MNO2碳纳米管
- 格式:pdf
- 大小:1.03 MB
- 文档页数:3
第1章绪论1.1超级电容器简介超级电容器,也称电化学电容器,其性能介于电池和电容器之间。
近年来,电化学电容器(EC)因其高输出功率性能和循环寿命长,在电化学能量储存和转换领域得到了极大的关注。
作为一种主电源的可移动辅助能源设备,和电池或燃料电池一样,电化学电容器在短时间功率增强方面效果很好。
电化学电容器的电容材料电荷储存机制包括发生在电极和电解质界面处的电荷分离以及快速发生在电极上的法拉第反应。
由于电荷分离而产生的电容,通常被称为双电层电容(EDLC)。
因法拉第过程产生的电容器称为赝电容器。
因为这些类型的电容器电容量比传统的电容器大很多倍,所以又被成为超级电容器。
由于电荷分离而产生的电容,通常被称为双电层电容器(EDLC)。
因法拉第过程产生的电容称为法拉第准电容器。
因为这些类型的电容器电容量比传统的电容器大很多倍,所以称为超级电容器。
1.1.1超级电容与传统电池、电容器比较传统电池因为其功率密度值很难达到500kW/kg、充电时间长、充放电效率低、循环寿命短等缺点限制了它的发展,而静电电容器因为比电容太小而限制了其应用。
超级电容器则填补了电池和静电电容器之间的空白,它独特的性质使短时间大功率充放电储能机制成为可能。
表1.1 电池、静电电容器和超级电容器性能电池超级电容器静电电容器充电时间1~5h1~30s10-6~10-3放电时间0.3~3h1~30s10-5~10-3能量密度Wh/kg20~1001~10<0.1功率密度Wh/kg50~2001000~2000>10000循环效率0.7~0.850.90~0.95 1.0循环寿命500~2000>100000无限通过图 1.1,可以看出超级电容器具有另两种储能器件无法比拟的优点。
(1)充放电速度快,超级电容器是通过双电层充放电或者在电极活性材料表面发生的快速可逆的法拉第反应来进行充放电,这个过程几十秒就可以完成。
(2)功率密度高,这也是超级电容器最重要的一个优点。
碳纳米管的意思解释碳纳米管是一种由碳原子组成的纳米材料,具有极高的强度和导电性能。
它们是由单层碳原子通过特定的方式排列而成的管状结构。
碳纳米管因其独特的物理和化学性质,已经成为当今材料科学领域的研究热点。
碳纳米管的发现可以追溯到1991年,当时日本的一组科学家首次成功地制备出了这种材料。
在接下来的几年里,科学家们陆续发现了碳纳米管的许多特殊性质和应用潜力。
由于其具有高强度、高导电性和高热导性等特点,因此被广泛应用于电子器件、能源储存、生物医学、材料强化和复合材料等领域。
碳纳米管的制备方法有多种,包括电弧放电、化学气相沉积、化学还原等。
其中,电弧放电是一种较为成熟的制备方法,也是目前大规模制备碳纳米管的主要方法之一。
电弧放电的基本原理是在高温、高压、惰性气氛下,通过电弧将碳源材料加热至高温,使其蒸发并在惰性气氛中凝结形成碳纳米管。
碳纳米管的特殊结构和性质使其在许多领域具有广泛的应用前景。
在电子器件方面,碳纳米管可以用于制造场效应晶体管、透明导电膜、柔性电子器件等。
在能源储存方面,碳纳米管可以作为电极材料用于超级电容器和锂离子电池等。
在生物医学方面,碳纳米管可以用于药物传递、生物成像、光热治疗等。
在材料强化和复合材料方面,碳纳米管可以作为增强剂用于改善材料的力学性能和导电性能。
尽管碳纳米管在许多领域都具有广泛的应用前景,但是其制备和应用仍然面临着许多挑战。
例如,制备成本较高、纯度不高、生产规模有限等问题。
此外,由于碳纳米管的毒性和生物相容性等问题,其在生物医学领域的应用仍然需要进一步研究和探索。
总的来说,碳纳米管是一种具有重要应用价值的纳米材料。
随着科学技术的不断进步,碳纳米管的制备方法和应用领域也将不断扩展和深入。
相信在不久的将来,碳纳米管将成为各个领域的重要材料之一。
碳纳米管是什么材料碳纳米管是一种由碳原子构成的纳米材料。
它们具有独特的结构和特性,在材料科学和纳米技术领域引起了广泛的关注和研究。
碳纳米管可以是单壁碳纳米管(SWNT)或多壁碳纳米管(MWNT)。
在单壁碳纳米管中,碳原子以只有一个碳原子厚度的碳层形成管状结构,而在多壁碳纳米管中,形成了多层碳管。
碳纳米管具有许多独特的物理和化学性质,使其成为多个领域的研究热点。
首先,碳纳米管具有优异的力学性能。
由于碳原子之间的强共价键,碳纳米管具有很高的强度和刚度。
尽管碳纳米管的直径非常小,但它们可以以惊人的强度抵抗拉伸和压缩。
这使得碳纳米管成为可能的材料选择,用于构建轻型和高强度材料。
其次,碳纳米管具有优异的导电性能。
碳纳米管的导电性与其结构有关。
SWNT是从一个单一的碳层卷曲而成,因此具有较高的导电性,甚至可以比铜更好。
MWNT由多层碳管组成,导电性较差,但仍然较高。
这种优良的导电性使得碳纳米管成为纳米电子器件的重要组成部分,如场效应晶体管和纳米线。
此外,碳纳米管还具有出色的热导性。
由于碳纳米管的结构,热能可以在其结构的纵向方向上快速传导,而横向方向上的传导受到限制。
这使得碳纳米管成为制造高效热界面材料的理想选择,用于提高电子器件和热管理系统的散热性能。
碳纳米管还具有很强的化学稳定性和抗腐蚀性。
由于碳纳米管是由碳原子构成的,它们对大多数化学物质都具有良好的抗腐蚀性。
