4.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图中①的三角形被一个圆覆盖,②中的四边形被两个圆所覆盖.已知长宽分别为2cm,1cm的矩形被两个半径都为r的圆所覆盖,则r的最小值是cm.5.如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.6.教材的《课题学习》要求同学们用一张正三角形纸片折叠成正六边形,小明同学按照如下步骤折叠:请你根据小明同学的折叠方法,回答以下问题:(1)如果设正三角形ABC的边长为a,那么CO= (用含a的式子表示);(2)根据折叠性质可以知道△CDE的形状为三角形;(3)请同学们利用(1)、(2)的结论,证明六边形KHGFED是一个六边形.答案和解析◆基础题1.【答案】B解:设正多边形的边数为n,则正多边形的中心角为,正多边形的一个外角等于,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.2.【答案】A解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴AD=3OD,∴AD:OA:OD=3:2:1.3.【答案】B解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.4.【答案】C解:如图,连接OA;取的中点D,连接AD、CD、OD;过点D作DE⊥OC于点E;∵OF=OA,且∠OFA=90°,∴∠OAF=30°,∠AOC=60°,∠AOD=∠COD=30°;∵圆的内接正十二边形的中心角==30°,∴AD、DC为该圆的内接正十二边形的两边;∵OC⊥AB,且AB=2,∴AF=;在△AOF中,由勾股定理得:;在△ODE中,∵∠EOD=30°,∴DE=OD=1,,∴这个圆的内接正十二边形的面积为12.5.【答案】45解:正八边形的中心角等于360°÷8=45°.6.【答案】6cm解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).7.【答案】24解:连接HE,AD,在正八边形ABCDEFGH中,可得:HE⊥BG于点M,AD⊥BG于点N,∵正八边形每个内角为:=135°,∴∠HGM =45°,∴MH =MG ,设MH =MG =x ,则HG =AH =AB =GF =x ,∴BG ×GF =2(+1)x 2=12,∴四边形ABGH 面积=(AH +BG )×HM =(+1)x 2=6,∴正八边形的面积为:6×2+12=24(cm 2).8.【答案】45°解:设正八边形ABCDEFGH 的外接圆为⊙O ;∵正八边形ABCDEFGH 的各边相等,∴圆周长,∴的度数为=90°,∴圆周角∠ACG =.9.解:过点O 作OD ⊥BC 于点D ,连接BO ,∵正三角形ABC 内接于⊙O ,∴点O 即是三角形内心也是外心,∴∠OBD =30°,BD =CD =BC =AB =,∴cos 30°=,解得:BO =2,即⊙O 的半径为2cm .10.(1)证明:∵在正六边形ABCDEF 中,AB =BC ,∠ABC =∠C =120°,在△ABG 与△BCH 中120AB BC ABC C BG CH =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABG ≌△BCH ;(2)解:由(1)知:△ABG ≌△BCH ,∴∠BAG =∠HBC ,∴∠BPG =∠ABG =120°,∴∠APH =∠BPG =120°.◆ 能力题1.【答案】B解:延长AB ,然后作出过点C 与格点所在的直线,一定交于格点E .正六边形的边长为1,则半径是1,则CE =4,中间间隔一个顶点的两个顶点之间的距离是,则△BCE 的边EC 上的高是,△ACE 边EC 上的高是,则S △ABC =S △AEC ﹣S △BEC =×4×(﹣)=2.2.【答案】B解:360°÷n =.故这个正多边形的边数为4.3.【答案】B解:由题意n =6时,π≈=3.4.【答案】解:如图所示:∵正n 边形的中心角为2α,边长为5,∵边心距OD =.5.【答案】12解:连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边,∴∠AOB ==60°,∠AOC ==90°,∴∠BOC =30°,∴n ==12.6.【答案】72°解:连接OA 、OB 、OC ,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠AOB =∠BOC =72°,∵OA =OB ,OB =OC ,∴∠OBA =∠OCB =54°,在△OBP 和△OCQ 中,OB OC OBP OCQ BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△OBP ≌△OCQ ,∴∠BOP =∠COQ ,∵∠AOB =∠AOP +∠BOP ,∠BOC =∠BOQ +∠QOC ,∴∠BOP =∠QOC ,∵∠POQ =∠BOP +∠BOQ ,∠BOC =∠BOQ +∠QOC ,∴∠POQ =∠BOC =72°.7.(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,AB DE A D AP DQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.8.(1)解:连接OD,如图所示:∵六边形ABCDEF是圆O的内接正六边形,∴∠O==60°,∵OC=OD,∴△OCD是等边三角形,∴CD=OC=4,即正六边形的边长为4;(2)证明:∵AD是△ABC的中线,∴BD=CD=BC=5,∵AB=13,AD=12,∴BD2+AD2=52+122=169=132=AB2,∴△ABD是直角三角形,AD⊥BC,又∵BD=CD,∴AB=AC.◆提升题1.【答案】B解:∵五边形ABCDE是正五边形,∴AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,∴四边形ABCF是菱形,∴CF=AF,∴△CDF的周长等于CF+DF+CD,即△CDF的周长等于AD+CD,故A选项正确;∵四边形ABCF是菱形,∴AC⊥BF,设AC与BF交于点O,由勾股定理得OB2+OC2=BC2,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,∴AC2+BF2=4CD2.故C选项正确;由正五边形的性质得,△ADE≌△CDE,∴∠DCE=∠EDF,∴△CDE∽△DFE,∴,∴DE2=EF •CE,故D选项正确.2.【答案】A解:取AE中点I,则点I为圆的圆心,圆内接正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.易得△IDE的面积为5,则圆内接正八边形ABCDEFGH为8×5=40.3.【答案】2解:设O是原正六边形的中心,连接AO,FO,MO,设FO与AE交于点Q,AO与BE交于P,∵一个面积为6分米2的正六边形,连接相隔一点的两顶点得到如图所示的对称图案,∴∠AOF=×360°=60°,S△AOF=×6=1(分米2),∴△OAF是等边三角形,∵AB=AF,∴OA⊥BF,∴AP=OP,∴AM=OM,同理:OF⊥AE,OQ=FQ,∴OM=FM,∴点M是△AOF的外心,∴S△OAM=S△AOF=(分米2),∴S△OPM=S△OAM=(分米2),∴中间的正六边形的面积是:12×S△OPM=2(分米2).4.【答案】解:如图:矩形ABCD中AB=1,BC=2,则覆盖ABCD的两个圆与矩形交于E、F两点,由对称性知E、F分别是AD和BC的中点,则四边形ABFE、EFCD是两个边长为1的正方形,所以圆的半径r=,两圆心距=1.5.解:(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF、CE、CA,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE,∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC=,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或,∴DE=DH=或.6.解:(1)∵正三角形ABC的边长为a,由折叠的性质可知,点O是三角形的重心,∴CO=a;(2)△CDE为等边三角形;(3)由(2)知△CDE为等边三角形,∴CD=CE=DE=CO÷cos30°=a,∠ADE=∠BED=120°,同理可得,AH=AK=KH=a,BG=BF=GF=a,∠CKH=∠BHK=120°,∵AB=BC=AC=a,∴DE=DK=KH=HG=GF=FE=a,∠ADE=∠BED=∠CKH=∠BHK=∠CFG=∠AGF=120°,∴六边形KHGFED是一个正六边形.3.8圆内接正多边形一、选择题1.下列说法正确的是 ( ) A.各边相等的多边形是正多边形 B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为 ( ) A . :3 B . :2 C . 1:2 D . :23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为 ( )A .6,32B .32,3C .6,3D .62,324. 如图所示,正六边形ABCDEF 内接于⊙O , 则∠ADB 的度数是( ).A .60°B .45°C .30°D .22.5°5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为 ( ) A.1:2:3 B.3:2:1C.3:2:1D.1:2:36. 圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P , 则∠APB 的度数是( ). A .36° B .60° C .72° D .108°7.(2013•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的 个数是( )A.4B.5C.6D.78.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 的度数是 ( ) A.60° B.65°C.72°D.75°二、填空题9.一个正n 边形的边长为a ,面积为S ,则它的边心距为__________.第4题 第6题 第7题第8题10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中心,则∠MON=_____________.14.边长为a的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要__________cm.16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________.17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________. 不同点:(1)____________________________________________________________________;(2)____________________________________________________________________.20.已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R、边心距r6、面积S6.第13题第18题第20题21.如图,⊙O 的半径为2,⊙O 的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O 和⊙O 上的一点A.(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.23.如图1、图2、图3、…、图n ,M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE…的边AB 、BC 上的点,且BM=CN ,连结OM 、ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是_________,图3中∠MON 的度数是_________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).第21题第22题3.8圆内接正多边形知识要点基础练知识点1正多边形与圆1.以下说法正确的是(C)A.每个内角都是120°的六边形一定是正六边形B.正n边形的对称轴不一定有n条C.正n边形的每一个外角度数等于它的中心角度数D.正多边形一定既是轴对称图形,又是中心对称图形2.小颖同学在手工制作中,把一个边长为12 cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为(B)A.2 3 cmB.4 3 cmC.6 3 cmD.8 3 cm3.如图所示,正六边形ABCDEF内接于☉O,则∠ADB的度数是(C)A.60°B.45°C.30°D.22.5°知识点2正多边形的性质4.同圆的内接正三角形与内接正方形的边长的比是(A)A. 6 2B. 3 4C. 6 3D. 4 3【变式拓展】以半径为1的圆内接正三角形、正方形、正六边形的边长为三边作三角形,则(B)A.这个三角形是等腰三角形B.这个三角形是直角三角形C.这个三角形是锐角三角形D.不能构成三角形5.如图,在☉O中,OA=AB,OC⊥AB,则下列结论正确的是(D)①弦AB的长等于圆内接正六边形的边长;②弦AC的长等于圆内接正十二边形的边长;③AA=AA ;④∠BAC=30°.A.①②④B.①③④C.②③④D.①②③6.(贵阳中考)如图,正六边形ABCDEF内接于☉O,☉O的半径为6,则这个正六边形的边心距OM的长为 3 3 .7.图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是☉O的直径,用直尺和圆规作☉O的内接正八边形ABCDEFGH.(不写作法,保留作图痕迹)解:如图所示,八边形ABCDEFGH即为所求.综合能力提升练8.正六边形的两条平行边之间的距离为1,则它的边长为(D)A. 3 6B. 3 4C. 2 3 3D. 3 39.