这种化学稳定性使得碳纳米管能够在极端的环境条件下使用,例如高温和酸碱溶液中。
由于碳纳米管具有独特的结构和性质,它们在许多领域都有着广泛的应用。
在材料领域,碳纳米管被用于制造复合材料、纳米增强材料和高性能纤维。
碳纳米管还被应用于电子领域,包括纳米电池、电子器件和传感器。
此外,碳纳米管还用于生物医学领域,如药物传递和生物传感器。
然而,尽管碳纳米管在许多领域都有着广泛的应用前景和潜力,但其大规模生产和应用仍然面临许多挑战。
首先,碳纳米管制备方法的成本较高,限制了其商业化应用。
碳纳米管研究报告碳纳米管是一种新兴的材料,它既具有高强度又有超强的耐腐蚀性,在未来将会发挥重要作用。
本文将结合碳纳米管的化学特性、力学性能、电学性能和生物医学应用,对它进行深入研究,旨在发掘它的潜力,未来能够更好地应用它。
一、碳纳米管的化学特性碳纳米管具有较高的碳氧化物结构,具有超强的耐腐蚀性。
其表面具有一定的电荷,这可以改变它的生物活性,增加其作为纳米材料的有效性。
此外,还有一些碳氧化物,如碳酸钙等,具有很好的附着力,对于不同的应用有着不同的功能。
二、碳纳米管的力学性能碳纳米管有着优异的力学性能,其弹性模量的大小可以根据其结构而定,它们有着非常高的抗弯强度,抗拉强度比钢材还要高,耐磨性也比钢材高。
同时,它们还具有很强的抗冲击能力,甚至在超高温下也能保持一定的强度。
三、碳纳米管的电学性能碳纳米管也具有优异的电学性能,其电阻率极低,可以大大提高电子材料的效率;其容量也极高,约为石墨烯4倍,能够有效地储存电能。
此外,它们还具有良好的导电性,可以抑制电路的失效,这在电子制造领域有重要作用。
四、碳纳米管的生物医学应用碳纳米管也可用于生物医学领域。
由于它们具有超强的耐腐蚀性及其高强度,可以用来制造医疗设备、改善人体组织修复治疗效果等。
另外,它们还可以用于基因治疗,具有增强免疫力的功效;用于抗癌药物的药物载体,以最大程度地抑制癌细胞的生长;在细胞快速传输信号的实验中,用于提高和优化实验效果等。
以上就是碳纳米管的一些特性和应用。
综上所述,碳纳米管有着较高的力学性能、超强的耐腐蚀性和良好的电学性能,以及众多生物医学应用,拥有着前所未有的潜力及应用前景。
未来需要加强对它的研究,进一步开发其功能,以及制定更好的应用方式,以期达到最佳效果。
新材料科学中的碳纳米管材料碳纳米管是一种由碳原子构成的管状结构,在新材料科学中具有重要的应用价值。
碳纳米管的特殊结构使得它具有许多独特的性质和优异的物理化学性能,有着广泛的应用范围和前景。
一、基本介绍碳纳米管是一种类似于石墨烯的碳材料,其结构是由碳原子构成的具有管状形态的微观结构。
碳纳米管的直径在纳米级别,一般为1纳米到50纳米之间。
它的长度可以是数十微米到数百微米,甚至可以达到数厘米以上。
碳纳米管具有很多独特的性质,比如强度高、导电性好、导热性好、化学稳定性强等等。
这些性质决定了碳纳米管可以广泛应用于电子、机械、光学、化学等领域。
二、应用领域1.电子领域在电子领域中,碳纳米管作为一种新型的半导体材料,具有很多优异的性质,如高电导率、高耐电压性、超短开关时间等。
这些特点使得碳纳米管可以广泛应用于晶体管、场效应晶体管、逆变器、传感器等电子器件中。
2.机械领域在机械领域中,碳纳米管有着很高的强度和韧性,可以被用于制作高强度的机械零部件。
例如,碳纳米管可以制成强度高、重量轻、耐磨损的轮胎、杆、桥梁等。
此外,碳纳米管还可以制成高性能的自行车、汽车、飞机等机械设备。
3.光学领域在光学领域中,碳纳米管可以制成具有高透明度和高导电性的薄膜,可以被应用于太阳能电池板、智能窗等光学器件中。
4.化学领域在化学领域中,碳纳米管可以被用作催化剂、吸附剂和分离材料。
例如,碳纳米管可以被用来催化氢气的产生和净化工业废气。
此外,碳纳米管还可以被用来制备高效的分离膜,用于饮用水的净化。
三、未来发展趋势由于碳纳米管具有独特的物理化学性质,有着广泛的应用前景,因此在近年来得到了广泛的关注。
未来,碳纳米管的发展将主要集中在以下几个方面:1.化学合成方法的改进当前,碳纳米管的主要制备方法是电弧放电法、激光热解法和化学气相沉积法。
然而这些方法存在制备成本高、质量不稳定、难于大规模制备等问题。
因此,未来的发展方向是改进或发展出更简单、更可控性强、更可扩展的制备方法,以适应未来碳纳米管的大规模制备需求。
碳纳米管的制备和表征研究碳纳米管是一种非常重要的纳米材料,由于其具有优异的物理和化学性质,能够广泛应用于电子、化学、生物和医学等领域,成为了当今最热门的研究课题之一。
本文将介绍碳纳米管的制备和表征研究,旨在尽可能全面深入地介绍它的相关研究进展。
一、碳纳米管的制备方法碳纳米管的制备方法主要有以下几种:1. 等离子体增强化学气相沉积法该方法先用金属作为催化剂,在氧化镁或氧化铝的载体上制备成催化剂阵列,通过引入碳源和氢气,使用等离子体的方式来生成碳纳米管。
2. 化学气相沉积法该方法将催化剂和碳源同时放置在反应器内,不用外加能量,通过化学反应来制备碳纳米管。
3. 化学还原-热解法该方法先用催化剂将氧化石墨烯还原为石墨烯,然后利用热解技术进行碳化反应,制备碳纳米管。
以上三种方法是主流的制备碳纳米管的方法,但随着研究的深入,其它方法,如水热合成法、溶液-液相界面法等也逐渐被应用于制备碳纳米管。
二、碳纳米管表征技术为了对制备的碳纳米管进行表征和刻画,研究人员开发出了各种表征技术来研究其结构和性质,下面我们来介绍一些常用的表征技术:1. 透射电子显微镜(TEM)透射电子显微镜是最常用的碳纳米管表征技术之一,通过它可以直观的获得碳纳米管的观察图像。
2. 扫描电子显微镜(SEM)与TEM不同,扫描电子显微镜可以观察到碳纳米管的表面形貌,并能够获得表面形貌的三维结构图像。
3. 拉曼光谱(Raman)拉曼光谱具有非常高的灵敏性和分辨率,能够通过对碳纳米管的拉曼光谱图像进行功率谱分析,可以获得碳纳米管的结构、相互作用和物理特性等信息。
4. X射线粉末衍射(XRD)利用X射线的衍射实验,可以得到碳纳米管的晶格结构,晶格常数以及结晶度等信息。
5. 热重分析(TGA)热重分析可以帮助我们展现出材料在温度变化下的失重信息,从而推断出碳纳米管的热稳定性和热分解温度等相关信息。
以上技术对于制备和表征碳纳米管都有非常大的帮助,不同的表征方法可以从不同角度来对碳纳米管进行综合分析,有助于我们更好地了解碳纳米管的结构和性质。
碳纳米管概述碳纳米管是一种由石墨碳原子结晶而成的无缝、中空的管状纳米碳材料,可以看作是由石墨烯层卷起来的直径只有几纳米的微型管体,管的一端或两端由富勒烯半球封帽而成。
根据碳纳米管中碳原子层数不同,将碳纳米管分为单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)两种。
单壁碳纳米管由单层石墨卷成,管径为1-6Na,具有很高的长径比,是结构完美的单分子材料。
多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成,层间距均为0.34Na。
主要性能1、优异的力学性能由于碳纳米管的结构与高分子材料的结构相似,但碳纳米管的结构更稳定,且具有超高的长径比,所以,碳纳米管具有超高的抗拉强度、良好的柔韧性和弹性。
碳纳米管的抗拉强度是钢的100倍,弹性模量是钢的5倍,而密度只有钢的1/6。
碳纳米管在被压扁后撤去压力,可以象弹簧一样立即恢复原状。
2、良好的导电性能由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能,且随着碳纳米管管径的减少表现出更好的导电性能,最高可以达到金属铜的电导率的一万倍。
据称,当管径小于6Na时,碳纳米管可看成是一根量子导线;当管径小于0.7Na时,碳纳米管在低温条件下具有超导性能。
3、良好的传热性能由于碳纳米管具有超高的长径比,沿其长度方向具有很高的热交换性能,而沿其径向方向热交换性能较低,所以,利用碳纳米管可以合成各向异性的热传导材料。
此外,碳纳米管具有较高的热导率,只要在其它材料中掺入少量碳纳米管,就可以大大提高复合材料的热导率。
4、优异的光学性能碳纳米管具有光学偏振性、光学各向异性、电致发光性及对红外辐射异常敏感等性能。
5、良好的电磁性能碳纳米管的尖端具有纳米尺度的曲率, 在相对较低的电压下就能够发射大量的电子, 呈现出良好的场致发射特性。
6、其它性能碳纳米管还具有熔点高(据称是已知材料中熔点最高的)、吸附能力强、催化催催化性能、宽带微波吸收能力强等性能主要应用1、用于制备碳纳米合成材料,如高强度复合材料、导电塑料、电磁干扰屏蔽材料、隐形材料、暗室吸波材料等。
新型碳纳米管材料嘿哟,咱今天就来说说这神奇的新型碳纳米管材料!我第一次听说碳纳米管材料的时候,那叫一个好奇呀。
这玩意儿名字听起来就挺高大上的,感觉像是从未来穿越过来的高科技材料。
后来我专门去了解了一下,哎呀妈呀,可真是不看不知道,一看吓一跳。
这碳纳米管,长得就跟那微观世界里的小管道似的。
想象一下,一根根细细的、黑黑的管子,排列得整整齐齐,仿佛是一群小士兵在那里站岗。
它的直径特别小,小到啥程度呢?就跟头发丝的千分之一差不多!这要是不借助那些高级的显微镜,咱的肉眼根本就看不见。
我有个搞科研的朋友,整天就跟这些碳纳米管材料打交道。
有一回我去找他,他正在实验室里捣鼓那些玩意儿。
我凑过去一看,只见他戴着个大眼镜,眼睛都快贴到显微镜上了,嘴里还念念有词:“哎呀,这碳纳米管可真是个宝贝呀!”我就好奇地问他:“这东西到底有啥神奇的呀?”他抬起头,一脸兴奋地跟我说:“嘿,这碳纳米管啊,那可厉害啦!它比钢铁还结实百倍呢,你想想,那么细的一根管子,居然有这么大的强度!要是用它来造东西,那得多牛啊!”而且啊,这碳纳米管还特别轻。
我朋友给我打了个比方,说如果用碳纳米管造一架梯子,那这梯子轻得咱一只手就能拎起来,但是却能承受住特别重的东西。
我当时就想,这要是真的,那以后咱去太空可就方便多啦,说不定真能坐着“碳纳米管天梯”去太空旅行呢!除了结实又轻便,碳纳米管的导电性也特别好。
我朋友说,这要是用在电子设备上,那电子设备的性能可就会大大提升。
我就联想到,以后咱的手机、电脑啥的,可能会变得更加小巧、更加厉害,速度也会快得惊人。
说不定下载一部电影,几秒钟就搞定啦!这新型碳纳米管材料在医疗领域也有大用处呢。
我听说啊,科学家们正在研究用碳纳米管来输送药物。
你想啊,把药物装在碳纳米管里,然后让它精准地到达病变的部位,这样既可以提高药物的疗效,又能减少药物对身体其他部位的副作用。