(连云港中考)如图所示,一动点从半径为2的☉O上的A0点出发,沿着射线A0O方向运动到☉O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到☉O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到☉O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到☉O上的点A4处;…按此规律运动到点A2019处,则点A2019与点A0间的距离是(C) A.4 B.2 3C.2D.010.张萌取三个如图1所示的面积为4 cm2的钝角三角形按如图2所示的方式相连接,拼成了一个正六边形,则拼成的正六边形的面积为(C)A.12 cm2B.20 cm2C.24 cm2D.32 cm211.如图,正六边形ABCDEF中,AB=4,P是ED的中点,连接AP,则AP的长为 (C)A.4 3B.8C.2 13D.2 1112.(株洲中考)如图,正五边形ABCDE和正三角形AMN都是☉O的内接多边形,则∠BOM= 48°.13.如图,若干个全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需7个五边形.14.如图,已知☉O和☉O上的一点A.(1)作☉O的内接正方形ABCD和内接正六边形AEFCGH;(2)在(1)题的作图中,如果点E在AA上,求证:DE是☉O的内接正十二边形的一边.解:(1)作法:①作直径AC;②作直径BD⊥AC;③依次连接A,B,C,D四点,四边形ABCD即为☉O的内接正方形;④分别以A,C为圆心,OA长为半径作弧,交☉O于点E,H,F,G;⑤顺次连接A,E,F,C,G,H各点,六边形AEFCGH即为☉O的内接正六边形.(2)连接OE,DE.∵∠AOD= 360° 4 =90°,∠AOE= 360° 6 =60°,∴∠DOE=∠AOD-∠AOE=30°,∴DE为☉O的内接正十二边形的一边.拓展探究突破练15.如图1,2,3,4分别是☉O的内接正三角形、正四边形、正五边形、正n边形,点M,N分别从点B,C开始以相同的速度在☉O上逆时针运动.(1)求图1中∠APN的度数;(2)图2中,∠APN的度数是90°,图3中,∠APN的度数是108°;(3)试探索∠APN的度数与正多边形边数n的关系.解:(1)∵点M,N分别从点B,C开始以相同的速度在☉O上逆时针运动,∴AA=AA ,则∠BAM=∠CBN,∴∠APN=∠ABP+∠BAM=∠ABP+∠CBN=∠ABC=60°.(2)提示:在题图2中,∵点M,N分别从点B,C开始以相同的速度在☉O上逆时针运动,∴AA=AA ,∴∠BAM=∠CBN.又∵∠APN=∠ABN+∠BAM,∴∠APN=∠ABN+∠CBN,即∠APN=∠ABC.∵四边形ABCD是正四边形,∴∠ABC=90°,∴∠APN=90°.同理可得:在题图3中,∠APN=108°.(3)由(1)(2)可知,∠APN=它所在的正多边形的内角度数,由多边形内角和公式可知:正多边形的内角度数为 (A-2)×180°A (n≥3,且n为整数), ∴∠APN= (A-2)×180°A.。
3.8 圆内接正多边形同步测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 正三角形的边心距、半径和高的比是()A. B. C. D.2. 已知圆的半径是,则圆内接正十边形的边长是()A. B. C. D.3. 圆与正方形内切,为边长的正方形.求正方形的边长()A. B. C. D.E.4. 正六边形的半径为,则它的边心距为()A. B. C. D.5. 已知,正六边形的半径是,则这个正六边形的边长是()A. B. C. D.6. 用一枚直径为的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A. B. C. D.7. 圆内接正六边形的周长为,则该圆的内接正三角形的周长为( )A. B. C. D.8. 两圆半径之比为,小圆外切正六边形与大圆内接正六边形面积之比为()A. B. C. D.9. 如图,五边形是的内接正五边形,对角线、相交于点,下列结论:①;②;③四边形是菱形;④.其中正确的结论是()A.①②③④B.①②③C.②③④D.①②④10. 如图,沿凸多边形的外侧(圆与边相切)作无滑动的滚动.假设的周长是凸多边形的周长的一半,那么当回到出发点时,它自身滚动的圈数为()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 正方形的边长为,其内切圆的内接正方形的面积为________.12. 如图,正五边形的对角线为,则的度数为________.13. 设正边形的半径为,边长为,边心距为,则它们之间的数量关系是________.这个正边形的面积________.14. 小强用一张直径为的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的周长是________,面积是________.15. 如图,正方形的边长为,剪去四个角后成为一个正八边形,则这个正八边形的面积为________.16. 在半径为的圆中,内接正方形与内接正六边形的边长之比为________.17. 已知圆内接正方形的边长为,则该圆的内接正六边形的边长为________.18. 一个正八边形要绕它的中心至少转________度,才能和原来的图形重合,它有________条对称轴.19. 如图,正六边形中.阴影部分面积为平方厘米,则此正六边形的边长为________.20. 已知正六边形的边长为,则它的外接圆的周长是________.三、解答题(本题共计6 小题,共计60分,)21. 如图,相交两圆的公共弦长为,它分别是一圆内接正六边形的边和另一圆内接正方形的边,求两圆相交弧间的阴影部分的面积.22. 如图,分别求出半径为的圆内接正三角形圆内接正方形的周长和面积.23. 求证:一个六边形有一个外接圆和一个内切圆,并且这两个圆是同心圆.那么这个六边形是正六边形,写出已知,求证,并证明.24. 如图,,分别为的内接正六边形和外切正六边形.(1)请你在备用图中画出圆的内接正六边形,并简要写出作法;(2)设圆的半径为,求的面积(用含的式子表示);(3)设的半径为,求图中阴影部分的面积(用含的式子表示).25. 如图,在正六边形中,,是的中点,连接,求的长.26. 如图、图、图,在矩形中,是边上的一点,以为边作平行四边形,使点在的对边上,(1)如图,试说明:平行四边形的面积与矩形的面积相等;(2)如图,若平行四边形是矩形,与交于点,试说明:、、、四点在同一个圆上;(3)如图,若,平行四边形是正方形,且是的中点,交于点,连接,判断以为直径的圆与直线的位置关系,并说明理由.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】如图,为的中心,为的边上的高,则为边心距,∴=,又∵=,∴==,∴==,在中,=,即=,∴=.2.【答案】B【解答】解:设是圆内接正十边形的边长,连接、,作的平分线交于,,,所以,∵,∴,∴,,∵,,∴,∴,∵,∴,解得:.故选.3.【答案】A【解答】解:连接,∵圆与正方形内切,∴,∴,∴设,则,解得:,∴边长为.4.【答案】B【解答】解:如图所示,∵正六边形的半径是,∴,,∴.故选:.5.【答案】C【解答】解:如图所示,连接、;∵此六边形是正六边形,∴,∵,∴是等边三角形,∴.故选:.6.【答案】A【解答】解:根据题意得:圆内接半径为,如图所示:则,∴,则,完全覆盖住的正六边形的边长最大为.故选:.7.【答案】A【解答】解:∵圆内接正六边形的周长为,∴圆内接正六边形的边长为,∴圆的半径为,如图,连接,过作于,则,,,∴,∴该圆的内接正三角形的周长为.故选.8.【答案】C【解答】解:如图,设的半径为,的半径为,作于,连结、、、,∴,∵,∴,∴,∴,∴正六边形的面积,∵,∴,∴正六边形的面积,∴正六边形的面积:正六边形的面积.故选.9.【答案】B【解答】解:∵是正五边形,∴,∵,∴,故①正确;同理:,∴,故②正确.∵,∴,,,∴四边形是平行四边形,又∵,∴平行四边形是菱形,故③正确;∵∴∵在中,又∵∴∴故④错误故选.10.【答案】C【解答】解:由于凸多边形周长是圆周长的倍,另外凸多边形的外角和是,所以回到出发点时共滚动圈.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:如图:∵,∴,∴,∴,∴,∴正方形的面积为,故答案为.12.【答案】【解答】解:∵,,∴正五边形每个内角的度数为,即,又∵是等腰三角形,∴.故答案为.13.,,【解答】解:如图所示,过点作于点交圆于点,设正边形的半径为,则圆的半径为,∵,∴;同理,∵,∴,∴边长为,边心距为,则它们之间的数量关系是:,,正边形的面积.故答案为:,,.14.【答案】,【解答】解:∵正六边形的边长等于半径,∴正六边形的周长是:,正六边形的面积.故答案是:,.15.【答案】设三角形的边为,则由=,解得=,∴==,16.【答案】【解答】解:如图,在圆内接正方形中,,,则内接正方形的边长为;如图,在圆内接正六边形中,,为正三角形,则内接正六边形的边长为,所以其比为.故答案为.17.【解答】解:如图所示,过作于,连接,;∵四边形是圆内接四边形,∴;∵,,∴,∴,.如图所示,连接,,过作于;∵四边形是圆内接四边形,∴,∵,∴是正三角形,∴.即该圆的内接正六边形的边长为.故答案为:.18.【答案】,【解答】解:∵正八边形的中心角,∴正八边形要绕它的中心至少旋转,才能和原来的图形重合,它有条对称轴;故答案为:,.19.【答案】【解答】解:设正六边形的边长为,如图,过点作于,∵六边形是正六边形,∴,由正六边形的对称性得,,∴,,∴,∴阴影部分的面积,∵阴影部分面积为平方厘米,∴,解得,即此正六边形的边长为为.故答案为:.20.【答案】【解答】解:如图,连接,.∵是正六边形的外接圆,∴,∵,∴是等边三角形,∴,∴它的外接圆的周长是:.故答案为:.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:如图,连接,,,,;则垂直平分,而,∴;由题意得:,;∵,,∴,分别是等边三角形和等腰直角三角形,∴,;∴,,,,∴.【解答】解:如图,连接,,,,;则垂直平分,而,∴;由题意得:,;∵,,∴,分别是等边三角形和等腰直角三角形,∴,;∴,,,,∴.22.【答案】如图,连接、,过作于,∵是正三角形的外接圆,∴,∵=,∴==,在中,=,=,=,∵,∴=,∴正的周长是=;面积是=;如图,连接、、,∵是正方形的外接圆,∴,∵==,由勾股定理得;,∴正方形的周长为=,面积为=.【解答】如图,连接、,过作于,∵是正三角形的外接圆,∴,∵=,∴==,在中,=,=,=,∵,∴=,∴正的周长是=;面积是=;如图,连接、、,∵是正方形的外接圆,∴,∵==,由勾股定理得;,∴正方形的周长为=,面积为=.23.【答案】已知:六边形有一个外接圆和一个内切圆,并且这两个圆是同心圆.求证:六边形是正六边形.证明:如图,连接、;则、;∵,∴(同圆中,相等的弦心距所对的弦相等),同理可证:;∴该六边形六条边相等;在与中,,∴,∴,同理可证:,∴六边形是正六边形.【解答】已知:六边形有一个外接圆和一个内切圆,并且这两个圆是同心圆.求证:六边形是正六边形.证明:如图,连接、;则、;∵,∴(同圆中,相等的弦心距所对的弦相等),同理可证:;∴该六边形六条边相等;在与中,,∴,∴,同理可证:,∴六边形是正六边形.24.【答案】解:(1)如图作法:①在中做圆心角;②在上依次截取与弧相等的弧,得到圆的个等分点、、、、、;③顺次连接各点,六边形即为所求正六边形.(2)如图:∵由(1)知为等边三角形,∴的半径为,连接,可知,∴,∴,设为,由勾股定理有:,解得:,外切正六边形的边长为.(3)由图知:阴影部分的面积外切正六边形的面积-内接正六边形的面积,∵内接正六边形的面积为的六倍,,∴内接正六边形的面积为:.∵外切正六边形的面积为的六倍,,∴外切正六边形的面积为:,∴.【解答】解:(1)如图作法:①在中做圆心角;②在上依次截取与弧相等的弧,得到圆的个等分点、、、、、;③顺次连接各点,六边形即为所求正六边形.(2)如图:∵由(1)知为等边三角形,∴的半径为,连接,可知,∴,∴,设为,由勾股定理有:,解得:,外切正六边形的边长为.(3)由图知:阴影部分的面积外切正六边形的面积-内接正六边形的面积,∵内接正六边形的面积为的六倍,,∴内接正六边形的面积为:.∵外切正六边形的面积为的六倍,,∴外切正六边形的面积为:,∴.25.【答案】解:连接,过点作,∵六边形是正六边形,∴,,∴,∴,∴,∴,,∵是的中点,∴,∴.【解答】解:连接,过点作,∵六边形是正六边形,∴,,∴,∴,∴,∴,,∵是的中点,∴,∴.26.【答案】解:(1)过点作垂直于点;,,,所以,(2)因为平行四边形是矩形,四边形也是矩形;所以,则,所以、、、四点在同一个圆上.(3)相切.过作于;∵,,∴,,∴,∵是的中点,∴,在与中,;∵,∴,∵,∴,∴,即是的平分线,∴,∵,,∴以为直径的圆与直线相切.【解答】解:(1)过点作垂直于点;,,,所以,.(2)因为平行四边形是矩形,四边形也是矩形;所以,则,所以、、、四点在同一个圆上.(3)相切.过作于;∵,,∴,,∴,∵是的中点,∴,在与中,;∵,∴,∵,∴,∴,即是的平分线,∴,∵,,∴以为直径的圆与直线相切.。