这可真是太神奇啦!说不定以后那些难治的病,都能被碳纳米管给攻克了。
Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes wWei Chen,a Zhongli Fan,a Lin Gu,b Xinhe Bao c and Chunlei Wang*aReceived11th January2010,Accepted1st April2010First published as an Advance Article on the web21st April2010DOI:10.1039/c000517gThe confinement within carbon nanotubes(CNTs)improves the electrochemical reversibility of CNT-confined MnO2nano-particles and benefits their capacitive enhancement,which exhibit a specific capacitance of225F gÀ1for the composites and MnO2normalized capacitance as high as1250F gÀ1. Electrochemical Capacitors(ECs)with substantially higher power densities,faster charge/discharge capability and longer cycle lifetime have attracted considerable attention.1Extensive efforts have been devoted to increasing EC’s specific capacitance or energy density by introducing pseudocapacitive metal oxides,which produce higher capacitance than double-layer carbonaceous materials.2Among the available metal oxides,although conductive RuO2shows outstanding pseudocapacitive performance,its high cost hinders it from the large-scale application.3Recently,increasing research efforts have been focused on alternative low cost transition-metal oxide MnO2because of its high energy density,environmental compatibility and natural abundance.4However,MnO2shows a low capacitance without conductive additives due to its intrinsically poor electrical conductivity.5Some studies have shown the benefits of using CNTs as conducting supports to improve the specific capacitance of MnO2.6The specific capacitance based on MnO2are reported in the range of B150–790F gÀ1generally,6where MnO2particles are deposited on the outer surface of CNTs.Since the pseudo-capacitive MnO2stores charge by virtue of the circulation between Mn(IV)/Mn(III)species,7the pseudocapacitance can be further increased by modifying the redox couple composition of manganese oxides.It is reported that the well-defined nano-channel of CNTs with unique electronic tuning properties can provide an intriguing confinement environment,in which nano-particles are likely to exist in a more reduced state.8Remarkable enhancement of the catalytic activities have already been observed over the