初中数学;圆内接正多边形学司1.标……’......................................一、考点突破1. 了解圆内接正多边形的有关概念.2.理解并掌握正多边形半径和边长、边心距、中央角之间的关系.3.会应用正多边形和圆的有关知识画正多边形.二、重难点提示重点:圆内接正多边形的定义及相关性质.难点:正多边形半径、中央角、弦心距、边长之间的关系.考点精讲1.圆内接正多边形的有关概念①顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆O②正多边形的中央、半径、边心距、中央角正多边形的外接圆的圆心叫做这个正多边形的中央;正多边形的外接圆的半径叫做这个正多边形的半径:正多边形的中央到正多边形一边的距离叫做这个正多边形的边心距;正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中央角.如图:五边形ABCDE是OO的内接正五边形, 圆心O叫做这个正五边形的中央;04是这个正五边形的半径;OM是这个正五边形的边心距.Z4O8叫做这个正五边形的中央角.【要点诠释】①只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.②求正〃边形中央角的常用方法:正〃边形有八条边,每条边对应一个中央角,所以正,,边形的中央角为.〔正〃边形中央角度数与正边形的一个外角相等〕2.特殊的圆内接正多边形的半径、弦心距、边长之间的关系①正三角形一一在中进行:;② 正四边形一一在中进行,;③正六边形一一在中进行,.B【规律总结】正多边形的外接圆半径R与边长,,、边心距「之间的关系:R2 = /+ (〃)2,连接正〃边形的半径,弦心距,把正〃边形的有关计算转化为直角三角形中的问题.典例精讲例题1 (义乌市)一张圆心角为45°的扇形纸板和圆形纸板按如以下图所示方式分别剪成一个正方形,边长都为1,那么扇形和圆形纸板的面积比是( )思路分析:先画出图形,分别求出扇形和圆的半径,再根据而积公式求出面积,最后求出比值即可.答案:解:如图1所示,连接0D,丁四边形ABCD 是正方形,AZDCB = ZABO=90°, AB=BC=CD=1,VZAOB=45°, AOB = AB=1,由勾股定理得:OD= = , I.扇形的面积是=兀:图1如图2所示,连接MB、MC,•・•四边形ABCD是.M的内接四边形,四边形ABCD是正方形,AZBMC=90% MB=MC, A ZMCB = ZMBC=45°,VBC=1, AMC=MB = ,的面积是兀x () 2f.••扇形和圆形纸板的面积比是.应选Ao技巧点拨:此题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此 题的关键是求出扇形和圆的而积,题目比拟好,难度适中.例题2 〔莱芜〕如图,在正五边形ABCDE 中,连接AC 、AD 、CE, CE 交AD 于点F,连 接BF,以下说法不正确的选项是〔 〕A. ACDF 的周长等于AD+CD C.AC 2+BF 2=4CD 2思路分析:首先由正五边形的性质,可得AB=BC=CD=DE=AE, BA 〃CE, AD 〃BC,AC 〃DE, AC=AD=CE,根据有一组邻边相等的平行四边形是菱形,即可证得四边形ABCF 为菱 形,得CF=AF,即4CDF 的周长等于AD+CD,由菱形的性质和勾股定理得出AC4BF=4CD\ 可证实△CDE S ADFE,即可得出DE :=EF*CE a答案:解:;五边形ABCDE 是正五边形,,AB = BC=CD = DE=AE, BA 〃CE, AD 〃BC, AC 〃DE, AC=AD=CE,.•・四边形ABCF 是菱形,.・.CF=AF,二.△CDF 的周长等于CF+DF+CD,即4CDF 的周长等于AD+CD,故A 选项正确;•••四边形ABCF 是菱形,,AC_LBF,设AC 与BF 交于点O,由勾股定理得OB2+OC?=BC2,AAC 2+BF 2= (200 2+ (20B) 2=4OC 2+4OB 2=4BC 2, AAC 2+BF 2=4CD 2, 故c 选项正确:由正五边形的性质得,△ADEgaCDE,,NDCE=NEDF, AACDE^ADFE,:• = ,,DE2=EF ・CE, 故D 选项正确.应选:B .B.FC 平分NBFD D. DE 2=EF*CEA技巧点拨:此题考查了正五边形的性质,全等三角形的判定,综合考查的知识点较多, 解答此题注意已经证实的结论,可以直接拿来使用.提分宝典【易错警示】例如:判断命题“各内角都相等的圆内接多边形是正多边形.〞的真假.易错点:容易错误地理解这个命题是真命题.【针对练习】某学习小组在探索这个问题时,有如下探讨:甲同学:我发现这种多边形不一定是正多边形,如圆内接矩形不一定是正方形.乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形……丙同学:我发现边数为6时,它也不一定是正六边形.如图2所示,△ ABC是正三角形,M AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.〔1〕如图1所示,假设圆内接五边形ABCDE的各内角均相等,那么NABC=. 请简要说明圆内接五边形ABCDE为正五边形的理由.〔2〕如图2所示,请证实丙同学构造的六边形各内角相等.〔3〕根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形〞的结论与“边数〃S23, 〃为整数〕〞的关系,提出你的猜测〔不需证实〕.思路分析:〔1〕先根据多边形内角和定理求出正五边形的内角和,再求出各角的度数: 根据各角度数证实各边之间的关系即可;〔2〕由图知NAFC对,由=,而NDAF对的=+ = + = ,故可得出NAFC=NDAF,同理可证其余各角都等于NAFC,由此即可得出结论;〔3〕根据〔1〕、〔2〕的证实即可得出结论.答案:〔1〕•.•五边形的内角和=〔5 — 2〕xl80°=540°,,NABC= = 108.,理由:・.・NA = ZB = ZC=ZD=ZE, NA 对着,NB 对着,,=,,一=一,即=,,BC=AE,同理可证其余各边都相等,,五边形ABCDE是正五边形.〔2〕由图知NAFC 对,而NDAF 对,V = , .*. + = + ,即=,,NAFC = NDAF,同理可证其余各角都等于NAFC,故图2中六边形各角相等.<3〕由〔1〕、〔2〕可知,当〃523, 〃为整数〕是奇数时,各内角都相等的圆内接多边形是正多边形;当〃〔,23, 〃为整数〕是偶数时,各内角都相等的圆内接多边形不一定为正多边形.技巧点拨:此题考查的是正多边形和圆,熟知弧、圆心角、弦的关系是解答此题的关键.同步练习〔做题时间:30分钟〕1.阅读理解:如图1所示,在平而内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平而上任一点M的位置可由NMOx的度数8与0M的长度m确定,有序数对〔8, m〕称为M点的“极坐标〞,这样建立的坐标系称为“极坐标系二应用:在图2所示的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上, 那么正六边形的顶点C的极坐标应记为〔〕2.如下图,有一个边长为1的正六边形ABCDEF,其中C, D坐标分别为〔1, 0〕和〔2, 0〕,假设在无滑动的情况下,将这个六边形沿着x轴向右滚动,那么在滚动过程中,这个六边形的顶点A, B, C, D, E, F中,会过点〔2021, 2〕的是〔〕3.如下图,在平而直角坐标系中,边长为6的正六边形ABCDEF的对称中央与原点O 重合,点A在x轴上,点B在反比例函数y=位于第一象限的图象上,那么k的值为〔〕4.如下图,把正4ABC的外接圆对折,使点A与劣弧的中点M重合,折痕分别交AB、AC于D、E,假设BC=5,那么线段DE的长为〔〕A. B. C. D.A**6.如图,点E、D分别是正三角形ABC、正四边形ABCM、正五边形ABCMN中以C 点为顶点的一边延长线和另一边反向延长线上的点,且BE=CD, DB的延长线交AE于点F,那么图1中NAFB的度数为—;假设将条件''正三角形、正四边形、正五边形''改为"正n 边形'',其他条件不变,那么NAFB的度数为.〔用n的代数式表示,其中,应3, 且n为整数〕**7.如图,AG是正八边形ABCDEFGH的一条对角线.〔1〕在剩余的顶点B、C、D、E、F、H中,连接两个顶点, 使连接的线段与AG平行, 并说明理由:〔2〕两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,假设AB = 2,求四边形PQMN的面积.**8.〔1〕:如图1所示,ZkABC是.O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC:〔2〕如图2所示,四边形ABCD是.0的内接正方形,点P为弧BC上一动点,求证:PA = PC+PBx<3〕如图3所示,六边形ABCDEF是OO的内接正六边形,点P为弧BC上一动点, 请探究PA、PB、PC三者之间有何数量关系,并给予证实.答案1.A解:如图2所示,设正六边形的中央为D,连接AD,VZADO = 360°^6 = 60°, OD = AD,AAAOD是等边三角形,,OD=OA=2, NAOD=60.,AOC=2OD=2x2=4,,正六边形的顶点C的极坐标应记为(60% 4) o当滚动到ADJ_x轴时,E、F、A的对应点分别是E< F、A\ 连接AD,过点F, E,乍FG_LAD, EH1AD,•・•六边形ABCDEF是正六边形,A NAFG=30.,,AG=AF=,同理可得HD=,,AD=2,VD (2, 0),A' (2, 2) , OD=2,•・•正六边形滚动6个单位长度时正好滚动一周,••・从点(2, 2)开始到点(2021, 2)正好滚动2021个单位长度,•••=335 …2,••・恰好滚动335周多2个,.••会过点(2021, 2)的是点C.应选B.3.B解:连接OB,过B作BGJ_OA于G,丁ABCDEF 是正六边形,,NAOB=60.,VOB=OA, •••△AOB 是等边三角形,,OB=OA=AB=6,VBG±OA, AZBGO=90%,NOBG = 30.,,OG=OB = 3,由勾股定理得:BG=3,即B的坐标是(3, 3),VB点在反比例函数y=±, /.k=3x3=9,应选B04.B解:连接AM、OB,那么其交点0即为此圆的圆心;:△ABC 是正三角形,AZOBC=ZOAD= 30°, DE〃BC, 在RtZ\OBF 中,BF=BC=x5=,5,OB = = =, /. OA=OB = :BT在RL^AOD 中,ZDAO=30°, .•.OD=OAHan30°=x=, ,DE=2OD = 2x = ,应选B,J5.72°解:;正五边形ABCDE的内角和为(5-2) xl8(T=540.,AZE=x540°=108°, ZBAE=108°又•••EA=ED, AZEAD=x (180°-108°) =36%,NBAD=NBAE-NEAD=72.,故答案是:72..6. 60°; o解:在正AABC 中,AB = BC, NABC= NACB = 60.,A ZABE=ZBCD=120°,又,••"口,1•△ABEdBCD,,NE=ND,又,: ZFBE= NCBD, :. ZAFB = ZE+ZFBE= ZD+ZCBD= ZACB=60°:由以上不难得:在正四边形ABCM中,AAEB^ABDC,得出,NAFB的度数等于ZDCB =90.,同理在正五边形ABCMN中,NAFB度数为108.:由正三角形、正四边形、正五边形时,NAFB的度数分别为60.,90°, 108%可得出“正n边形〞,其它条件不变,那么NAFB度数为.故填:60.:°7.解:(1)连接BF,贝IJ有BF〃AG,理由如下:・・・ABCDEFGH是正八边形,,它的内角都为135.,又••♦HA = HG, .\Z 1=22.5°,从而/2=135.-/1 = 112.5.,由于正八边形ABCDEFGH关于直线BF对称,AZ3 = xl35o=67.5°,即N2+/3=180.,故BF〃AG,(2)根据题设可知NPHA=NPAH=45.,,NP=90.,同理可得NQ=NM=90.,,四边形PQMN是矩形.又V ZPHA= ZPAH= ZQBC= ZQCB=ZMDE= NMED=45°, AH = BC = DE, AAPAH^AQCB^AMDE, APA=QB=QC = MD.即PQ=QM, 故四边形PQMN是正方形.在Rt^PAH 中,VZPAH=45% AH = 2,,PA = AH・sin450 = 2x=,:.PQ = PA +AB+BQ = +2+ = 2+2, 故S四边形PQMN= (2 + 2)2= | 2 + 8.■8•证实:(1)延长BP至E,使PE=PC,连接CE,•: A、B、P、C 四点共圆,AZBAC+ZBPC=180°,VZBPC+ZEPC=180°, AZCPE=ZBAC=60% PE=PC, 二△PCE 是等边三角形, ACE = PC, ZE=60°:XVZBCE=60°+ZBCP> ZACP=60°+ZBCP,,NBCE= NACP,•••△ABC、4ECP 为等边三角形,ACE = PC, AC=BC, AABEC^AAPC (SAS), :.PA=BE=PB+PE=PB+PC(2)过点B作BE_LPB交PA于E,•Z 1+Z2= Z2+Z3 = 90° AZ1 = N3,又•••NAPB=45.,♦••BP=BE, ;・PE=PB;又•••AB = BC, AAABE^ACBP, ,PC=AE, :.PA = AE+PE= PC+PB.(3)证实:过点B,作BMLAP,在AP 上截取AQ=PC,连接BQ, ; NBAP=NBCP, AB = BC,AAABQ^ACBP, ABQ=BP,,MP=QM,又•••NAP B = 30.,.\cos30°=,,PM=PB, :.PQ=PB:.PA = PQ+AQ=PB+PC,。
圆内接正多边形能力提升1.(2015湖北随州中考)如图,☉O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2-r2=a2B.a=2R sin 36°C.a=2r tan 36°D.r=R cos 36°2.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16 cm2,则该半圆的半径为()A.(4+) cmB.9 cmC.4 cmD.6 cm3.(2015四川达州中考)已知正六边形ABCDEF的边心距为,则正六边形的半径为.4.如图,正六边形内接于☉O,☉O的半径为10,则圆中阴影部分的面积为.5.如图,点M,N分别是正八边形相邻两边AB,BC上的点,且AM=BN,则∠MON=.(第4题图)(第5题图)6.如图,四边形ABCD内接于大圆O,且各边与小圆相切于点E,F,G,H.求证:四边形ABCD是正方形.7.如图,已知边长为1的圆内接正方形ABCD中,P为边CD的中点,直线AP交圆于点E.(1)求弦DE的长;(2)若Q是线段BC上一动点,当BQ长为何值时,三角形ADP与以Q,C,P为顶点的三角形相似.创新应用8.如图,正六边形的螺帽的边长a=12 mm,用它来固定航天飞机的某个部位,现在宇航员要将其加固拧紧,选择的这个扳手的开口b最小应是多少?请结合下面右图算一算.参考答案1.A2.C3.24.100π-1505.45°6.证明:如图,连接OE,OF,OG,OH,OB.∵四边形ABCD的边AB,BC与小圆分别切于点E,F,∴OE=OF,且OE⊥AB,OF⊥BC.在Rt△BOE和Rt△BOF中,∠OEB=∠OFB=90°,OE=OF,OB=OB, ∴Rt△BOE≌Rt△BOF,∴BE=BF.由垂径定理,得BE=AB,BF=BC,∴AB=BC.同理AB=BC=CD=DA.∴A,B,C,D是大圆O的四等分点.∴四边形ABCD是正方形.7.解:(1)如图①,过点D作DF⊥AE于点F.在Rt△ADP中,AP=.又S△ADP=AD·DP=AP·DF,∴DF=.∵的度数为90°,∴∠DEA=45°.∴DE=DF=.(2)如图②,当Rt△ADP∽Rt△QCP时,有,得QC=1.即点Q与点B重合,∴BQ=0.如图③,当Rt△ADP∽Rt△PCQ时,有,解得QC=,即BQ=BC-CQ=.∴当BQ=0或BQ=时,△ADP与以点Q,C,P为顶点的三角形相似.8.解:易得b=2OG.∵六边形ABCDEF为正六边形,∴∠AOB=60°,∴△OAB是等边三角形,∴OA=OB=AB=12 mm.∵OG⊥AB,∴AG=BG=AB=6(mm),∴OG==6(mm),∴b=2OG=12(mm).即扳手的开口b最小应是12 mm.。
数学九年级下册第3章第8节圆内接正多边形同步检测一、选择题1.正多边形的中心角是36°,那么这个正多边形的边数是()A.10 B.8 C.6 D.5答案:A解析:解答:设这个正多边形的边数是n,∵正多边形的中心角是36°,∴360°n =36°,解得n=10.故选A.分析:设这个正多边形的边数是n,再根据正多边形的中心角是36°求出n的值即可.2.下列正多边形中,中心角等于内角的是()A.正三角形B.正四边形C.正六边形D.正八边形答案:B解析:解答:设正边形的边数是n.根据题意得:180-360360n n=,解得:n=4.故选B.分析:设正边形的边数是n,根据内角根据中心角等于内角,就可以得到一个关于n的方程,解方程就可以解得n的值3.半径为8cm的圆的内接正三角形的边长为()A.8cm B.4cm C.8cm D.4cm答案:A解析:解答:如图所示:∵半径为8cm的圆的内接正三角形,∴在Rt△BOD中,OB=8cm,∠OBD=30°,∴BD=cos30°×OB= ×8=4(cm),∵BD=CD,∴BC=2BD=8cm.故它的内接正三角形的边长为8cm.故选:A.分析:欲求△ABC的边长,把△ABC中BC边当弦,作BC的垂线,在Rt△BOD中,求BD的长;根据垂径定理知:BC=2BD,从而求正三角形的边长.4.圆的内接正五边形ABCDE的边长为a,圆的半径为r.下列等式成立的是()A.a=2rsin36° B.a=2rcos36° C.a=rsin36° D.a=2rsin72°答案:A解析:解答:作OF⊥BC.∵∠COF=72°÷2=36°,∴CF=r•sin36°,∴CB=2rsin36°.故选A.分析:作OF⊥BC,在Rt△OCF中,利用三角函数求出a的长.5.正八边形的中心角是()A.45°B.135°C.360°D.1080°答案:A解析:解答:正八边形的中心角等于360°÷8=45°;故选A.分析:根据中心角是正多边形相邻的两个半径的夹角来解答.6.顺次连接正六边形的三个不相邻的顶点,得到如图的图形,下列说法错误的是()A.△ACE是等边三角形B.既是轴对称图形也是中心对称图形C.连接AD,则AD分别平分∠EAC与∠EDCD.图中一共能画出3条对称轴答案:B 解析:解答: A.∵多边形ABCDEF 是正六边形,∴△ACE 是等边三角形,故本选项正确;B.∵△ACE 是等边三角形,∴是轴对称图形,不是中心对称图形,故本选项错误;C.∵△ACE 是等边三角形,∴连接AD ,则AD 分别平分∠EAC 与∠EDC ,故本选项正确;D.∵△ACE 是等边三角形,∴图中一共能画3条对称轴,故本选项正确.故选B .分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.7.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是( )A .30°B .60°C .90°D .120°答案:B解析:解答: ∵正多边形的一个外角为60°,∴正多边形的边数为360 ÷60 =6,其中心角为360° ÷6 =60°.故选B .分析:根据正多边形的外角和是360°求出正多边形的边数,再求出其中心角.8.⊙O 的半径等于3,则⊙O 的内接正方形的边长等于( )A .3B .2C .3D .6答案:C解析:解答: 如图所示:⊙O 的半径为3,∵四边形ABCD 是正方形,∠B =90°,∴AC 是⊙O 的直径,∴AC =2×3=6,∵222AB BC AC +=,AB =BC ,∴22AB BC +=36,解得:AB=3,即⊙O的内接正方形的边长等于3,故选C.分析:根据正方形与圆的性质得出AB=BC,以及,进而得出正方形的边长即可.9.如图,在一张圆形纸片上剪下一个面积最大的正六边形纸片ABCDEF,它的边长是24cm,»AB的长度是()A.6πcm B.8πcm C.36πcm D.96πcm答案:B解析:解答:连接OB、OA,∵六边形ABCDEF是正六边形,∴∠AOB=360°÷6 =60°,∵OA=OB,∴△OAB是等边三角形,∴OB=AB=24cm,∴60248 180ππ´=故选B分析:连接OA、OB,得出等边三角形AOB,求出OB长和∠AOB度数,根据弧长公式求出即可.10.若一个正六边形的半径为2,则它的边心距等于()A.2 B.1 C.D.2答案:C解析:解答:已知正六边形的半径为2,则正六边形ABCDEF的外接圆半径为2,如图:连接OA,作OM⊥AB于点M,得到∠AOM=30°,则OM=OA•cos30°=.则正六边形的边心距是.故选C.分析:根据正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.11.已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.36答案:C解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.12.已知某个正多边形的内切圆的半径是,外接圆的半径是2,则此正多边形的边数是()A.八B.六C.四D.三答案:B解析:解答:根据勾股定理得:=1,∴正多边形的边长为2,∴正多边形的中心角为60°,∴此正多边形是正六边形,故选B.分析:根据正多边形的内切圆的半径,外接圆的半径,正多边形的边长的一半构成直角三角形,可得出正多边形的中心角,从而得出正多边形的边数即可.13.正三角形的外接圆半径与内切圆的半径之比是()A.1:2 B.1:C.:1 D.2:1答案:D解析:解答:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴OA:OD=2:1.故选D.分析:先作出图形,根据等边三角形的性质确定它的内切圆和外接圆的圆心;通过特殊角进行计算,用内切圆半径来表示外接圆半径,最后求出比值即可.14、已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.23B.33C.43D.63答案:B解析:解答:如图所示:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,∵△ABC是等边三角形,∴BD=CD,∠OBD=12∠ABC=30°,∴OA=OB=2OD=2,∴AD=3,BD3∴BC3,∴△ABC的面积=12BC•AD=12×3×3;故选:B.分析:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,由等边三角形的性质得出BD=CD,∠OBD=12∠ABC=30°,得出OA=OB=2OD,求出AD、BC,△ABC的面积=12BC•AD,即可得出结果.15.如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED的度数为()A.30°B.45°C.50°D.60°答案:B解析:解答:∵正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=12×(180°-150°)=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°−120°)÷ 2 =30°,∴∠BED=15°+30°=45°.故选B分析:根据正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,求出∠BEA,∠AED,据此即可解答.二、填空题16.利用等分圆可以作正多边形,只利用直尺和圆规不能作出的多边形是.答案:正七边形解析:解答:直接利用圆的半径即可将圆等分为6份,这样即可得出正三角形,也可以得出正六边形,作两条互相垂直的直径即可将圆4等分,可得出正方形,但是无法利用圆规与直尺7等分圆,故无法得到正七边形.故答案为:正七边形.分析:利用直尺和圆规可以将圆等分为6份、4份,这样即可得出正三角形、正方形、正六边形等,但是无法得到正七边形.17.一个正n边形的面积是240cm2,周长是60cm,则边心距是.答案:8cm解析:解答:∵一个正n边形的面积是240cm2,周长是60cm,∴设边心距是hcm,则12×60×h=240,解得:h=8(cm),即边心距为8cm.分析:根据正n边形的面积=12周长×边心距,进而得出答案.18.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是. 答案::2.解析:解答:∵一个正多边形的一个外角为60°,∴360°÷60°=6,∴这个正多边形是正六边形,设这个正六边形的半径是r,则外接圆的半径r,∴内切圆的半径是正六边形的边心距,即是32r,∴它的内切圆半径与外接圆半径之比是:3:2.分析:由一个正多边形的一个外角为60°,可得是正六边形,然后从内切圆的圆心和外接圆的圆心向三角形的三边引垂线,构建直角三角形,解三角形即可.19.如图所示,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接六边形的面积为答案:33 2解析:解答:连接AO,BO,过点O作OE⊥AB于点E,∵∠C=30°,∴∠AOB=60°,∵AO=BO,∴△AOB是等边三角形,∴AO=BO=AB=1,∴EO=sin60°×1=3 2,∴S△AOB=12×EO×AB=34,∴⊙O的内接六边形的面积为:6×34=332.分析:利用圆周角定理以及等边三角形的判定与性质得出△AOB的面积,进而得出答案.20.人民币1993年版的一角硬币正面图案中有一个正九边形,如果设这个正九边形的半径为R,那么它的周长是.答案:18Rsin20°解析:解答:连接OA、OB,过O作OM⊥AB于M,则OA=OB=R,∵九边形ABCDEFGHI是正九边形,∴AB=BC=CD=DE=EF=GF=GH=HI=AI,∠AOB=360°÷9 =40°,在△AOM中,sin∠AOM=AM OA,AM=OAsin20°=Rsin20°,∵OA=OB,OM⊥AB,∴AB=2AM=2Rsin20°,即正九边形的周长是9×2Rsin20°=18Rsin20°.分析:连接OA、OB,过O作OM⊥AB于M,根据正九边形得出AB=BC=CD=DE=EF=GF=GH=HI=AI,∠AOB=40,在△AOM中求出AM=OAsin20°=Rsin20°,根据三线合一定理得出AB=2AM=2Rsin20°,即可求出正九边形的周长.三、证明、计算题21.已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F,证明:五边形AEBCF是⊙O的内接正五边形.答案:见解析解析:解答:连接BF,CE,∵AB=AC,∴∠ABC=∠ACB,又∵∠BAC=36°,∴∠ABC=∠ACB=72°.又∵AB、AC的中垂线分别交⊙O于点E、F,∴AF=CF,AE=BE,∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,∴,∴AE=AF=BE=BC=FC,∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.∴五边形AEBCD为正五边形.分析:要求证五边形AEBCD是正五边形,就是证明这个五边形的五条边所对的弧相等进而得出即可.22.如图,正方形EFGH的外接圆⊙O是正方形ABCD的内切圆,试求AB:EF的值.答案:解析:解答:如图,设大正方形的边长为1,则HF=1,则S正方形ABCD=1,S正方形EFGH=2S△HGF=2×1×(1÷2)÷2=0.5,∵正方形ABCD∽正方形EFGH,∴AB:EF=.分析:设大正方形的边长为1,那么圆的直径为1,根据“正方形的面积=边长×边长”求出大正方形的面积,从而得出△HGF的面积:1×(1÷2)÷2=0.25,即可得出正方形EFGH的面积:0.25×2=0.5,再根据相似得出边之比.23.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.答案:(1)略;(2)120°解析:解答:(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中AB=BC,∠ABC=∠C=120°,BG=CH,∴△ABG≌△BCH;(2)解:由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.分析:(1)根据正六边形的性质得到AB=BC,∠ABC=∠C=120°,由三角形全等的判定定理SAS即可证出△ABG≌△BCH;(2)由△ABG≌△BCH,得到∠BAG=∠HBC,然后根据三角形的内角和和对顶角的性质即可得到结果.24.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为多少?答案:3解析:解答:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=AM :AB,∴AM=6×3=33(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=12 AC,∴AC=2AM=63(cm).扳手张开的开口b至少为63cm.分析:根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.25.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.答案:(1)45°;(2)8解析:解答::(1)连接OB,OC,∵四边形ABCD为正方形,∴∠BOC=90°,ssssss∴∠P=12∠BOC=45°;(2)过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE∴BC=2BE=2×分析:(1)连接OB,OC,由正方形的性质知,△BOC是等腰直角三角形,根据∠BOC=90°,由圆周角定理可以求出;(2)过点O作OE⊥BC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论.。