CNT-confined catalysts due to the tuned properties of active species via confinement inside CNTs.9We expect that the modified redox properties of particles inside CNTs could be beneficial for increasing the pseudocapacitive performance of MnO2.Here CNT-confined MnO2composites are used as electrode materials for ECs combining pseudo-capacitive(MnO2)and double-layer(CNTs)types into one capacitor.The pseudocapacitance of MnO2encapsulated within CNTs was greatly enhanced due to the improved electrical conductivity and the formation of Mn(IV)/Mn(III)redox couples, which was induced by the unique confinement inside CNTs. The MnO2nanoparticles were introduced into the CNT channels by a wet-chemistry method using the capillary force of the tubes aided by ultrasonic treatment and stirring,by which the sample denoted as MnO2-in-CNT was obtained.For comparison,particles with same composition were dispersed on the outer surface of CNTs with closed tips to obtain MnO2-out-CNT.The loading of MnO2is15wt%for both samples(See ESI w SI1).TEM investigation reveals that most of the particles are located inside the nanotubes for MnO2-in-CNT and almost all particles are located outside CNTs (Fig.1a and b and ESI w Fig.S2a and b).For better visualization of the MnO2particle position,high-angle annular-dark-field (HAADF)images of MnO2-in-CNT(Fig.1c and d)and MnO2-out-CNT(Fig.1e and f)were acquired.Note that the HAADF contrast is roughly proportional to Z1.7,where Z is the atomic number.10Since MnO2is much heavier than CNTs, a significantly brighter contrast is expected at the regions where MnO2concentrates.By analysis of the corresponding histograms,it is found that the relative position of MnO2 particles with CNTs is highly in agreement with the results shown in Fig.1a and b,where the parts highlighted in red with the contours marked in yellow represent the MnO2particles. Raman spectra of blank cCNTs and oCNTs(i.e.,CNTs with closed and open tips,see ESI w SI1)exhibit two bands centered at1590and1325cmÀ1(Fig.2Aa and b),corresponding to the characteristic E2g and D modes of carbon nanotubes, respectively.11No Raman bands from blank CNTs at frequency below1000cmÀ1are detected,where the characteristic Mn–O vibration modes of manganese oxides are located.12Fig.1Bright-field TEM micrographs of the samples(a)MnO2-in-CNT and(b)MnO2-out-CNT.