正多边形与圆的相关计算课前测试【题目】课前测试如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.【答案】∠AED=45°;DE =。
【解析】(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF、CE、CA,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE,∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=总结:本题考查正多边形与圆、全等三角形的判定和性质、勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型。
【难度】4【题目】课前测试如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)【答案】tan∠OAB=;S△AOB=(cm2);的长度==(cm).【解析】(1)作OC⊥AB.∵∠AOB=120°,∴∠AOC=60°.∴OC=1,AC=.∴tan∠OAB=.(2)AC=,∴AB=2.∴S△AOB=2×1÷2=(cm2).(3)如图,延长BO交⊙O于点P1,∵点O是直径BP1的中点,S△AP1O=AD×P1O,S△AOB=AD×BO,∵P1O=BO,∴S△P1OA=S△AOB,∠AOP1=60°.∴的长度为(cm).作点A关于直径BP1的对称点P2,连接AP2,OP2,AP3,易得S△P2OA=S△AOB,∠AOP2=120°.∴的长度为(cm).过点B作BP3∥OA交⊙O于点P3,则P2P3直径,易得S△P3OA=S△AOB,∴的长度==(cm).总结:本题综合考查了解直角三角形,及三角形的面积公式及弧长公式.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:正多边形与圆的相关计算是九年级下册第三章的内容,主要讲解了正多边形的相关概念、圆内接正多边形与外切正多边形定义与相关计算、弧长和扇形面积的计算公式。
2021-2022学年北师大版九年级数学下册《3.8圆内接正多边形》同步测试题(附答案)一.选择题(共10小题,满分40分)1.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径作,,若AB =1,则阴影部分图形的周长是()A.π+1B.πC.π+1D.π2.如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.有下列3个结论:①AO⊥BE,②∠CGD=∠COD+∠CAD,③BM=MN=NE.其中正确的结论是()A.①②B.①③C.②③D.①②③3.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20°D.9°4.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°5.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD 的度数为()A.30°B.36°C.60°D.72°6.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A.45度B.60度C.72度D.90度7.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是()A.83°B.84°C.85°D.94°8.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°9.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO的度数为()A.24°B.48°C.60°D.72°10.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7二.填空题(共10小题,满分40分)11.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.12.如图,正五边形形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.(结果保留π)13.已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.14.阅读下列材料:问题:如图1,正方形ABCD内有一点P,P A=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且P A=2,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.15.如图,⊙O经过正五边形OABCD的顶点A,D,点E在优弧AD上,则∠E等于度.16.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.17.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.18.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=.19.如图,正五边形ABCDE内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是.(填序号)20.如图,正三角形AMN与正五边形ABCDE内接于⊙O,则∠BOM的度数是.三.解答题(共4小题,满分40分)21.O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为;②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为;(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为;②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.22.如图,正五边形ABCDE中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.23.比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①;②.不同点:①;②.24.如图,分别是正方形、正五边形和正六边形,(1)试分别计算这三种正多边形的相邻两条对角线的夹角的度数;(2)探究正n边形相邻两条对角线的夹角满足的规律.参考答案一.选择题(共10小题,满分40分)1.解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴的长=的长==π,∴阴影部分图形的周长=的长+的长+BC=π+1.故选:A.2.解:∵A、B、C、D、E是⊙O上的5等分点,∴=,∴AO⊥BE,故①正确;∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°,∴∠COD=72°,∵∠COD=2∠CAD,∴∠CAD=36°;连接CD∵A、B、C、D、E是⊙O上的5等分点,∴===,∴∠BDC=∠DCE=∠CAD=36°,∴∠CGD=108°,∴∠CGD=∠COD+∠CAD,故②正确;连接AB,AE,∴∠MBA=∠MAB=36°,∴AM=BM,∵∠MAN=36°,∠ANM=∠DAE+∠AEB=72°,∴AM≠MN,∴BM≠MN③错误!则∠BAM=∠ABM=∠EAN=∠AEN=36°,∵AB=AE,∴△ABM≌△AEN(ASA),∴BM=EN=AM=AN,∵∠MAN=36°,∴AM≠MN,∴③错误.故选:A.3.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.4.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.5.解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.6.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON(SAS)∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故选:C.7.解:由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°﹣72°﹣60°=48°,∴∠AOB=360°﹣108°﹣48°﹣120°=84°,故选:B.8.解:设点E第一次落在圆上时的对应点为E′,连接OA、OB、OE′,如图,∵五边形ABCDE为正五边形,∴∠EAB=108°,∵正五边形ABCDE绕点A逆时针旋转,点E第一次落在圆上E′点,∴AE=AE′=3,∵OA=AB=OB=OE′=3,∴△OAE′、△OAB都为等边三角形,∴∠OAB=∠OAE′=60°,∴∠E′AB=120°,∴∠EAE′=12°,∴当点E第一次落在圆上时,则点C转过的度数为12°.故选:A.9.解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠BOA=360°﹣120°﹣108°=132°,∵AO=BO,∴∠ABO=∠OAB==24°故选:A.10.解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:D.二.填空题(共10小题,满分40分)11.解:设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O==72°,∴∠CBD=O=36°,∵F是的中点,∴∠CBF=∠DBF=CBD=18°,故答案为:18°.12.解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.13.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故答案为:72°.14.解:(1)如图2.∵△BPC绕点B逆时针旋转90°,得到了△BP′A,∴∠P′BP=90°,BP′=BP=,P′A=PC=1,∠BP′A=∠BPC,∴△BPP′为等腰直角三角形,∴PP′=PB=2,∠BP′P=45°,在△APP′中,AP=,PP′=2,AP′=1,∵()2=22+12,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°∴∠BP′A=45°+90°=135°,∴∠BPC=∠BP′A=135°;(2)如图3.∵六边形ABCDEF为正六边形,∴∠ABC=120°,把△BPC绕点B逆时针旋转120°,得到了△BP′A,∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,∴∠BP′P=∠BPP′=30°,过B作BH⊥PP′于H,∵BP′=BP,∴P′H=PH,在Rt△BP′H中,∠BP′H=30°,BP′=4,∴BH=BP′=2,P′H=BH=2,∴P′P=2P′H=4,在△APP′中,AP=2,PP′=4,AP′=2,∵(2)2=(4)2+22,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°,∴∠BP′A=30°+90°=120°,∴∠BPC=120°,过A作AG⊥BP′于G点,∴∠AP′G=60°,在Rt△AGP′中,AP′=2,∠GAP′=30°,∴GP′=AP′=1,AG=GP′=,在Rt△AGB中,GB=GP′+P′B=1+4=5,AB===2,即正六边形ABCDEF的边长为2.故答案为135°;120°,2.15.解:∵⊙O经过正五边形OABCD的顶点A,D,∴∠AOD=108°,∴∠E=AOD=54°,故答案为:54.16.解:∵AF是⊙O的直径,∴=,∵五边形ABCDE是⊙O的内接正五边形,∴=,∠BAE=108°,∴=,∴∠BAF=∠BAE=54°,∴∠BDF=∠BAF=54°,故答案为:54.17.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.18.解:连接OA,∵五边形ABCDE是正五边形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM﹣∠AOB=48°,故答案为:48°.19.解:①∵∠BCD=180°﹣72°=108°,∠E=108°,∴∠ADE=×(180°﹣108°)=36°,∴∠ADC=108°﹣36°=72°,∴∠BCD+∠ADC=108°+72°=180°,∴BC∥AD,故本选项正确;②∵∠BAE=108°,∠CAD=×=36°,∴∠BAE=3∠CAD,故本选项正确;③在△BAC和△EAD中,,∴△BAC≌△EAD(SSS),故本选项正确;④∵AB+BC>AC,∴2CD>AC,故本选项错误.故答案为:①②③.20.解;连接AO,∵正三角形AMN与正五边形ABCDE内接于⊙O,∴∠AOM=×360°=120°,∴∠AOB=×360°=72°,∵∠BOM=∠AOM﹣∠AOB,∴∠BOM=120°﹣72°=48°故答案为:48°三.解答题(共4小题,满分40分)21.解:(1)①a;(1分)②a;(2分)(2)①a;(3分)②正方形ABCD的边被扇形纸板覆盖部分的总长度为a.(4分)理由:证明:连接OA、OD∵四边形ABCD是正方形,点O为中心∴OA=OD,∠OAM=∠ODN=45°又∵∠AOD=∠POQ=90°∴∠AOM+∠AOQ=90°∠DON+∠AOQ=90°∴∠AOM=∠DON∴△AOM≌△DON∴AM=DN∴AM+AN=DN+AN=AD=a(8分)(3)∵正五边形的内角为(5﹣2)×180°÷5=108°∴当扇形纸板的圆心角α为72°时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(10分)(4)∵正多边形的中心角为,∴当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.(12分)22.(1)证明:∵五边形ABCDE是正五边形,∴AB=BC=CD,∠ABC=∠BCD,(2分)∵F、G分别是BC、CD的中点,∴BF=CG,(4分)在△ABF和BCG中,AB=BC,∠ABC=∠BCD,BF=CG,(5分)∴△ABF≌△BCG;(6分)(2)解:由(1)知∠GBC=∠F AB,∵∠AHG=∠F AB+∠ABH=∠GBC+∠ABH=∠ABC(,7分)∵正五边形的内角为108°,∴∠AHG=108°.(9分)(注:本小题直接正确写出∠AHG=108°不扣分)23.解:相同点不同点①都有相等的边.①边数不同;②都有相等的内角.②内角的度数不同;③都有外接圆和内切圆.③内角和不同;④都是轴对称图形.④对角线条数不同;⑤对称轴都交于一点.⑤对称轴条数不同.24.解:(1)解:由正方形ABCD,可得:AC⊥BD,∴α4=90°;由正五边形ABCDE,可得:AB=BC=CD,∠ABC=∠BCD=108°,∴∠DBC=∠ACB==36°,∴α5=180°﹣∠DBC﹣∠ACB=108°;同理:α6=120°;(2).。
第04讲_圆内接正多边形知识图谱正多边形和圆知识精讲一. 正多边形的概念及性质1. 正多边形的定义:各角相等,各边相等的多边形叫做正多边形.2. 正多边形的相关概念:(1)正多边形的中心:我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心;(2)正多边形的半径:外接圆的半径叫做正多边形的半径;(3)正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角;(4)正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.补充说明:正多边形的性质:(1)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;(2)正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;(3)偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.二. 正多边形与圆的关系1. 把一个圆n等分,依次连结各个等分点所得到的多边形是这个圆的内接正n边形;这个圆叫这个正n边形的外接圆;经过各等分点作圆的切线,以相邻切线交点为顶点的多边形是这个圆的外切正n边形.2. 定理:任何一个正多边形都有一个外接圆和一个内切圆;并且这两个圆是同心圆.三. 正多边形有关的计算1. 正n边形的每个内角都等于()2180nn-⋅︒;2. 正n边形的每一个外角与中心角相等,等于360n︒;3. 设正n 边形的边长为n a ,半径为R ,边心距为n d ,周长为n C ,面积为n S ;则:222111422n n n n n n n n n R d a C na S n d a d C =+==⋅⋅=⋅,,三点剖析考点:正多边形的概念、性质及相关计算重难点:正多边形相关计算.易错点:对正多边形相关的概念混淆不清.正多边形的相关概念例题1、 下面给出六个命题:①各角相等的圆内接多边形是正多边形;②各边相等的圆内接多边形是正多边形;③正多边形是中心对称图形;④各角均为120︒的六边形是正六边形;⑤边数相同的正n 边形的面积之比等于它们边长的平方比;⑥各边相等的圆外切多边形是正多边形.其中,正确的命题是_____________. 【答案】 ②⑤【解析】 ①错误,反例:矩形各角相等但不是正四边形;②正确,边相等则各边所对的圆心角相等,由半径和圆心角可构成 个全等的等腰三角形,则多边形的各内角也相等;③错误,正奇数边形不是中心对称图形;④错误,在正六边形的基础上作任意一组对边的平行线,仍然截出一个六边形,各内角均为,但不是正六边形;⑤正确,相似的性质;⑥错误,只要使切点与圆心的连线不平分多边形的边长即可.例题2、 若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( ) A.30° B.60° C.90° D.120° 【答案】 B【解析】 由于任意多边形的外角和均为360°,所以这个正多边形的边数为360660=,所以正六边形的中心角的度数为360606︒=︒.例题3、 正六边形的边心距与边长之比为( )A.3:3B.3:2C.1:2D.2:2【答案】 B【解析】 此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.首先根据题意画出图形,然后设六边形的边长是a ,由勾股定理即可求得OC 的长,继而求得答案.如图:设六边形的边长是a , 则半径长也是a ;经过正六边形的中心O 作边AB 的垂线OC ,则AC=12AB=12a ,∴OC=22OA AC -=32a ,a n d nR O CBA∴正六边形的边心距与边长之比为:32a:a=3:2.故选B.例题4、已知:线段a(如图)(1)求作:正六边形ABCDEF,使边长为a(用尺规作图,要保留作图痕迹,不写作法及证明)(2)若a=2cm,则半径R=______cm,边心距r=______cm,周长p=______cm,面积S=______cm2.【答案】(1)(2)2,3,12,63【解析】(1)如图,正六边形ABCDEF即为所求;(2)∵a=2cm,∴半径R=2cm.∵OA=OB=AB=a,∴∠OAB=60°,∴r=OG=OA•sin60°=2×332cm.∵a=2cm,∴周长p=6a=12cm,∴S正六边形ABCDEF=6S△OAB=6×12×2×3=63(cm2).相关计算例题1、如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=__________________°.【答案】125【解析】∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=35°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.例题2、已知正六边形的边长为2,则它的内切圆的半径为()A.1B.3C.2D.23【答案】B【解析】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×32=3,∴边长为2的正六边形的内切圆的半径为3.例题3、如图1、2、3、…..、n,M、N分别是O的内接正三角形ABC、正方形ABCD、五边形ABCDE、…..、正n边形ABCDE…..的边AB、BC上的点,且BM CN=,连接OM、ON.(1)求图1中MON∠的度数;(2)图2中MON∠的度数是____________,图3中MON∠的度数是____________;(3)试探究MON∠的度数与正n边形边数n的关系(直接写出答案).【答案】(1)120︒;(2)90︒,72︒;(3)360 n︒【解析】解:分别连接OB、OC,(1)AB AC=ABC ACB∴∠=∠OC OB=,O是外接圆的圆心,CO ACB∴∠平分30OBC OCB∴∠=∠=︒30OBM OCN∴∠=∠=︒BM CN=,OC OB=OMB ONC∴∆∆≌BOM NOC∴∠=∠60BAC∠=︒120BOC∴∠=︒120MON BOC∴∠=∠=︒(2)同(1)可得MON∠的度数是90︒;图3中MON∠的度数是72︒(3)由(1)可知,360==1203MON︒∠︒;在(2)中,360==904MON︒∠︒;在(3)中360==725MON︒∠︒…..,故当n时,360 MONn︒∠=.随练1、如图,正五边形ABCDE内接于⊙O,则∠CAD=___________度.【答案】 36【解析】 ∵五边形ABCDE 是正五边形,∴AB =BC =CD =DE =EA =72°,∴∠CAD=12×72°=36°.随练2、 已知正多边形的半径与边长相等,那么正多边形的边数是( ) A.4 B.5 C.6 D.8 【答案】 C【解析】 ∵正多边形的半径与边长相等,∴正多边形的相邻的两条半径与一条边围成一个正三角形, ∴正多边形的中心角为60°∵正多边形所有中心角的和为360°, ∴360606︒÷︒=,∴正多边形的边数为6,随练3、 若等边三角形的边长是12厘米,则其内切圆的面积为 . 【答案】 12π平方厘米. 【解析】 如图,作OD ⊥AB , ∵等边三角形的边长为12厘米, ∴AD=6厘米.又∵∠DAO=12∠BAC=12×60°=30°,∴tan30°=6DO DOAD ==33, ∴DO=23厘米,∴其内切圆的面积=π(23)2=12π. 故答案为:12π平方厘米.随练4、 如图,ABCD 是O ⊙的内接正方形,PQRS 是半圆的内接正方形,那么正方形PQRS 与正方形ABCD 的面积之比为____________.【答案】 2:5 【解析】随练5、 已知圆内接正方形的面积为2,求该圆的外切正三角形的外接圆的外切正六边形的面积.SOR Q P D CBA【答案】 3【解析】 如图,设AB 是圆内接正方形的边长,CD 是外切正三角形的边长,EF 是外切正六边形的边长,连结OA OB OC OE 、、、.∵AB 是内接正方形的边长,内接正方形面积为2,∴290AB OA OB AOB ==∠=︒,,∴1OA OB ==.∵CD 是外切正三角形的边长,∴60OA CD AOC ⊥∠=︒,,∴22OC OA ==. ∵EF 是外切正六边形的边长,∴602OC EF OEF OE EF CE ⊥∠=︒==,,,∴323CE ==, ∴43EF ,∴263436683EOF S S ∆===⎝⎭随练6、 已知直角三角形的外接圆半径为6,内切圆半径为2,那么这个三角形的面积是( ) A.32 B.34 C.27 D.28 【答案】 D【解析】 暂无解析弧长与扇形的面积知识精讲一.弧长公式1.圆的周长:2πR C =2.弧长公式:π180nl R =(其中,l 表示弧长,n 表示这段弧所对圆心角度数值;R 表示该弧所在圆的半径).二.扇形面积公式1.圆的面积公式:2πS R =2.扇形面积公式:21π3602n S R lR ==扇形(n 表示扇形圆心角度数值;R 表示半径).三.圆锥、圆柱的侧面积与全面积1.圆锥(1)圆锥的侧面积:1=22S r l rl ππ=侧(以下公式中的l 均指扇形母线长);(2)圆锥的全面积:221=+=+22S S S r r l r rl ππππ=+全底侧;(3)圆锥的体积:213V r h π=;(4)圆锥的高、底面半径、母线之间的关系:222r h l +=;(5)设圆锥的底面半径为r ,母线长为l ,侧面展开图的圆心角为n ︒;则有:360S r n l S ==底侧O BADC2.圆柱(1)圆柱的侧面积:=2S r h π侧(2)圆柱的全面积:2=2πr 2πS S S rh=++侧全底四.不规则图形面积的巧算一般利用拼凑法,割补法,把不规则图形切割拼接成面积容易计算的图形再进行计算,例如:弓形面积:=S S S -弓形三角形扇形.三点剖析一.考点:弧长、扇形面积公式,圆锥的侧面积、全面积计算 二.重难点:1.计算扇形面积,计算圆锥的侧面积;2.计算扇形面积的时候,除了用圆心角求面积,也可以用弧长求面积; 三.易错点:1.圆锥相关面积计算时,注意每个量对应关系; 2.计算圆锥侧面积时,注意母线和圆锥的高是不相等的.弧长公式例题1、 一个扇形的半径为8cm ,弧长为163cm π,则扇形的圆心角为__________. 【答案】 120︒【解析】 设扇形圆心角为n ︒,根据弧长公式可得:8161803n ππ=,解得:120n =︒.例题2、 如图,在Rt ∴ABC 中,∴C=90°,∴A=20°,BC=3,以点C 为圆心,BC 的长为半径的∴C 交AB 于点D ,交AC 于点E ,则(劣弧)的长为( )A.πB.πC.πD.π【答案】 A【解析】 连接CD ,如图所示, ∴∴C=90°,∴A=20°, ∴∴B=70°.l2πrrOh 2πrh O r∴CB=CD,∴∴BDC=∴B=70°,∴∴BCD=40°,∴的长为=.故选A.例题3、如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+3)cm,圆O沿地面BC 方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为.【答案】53πcm.【解析】作AD⊥BC于D,OE⊥AD于E,则AE=2+3﹣2=3,又OA=2,∴sin∠AOE=32 AEOA=,∴∠AOE=60°,则AB的长为()6090251803ππ+⨯⨯=,则圆O在地面上滚动的距离为53πcm,故答案为:53πcm.例题4、如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【答案】(1)AE平分∠DAC(2)①3;②43π﹣3【解析】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,BE=12AB=12×4=2,AE=3BE=23,在Rt△ADE中,∠DAE=∠BAE=30°,∴DE=12AE=3,∴AD=3DE=3×3=3;②∵OA=OB,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S扇形AOE﹣S△AOE=S扇形AOE﹣12S△ABE=21202360π﹣12•12•23•2=43π﹣3.例题5、【答案】5π【解析】暂无解析随练1、 如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=3,CE=1.则BD 的长是( )A.39π B.239πC.33π D.233π【答案】 B【解析】 连接OC ,∵△ACE 中,AC=2,AE=3,CE=1, ∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,即AE ⊥CD ,∵sinA=CE AC =12,∴∠A=30°, ∴∠COE=60°,∴CE OC =sin ∠COE ,即1OC =32,解得OC=233,∵AE ⊥CD , ∴BC =BD ,∴BD =BC =23603180π⨯=239π.