(c)–(f)HAADF images showing the MnO2 particle positions by analysis of the respective histograms.a Department of Mechanical and Materials Engineering,Florida International University,Miami,FL33174,USA.E-mail:wangc@fi;Fax:+13053481932;Tel:+13053481217b Stuttgart Center for Electron Microscopy,Max-Planck Institutefor Metals Research,Stuttgart70569,Germanyc State Key Laboratory of Catalysis,Dalian Institute of ChemicalPhysics,The Chinese Academy of Sciences,Dalian116023,P.R.Chinaw Electronic supplementary information(ESI)available:Detailedsample preparation;additional TEM,Raman characterization;calculation method of specific capacitance;ESD experimentalsection;results of additional electrochemical experiments.See DOI:10.1039/c000517gCOMMUNICATION /chemcomm|ChemCommAfter deposition of MnO 2particles on the outer surface of cCNTs (Fig.2Ac),a new Raman band appears in the range 580–670cm À1centered at 631cm À1.This band can be assigned to Mn(IV )–O bond vibration in MnO 2,12as manifested by a similar Raman band observed in the reference MnO 2(Fig.2Ae)prepared by the wet-chemistry method.However,after introducing MnO 2particles into the oCNT channels,two Raman bands centered at 637and 364cm À1are revealed,respectively (Fig.2Ad).The former can be assigned to the contribution of n Mn(IV)–O ,but with a blue-shift of 6cm À1compared to that of the outer MnO 2particles.The latter agrees well with the Mn(III )–O modes observed in the reference Mn 2O 3(see ESI w SI2),indicating the presence of reduced oxide Mn 2O 3inside CNTs.13We ascribe the blue-shift of n Mn(IV )–O and the formation of reduced oxides inside CNTs to the interaction between encapsulated MnO 2and interior CNT walls.Due to deviation from planarity,p -electron density of CNT is not evenly distributed,i.e.,the interior surface is electron-deficient while the outer surface is electron-enriched.14Thus,MnO 2particles interact with the interior walls differently from the exterior walls.Within the nanotubes,the electron density loss can be partially compensated through the interaction with the encapsulated MnO 2,which leads to