随练2、 如图,等边三角形MNP 的边长为1,线段AB 的长为4,点M 与A 重合,点N 在线段AB 上.MNP △沿线段AB 按A B −−→的方向滚动,直至MNP △中有一个点与点B 重合为止,则点P 经过的路程为__________.【答案】43π 【解析】 该题考查的是弧长的计算.点P 经过的路程是两段弧,半径为1,圆心角为120︒,根据1=180n Rπ进行计算即可.故点P 经过的路程为:1201421803ππ⨯⨯⨯=.故答案为:43π.A (M )PNB扇形面积公式例题1、如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【答案】B【解析】∴AB=25,BD=15,∴AD=25-15=10,∴S贴纸=(﹣)×2=350πcm2,例题2、如图,AB是⊙O的直径,弦CD⊥AB于点E,⊙O的半径为3,弦CD的长为3cm,则图中阴影部分面积是_____.【答案】π﹣33 4【解析】∵弦CD⊥AB于点E,∴CE=32,∵OC=3,∴OE=32,∴∠OCE=30°,∴∠COD=120°,∴图中阴影部分面积=()21203360π⋅⨯﹣12×3×32=π﹣334,例题3、如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为.【答案】(3π﹣)cm2.【解析】作OH∴DK于H,连接OK,∴以AD为直径的半圆,正好与对边BC相切,∴AD=2CD,∴A'D=2CD,∴∴C=90°,∴∴DA'C=30°,∴∴ODH=30°,∴∴DOH=60°,∴∴DOK=120°,∴扇形ODK的面积为=3πcm2,∴∴ODH=∴OKH=30°,OD=3cm,∴OH=cm,DH=cm;∴DK=3cm,∴∴ODK的面积为cm2,∴半圆还露在外面的部分(阴影部分)的面积是:(3π﹣)cm2.随练1、如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB 为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.12π B.12π+1 C.π D.π+1【答案】A【解析】∵AB=2,∴BD=22,S阴影=S扇形BDE﹣12S扇形ACD=()24522360π﹣12×904360π⨯=π﹣12π=12π,故选A.随练2、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【答案】.【解析】根据图示知,∴1+∴2=180°﹣90°﹣45°=45°,∴∴ABC+∴ADC=180°,∴图中阴影部分的圆心角的和是90°+90°﹣∴1﹣∴2=135°,∴阴影部分的面积应为:S==.故答案是:.圆锥例题1、如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】∴h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.h=23cm,底面半径r=2cm,则圆锥体的全面积为____cm2.A.43πB.8πC.12πD.(43+4)π【答案】C【解析】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为23cm,∵圆锥的母线长为4cm,∵侧面面积=12×4π×4=8π; 底面积为=4π,全面积为:8π+4π=12πcm 2. 故选:C .例题3、 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为__________.【答案】22.【解析】 过O 点作OC AB ⊥,垂足为D ,交O 于点C ,由折叠的性质可知,1122OD OC OA ==,由此可得,在Rt AOD ∆中,30A ∠=︒,同理可得30B ∠=︒,在AOB ∆中,由内角和定理,得180120AOB A B ∠=︒-∠-∠=︒AB ∴的长为12032180ππ⨯=设围成的圆锥的底面半径为r ,则22r ππ=1r cm ∴=∴圆锥的高为223122-=随练1、 圆锥的底面半径为4cm ,高为3cm ,则它的表面积为( ) A.12πcm 2 B.20πcm 2 C.26πcm 2 D.36πcm 2【答案】 D【解析】 底面周长是2×4π=8πcm ,底面积是:42π=16πcm 2. 母线长是:22345+=,则圆锥的侧面积是:218π520πcm 2⨯⨯=,则圆锥的表面积为16π+20π=36πcm 2.随练2、 已知扇形的圆心角为120°,所对的弧长为83π,则此扇形的面积是______. 【答案】163π【解析】 ∵扇形的圆心角为120°,所对的弧长为83π, ∴l=120R 81803⨯=ππ, 解得:R=4,则扇形面积为12Rl=163π随练3、 如图,在菱形ABCD 中,AB=2,∠C=120°,以点C 为圆心的与AB ,AD 分别相切于点G ,H ,与BC ,CD 分别相交于点E ,F .若用扇形CEF 作一个圆锥的侧面,则这个圆锥的高是__________.【答案】 2【解析】 如图:连接CG , ∵∠C=120°, ∴∠B=60°,∵AB 与相切,∴CG ⊥AB ,在直角△CBG 中,CG=BC•sin60°=2×=3,即圆锥的母线长是3, 设圆锥底面的半径为r ,则:2πr=,∴r=1.则圆锥的高是:=2.不规则图形面积的巧算例题1、 如图,AB 是∴O 的直径,弦CD ∴AB ,∴CDB=30°,CD=2,则S 阴影=( )A.πB.2πC.D.π【答案】 D【解析】 如图,CD ∴AB ,交AB 于点E , ∴AB 是直径,∴CE=DE=CD=, 又∴∴CDB=30° ∴∴COE=60°, ∴OE=1,OC=2, ∴BE=1,∴S ∴BED =S ∴OEC , ∴S 阴影=S 扇形BOC ==.故选:D .例题2、如图,半圆O的直径AB=2,弦CD∴AB,∴COD=90°,则图中阴影部分的面积为.【答案】.【解析】∴弦CD∴AB,∴S∴ACD=S∴OCD,∴S阴影=S扇形COD=•π•=×π×=.例题3、如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【答案】(1)DE为⊙O的切线(2)(24﹣4π)cm2【解析】(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=12(4+8)×4﹣2904360π••=(24﹣4π)cm2.随练1、 如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是____________.【答案】23π﹣3 【解析】 如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°,∴△DAB 是等边三角形, ∵AB=2,∴△ABD 的高为3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =260213602π⨯-×2×3=23π﹣3.随练2、 如图,在∴BCE 中,点A 时边BE 上一点,以AB 为直径的∴O 与CE 相切于点D ,AD ∴OC ,点F为OC 与∴O 的交点,连接AF . (1)求证:CB 是∴O 的切线;(2)若∴ECB=60°,AB=6,求图中阴影部分的面积.【答案】(1)证明见解析;(2)π.【解析】(1)证明:连接OD,与AF相交于点G,∴CE与∴O相切于点D,∴OD∴CE,∴∴CDO=90°,∴AD∴OC,∴∴ADO=∴1,∴DAO=∴2,∴OA=OD,∴∴ADO=∴DAO,∴∴1=∴2,在∴CDO和∴CBO中,,∴∴CDO∴∴CBO,∴∴CBO=∴CDO=90°,∴CB是∴O的切线.(2)由(1)可知∴3=∴BCO,∴1=∴2,∴∴ECB=60°,∴∴3=∴ECB=30°,∴∴1=∴2=60°,∴∴4=60°,∴OA=OD,∴∴OAD是等边三角形,∴AD=OD=OF,∴∴1=∴ADO,在∴ADG和∴FOG中,,∴∴ADG∴∴FOG,∴S∴ADG=S∴FOG,∴AB=6,∴∴O的半径r=3,∴S阴=S扇形ODF==π.随练3、如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【答案】 .【解析】 如图,∴AB=AB ′=8,∴BAB ′=60° ∴图中阴影部分的面积是: S=S 扇形B ′AB +S 半圆O ′﹣S 半圆O =+π×52﹣π×52 =π.拓展1、 若正六边形的边长为4,则它的内切圆面积为( ) A.9π B.10π C.12π D.15π【答案】 C【解析】 连接OD 、OE ,作OM ⊥DE 于M , ∵六边形ABCDEF 是边长为4的正六边形, ∴△ODE 是等边三角形, ∴OD =DE =4,∴3sin 604232OM OD =•︒=⨯=,∴它的内切圆面积2(23)12=π⨯=π.2、 边长为4的正六边形的边心距________,中心角等于________度,边长为________. 【答案】 23;60;4【解析】 六边形每个中心角度数为360÷6=60°,根据每个中心角都分六边形为等边三角形,∵正六边形的边长为4, 则每个等边三角形的高即圆心距为:sin 6023CO BO =⋅︒=.3、正六边形的外接圆的半径与内切圆的半径之比为________.【答案】 2:3 【解析】 暂无解析4、 如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________________.【答案】 75°【解析】 设该正十二边形的圆心为O ,如图,连接A 10O 和A 3O ,由题意知,∧3110A A A =512⊙O 的周长,∴∠A3OA10=536012⨯=150°,∴∠A 3A 7A 10=75°,5、 (1)已知:如图1,ABC ∆是O ⊙的内接正三角形,点P 为弧BC 上一动点,求证:PA PB PC =+ (2)如图2,四边形ABCD 是O ⊙的内接正方形,点P 为弧BC 上一动点,求证:2PA PC PB =+(3)如图3,六边形ABCDEF 是O ⊙的内接正六边形,点P 为弧BC 上一动点,请探究PA PB PC 、、三者之间有何数量关系,并给予证明.【答案】 见解析【解析】 (1)证明:延长BP 至E ,使PE PC =,连结CE .OCABPPODAB COPFDCA1260,3460∠=∠=︒∠=∠=︒60,CPE PCE ∴∠=︒∴∆是等边三角形.,,360,CE PC E ∴=∠=∠=︒又EBC PAC ∠=∠, BEC APC ∴∆∆≌ PA BE PB PC ∴==+.(2)证明:过点B 作BE PB ⊥交PA 于E ,122390,13∠+∠=∠+∠=︒∴∠=∠,又45APB ∠=︒,,2,BP BE PE PB ∴=∴=,,AB BC ABE CBP PC AE =∴∆∆∴=≌.2PA AE PE PC PB ∴=+=+(3)答:3PA PC PB =+证明:在AP 上截取AQ PC =,连结BQ ,,BAP BCP AB BC ∠=∠=,,ABQ CBP ∴∆≅∆BQ BP ∴=.又30,APB ∠=︒3PQ PB ∴=,3PA PQ AQ PB PC ∴=+=+6、 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数;(2)求证:∠1=∠2.【答案】 (1)78°(2)见解析【解析】 (1)∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;(2)∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD ,∵∠BAE =∠BDC =∠CBD ,∴∠1=∠2.7、 如图,在等腰Rt △ABC 中,AC=BC=22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )321E C B ADO PO Q AB C D E F PA.2πB.πC.22D.2 【答案】 B 【解析】 取AB 的中点O 、AE 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图, ∵在等腰Rt △ABC 中,AC=BC=22,∴AB=2BC=4,∴OC=12AB=2,OP=12AB=2, ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO=90°,∴点M 在以OC 为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF=OC=2, ∴M 点的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•2π•1=π.8、 在Rt △ABC 中,∠C =90°,AC =BC =1,将其放入平面直角坐标系,使A 点与原点重合,AB 在x 轴上,△ABC沿x 轴顺时针无滑动的滚动,点A 再次落在x 轴时停止滚动,则点A 经过的路线与x 轴围成图形的面积为________.【答案】 12π+【解析】 ∵∠C =90°,AC =BC =1, ∴22112AB =+=;根据题意得:2△ABC 绕点B 顺时针旋转135°,BC 落在x 轴上;△ABC 再绕点C 顺时针旋转90°,AC 落在x 轴上,停止滚动;∴点A 的运动轨迹是:先绕点B 旋转135°,再绕点C 旋转90°;如图所示:∴点A 经过的路线与x 轴围成的图形是:一个圆心角为135°,半径为2的扇形,加上△ABC ,再加上圆心角是90°,半径是1的扇形;∴点A 经过的路线与x 轴围成图形的面积22135(2)190111136023602⨯π⨯⨯π⨯=+⨯⨯+=π+.9、如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,与BC的延长线交于点E,则图中AE的长为________.【答案】32 2π【解析】∵四边形ABCD为正方形,∴222CA AB==,∠ACB=45°,∴∠ACE=135°,∴AE的长度13522321802π==π.10、如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cmB.15cmC.10cmD.20cm【答案】D【解析】过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.11、用一个圆心角为120°,半径为3的扇形做一个圆锥的侧面,这个圆锥的底面圆的半径为________.【答案】1【解析】 暂无解析12、 若扇形的半径为30cm ,圆心角为60°,则此扇形围成圆锥的底面半径为 cm . 【答案】 5 【解析】 设圆锥的底面半径为r ,根据题意得2π•r=6030180π⨯,解得r=5, 即圆锥的底面半径为5cm .故答案为5.13、 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4cm ,则图中阴影部分面积为________cm 2.【答案】 4π【解析】 ∵∠BCA =90°,∠BAC =30°,AB =4cm ,∴BC =2,23AC =,∠A′BA =120°,∠CBC′=120°,∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)-S 扇形BCC′-S △ABC 222120π(42)4πcm 360=⨯-=. 14、 一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是__________.【答案】 5:4【解析】 如图1,连接OD ,∵四边形ABCD 是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD=222+1=5,∴扇形的面积24555=3608ππ⨯(); 如图2,连接MB 、MC ,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形,∴∠BMC=90°,MB=MC ,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=22, ∴⊙M 的面积是π×(22)2=12π, ∴扇形和圆形纸板的面积比是515=824ππ÷().15、 如图,△ABC 中,AC =BC ,AB =4,∠ACB =90°,以AB 的中点D 为圆心DC 长为半径作14圆DEF ,设∠BDF =α(0°<α<90°),当α变化时图中阴影部分的面积为________(14圆:∠EDF =90°,14圆的面积21π4r =⋅)【答案】 π-2【解析】 作DM ⊥AC 于M ,DN ⊥BC 于N ,连接DC ,如图所示:∵CA =CB ,∠ACB =90°,∴∠A =∠B =45°,DM AD =,DN =, ∴DM =DN ,∴四边形DMCN 是正方形,∴∠MDN =90°,∴∠MDG =90°-∠GDN ,∵∠EDF =90°,∴∠NDH =90°-∠GDN ,∴∠MDG =∠NDH ,在△DMG 和△DNH 中,MDG NDH DMG DNH DM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≌△DNH (AAS ),∴四边形DGCH 的面积=正方形DMCN 的面积,∵正方形DMCN 的面积2218DM AB ==21428=⨯=, ∴四边形DGCH 的面积218AB =, ∵扇形FDE 的面积22290πππ4π3601616CD AB ⋅⨯===, ∴阴影部分的面积=扇形面积-四边形DGCH 的面积=π-2.16、 如图,ABCD 是平行四边形,AB 是O 的直径,点D 在O 上1AD OA ==,则图中阴影部分的面积为__________.【答案】 34 【解析】 连接DO EO BE ,,,过点D DF AB F ⊥作于点,1AD OA AD AO DO ==∴==,,AOD ∴∆是等边三角形,ABCD 四边形是平行四边形,//60DC AB CDO DOA ∴∴∠=∠=︒,, ODE ∴∆是等边三角形,同理可得出OBE ∆是等边三角形且3个等边三角形全等, ∴阴影部分面积等于BCE ∆面积,36012DF ADsin DE EC =︒===,, ∴图中阴影部分的面积为:34.。
第三章圆8.圆内接正多边形课后练习2020-2021学年下学期九年级下册初中数学北师大版一、单选题(共12题)⌢上,则∠P的度数为()1.如图,正方形ABCD内接于⊙O,点P在ABA. 30°B. 45°C. 60°D. 90°2.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n多边形的边长相等,则n的值为()A. 3B. 4C. 5D. 63.已知圆内接正六边形的半径为2,则该内接正六边形的边心距为()A. 2B. 1C. √3D. √324.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是()A. 18°B. 36°C. 54°D. 72°5.如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A. 8B. 10C. 12D. 156.正多边形的内切圆与外接圆的半径之比为√2,则这个正多边形为()2A. 正十二边形B. 正六边形C. 正四边形D. 正三角形7.一个圆的内接正六边形与内接正方形的边长之比为()A. 3:2B. 1:√3C. 1:√2D. √2:√38.正方形外接圆的半径为4,则其内切圆的半径为()A. 2 √2B. √2C. 1D. √229.已知正六边形ABCDEF内接于⊙O,若⊙O的直径为2,则该正六边形的周长是()A. 12B. 6√3C. 6D. 3√310.半径为a的圆的内接正六边形的边心距是()A. a2B. √2a2C. √3a2D. a11.半径为R的圆内接正三角形的面积是()A. √32R2 B. πR2 C. 3√32R2 D. 3√34R212.如图,在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H.若该圆的半径为15cm,则线段GH 的长为()A. √5cmB. 5 √3cmC. 3 √5cmD. 10 √3cm二、填空题(共6题)13.如图,正五边形ABCDE内接于⊙O,点F在弧CD上,则∠BFE的度数为________14.如图,正方形ABCD和正六边形AEFCGH均内接于⊙O,连接HD;若线段HD恰好是⊙O 的一个内接正n边形的一条边,则n=________.15.若圆内接正方形的边心距为3,则这个圆内接正三角形的边长为________.16.数学家刘徽首创割圆术,用圆内接正多边形的面积去无限逼近圆面积并以此求出圆周率.如图,正六边形ABCDEF的边长为2,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.17.如图,正六边形ABCDEF内接于⊙O,若AB=3cm,则⊙O的半径为________.18.我国古代数学家刘徽创造的“割圆术”,利用了圆内接正多边形和外切正多边形的面积或周长,无限逼近圆来近似估计圆的面积或周长,从而估算出π的范围.如图1,用圆内接正方形和外切正方形周长可得2 √2<r<4,那么利用图2中的圆内接正六边形和外切正六边形周长可进一步将π的范围缩小到________(结果保留根号)三、综合题(共4题)19.如图,已知圆O内接正六边形ABCDEF的边长为6cm,求这个正六边形的边心距n,面积S .20.如图,ABCDE是⊙O的内接正五边形.求证:AE∥BD.21.试比较图中两个几何图形的异同,请分别写出它们的两个相同点和两个不同点。
3.8圆内接正多边形班级姓名【基础演练】1.下列说法错误的是( )A.圆内接正多边形每个内角都相等 B.圆内接正多边形都是轴对称图形C.圆内接正多边形都是中心对称图形 D.圆内接正多边形的中心到各边的距离相等2.对于以下说法:①各角相等的多边形是正多边形;②各边相等的多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形,你认为正确的有( )A.1个 B.2个 C.3个 D.4个3.中心角为30°的圆内接正n边形的n等于( )A.10 B.12 C.14 D.154.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B.2 C.3 D.2 35.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )A.30°B.35° C.45° D.60°第5题第6题6.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )A.30° B.45° C.55° D.60°7.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A.6,3 2 B.32,3C.6,3 D.62,3 28.如图,人民币的一角硬币正面图案中有一个圆内接正九边形,如果这个圆内接正九边形的半径是R,那么它的边长是( )A.Rsin20° B.Rsin40° C.2Rsin20° D.2Rsin40°第8题第9题9.如图,要拧开一个边长为a=6 mm的正六边形螺帽,扳手张开的开口b至少为( )A.6 2 mm B.12 mm C.6 3 mm D.4 3 mm10.半径为1的圆内接正三角形的边心距为____________.11.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于____________(结果保留根号).12.若一个正六边形的周长为24,求该正六边形的面积.(结果保留根号)【能力提升】 13.如图,正五边形ABCDE 内接于⊙O ,点M 为BC 中点,点N 为DE 中点,则∠MON 的大小为( )A .108°B .144°C .150°D .166°第13题 第14题 第15题14.如图,在⊙O 中,OA =AB ,OC ⊥AB 交⊙O 于C ,则下列结论错误的是( )A .弦AB 的长等于圆内接正六边形的边长 B .弦AC 的长等于圆内接正十二边形的边长C.AC ︵=BC ︵ D .∠BAC =30°15.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白=( ) A .3 B .4 C .5 D .616.如图,正六边形ABCDEF 中,AB =2,点P 是ED 的中点,连接AP ,则AP 的长为( )A .2 3B .4 C.13 D.11第16题 第17 题 第18题17.如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为____________.18.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的内接正三角形ACE 的面积为483,试求正六边形的周长.【拓展培优】19.如图1,2,3,…,m中,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是____________,图3中∠MON的度数是____________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案【基础演练】1.C 2.A 3.B 4.B 5.A 6.B 7.B 8.C 9.C 10.1211.1+ 2 12.如图,过点O 作OD ⊥AB ,垂足为D.∵∠AOB =360°÷6=60°,OA =OB ,∴△AOB 为等边三角形,且三条对角线把正六边形分成了六个全等的等边三角形.∵正六边形的周长为24,∴AB =4.∵OD ⊥AB ,∴∠AOD =30°,AD =2.在Rt △AOD 中,根据勾股定理,得OD =2 3.∴S △AOB =12×4×23=4 3.∴S 正六边形=6×43=24 3.【能力提升】13.B 14.D 15.C 16.C 17.2 618.连接OA ,作OH ⊥AE 于点H ,则∠OAH =30°,在Rt △OAH 中,设OA =R ,则OH =12R ,由勾股定理,得AH =OA2-OH2=R2-(12R )2=32R ,∴334R2=483,∴R =8.即正六边形的边长为8,周长为48.【拓展培优】19.(1)连接OA ,OB.∵正三角形ABC 内接于⊙O ,∴AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°.∵BM =CN ,∴AM =BN.∴△AOM ≌△BON(SAS).∴∠AOM =∠BON.∴∠AOM +∠BOM =∠BON +∠BOM.∴∠AOB =∠MON =120°.(2)90° 72°(3)∠MON =360°n.。
3.8 圆内接正多边形同步习题一.选择题1.如图,⊙O的周长等于4πcm,则它的内接正六边形ABCDEF的面积是()A.B.C.D.2.如图,已知正五边形ABCDE内接于⊙O,连结BD,CE相交于点F,则∠BFC的度数是()A.60°B.70°C.72°D.90°3.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是()A.2B.1C.D.4.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.155.如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4.则点O到FM的距离是()A.4B.C.D.6.如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108°B.118°C.144°D.120°7.如图,边长为3的正六边形ABCDEF内接于⊙O,则扇形OAB(图中阴影部分)的面积为()A.πB.C.3πD.8.边长相等的正方形与正六边形按如图方式拼接在一起,则∠ABC的度数为()A.10°B.15°C.20°D.30°9.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD10.如图,以正六边形ABCDEF的对角线CF为边,再作一个正六边形CFGHMN,若AB =,则EG的长为()A.2B.2C.3D.2二.填空题11.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).12.用两条宽均为2cm的纸条(假设纸条的长度足够长),折叠穿插,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正六边形ABCDEF,则折出的正六边形的边长为cm.13.同圆的内接正三边形、正四边形、正六边形的边长之比为.。