the destabilization of the MnO 2crystal lattice.As a result,n Mn(IV )–O shifts toward high frequency and MnO 2is partially reduced to Mn 2O 3by the CNT walls,which is similar to the phenomenon reported on Fe 2O 3confined within CNTs previously.8bXRD patterns of blank cCNTs and oCNTs are displayed in Fig.2B a,b.The intense peak at 2y =25.91and broad ones at 42.71,43.91,53.71and 78.41correspond to the characteristic [002],[100],[101],[004]and [110]diffraction peaks of CNTs (JCPDS 65-6212),respectively.Fig.2Be shows the XRD patterns of the reference MnO 2and all peaks match the standard spectra of b -MnO 2well (JCPDS 65-2821).For the samples MnO 2-out -CNT and MnO 2-in -CNT (Fig.2Bc and d),diffraction peaks corresponding to b -MnO 2[110],[101],[111]and [211](marked with diamonds)are detected.Moreover,it is notable that three new peaks appear (marked with triangles)in MnO 2-in -CNT,which can be assigned to Mn 2O 3(JCPDS 33-0900)[110],[113]and [116],respectively.This demonstrates that both Mn 2O 3and MnO 2coexist in the sample MnO 2-in -CNT,whereas no such reduced species are found for MnO 2-out -CNT,in agreement with the Raman results.Fig.3shows the representative cyclic voltammetry (CV)results of the samples.The CV profiles exhibit a nearly symmetrical rectangular shape in the rang of À0.04–0.96V,which is an ideal capacitive behavior involving two types of capacitive contributions including double-layer capacitance generated from CNTs and pseudocapacitance from MnO 2.The former stores charge electrostatically and the latter stores charge in virtue of highly reversible redox reactions eqn (1):15Mn(IV )O 2+x Na ++y H ++(x +y )e À2Mn(III )(x +y ),Mn(IV )1À(x +y )OONa x H y(1)In addition,broad anodic peaks at 0.72–0.84and 0.59–0.80V for the samples MnO 2-in -CNT and MnO 2-out -CNT are detected,respectively,which can be ascribed to Mn(III )to Mn(IV )oxides transformation process,i.e.,MnO 2(S)+4H ++e À2Mn 3++2H 2O since its standard electrode potential is at 0.75V (vs.Ag/AgCl).16The oxidation potential of MnO 2-in -CNT is obviously positive-shifted in contrast to that of MnO 2-out -CNT.It was reported that the CNT-confined environment is inclined to retain reduced oxidation state for transition-metal oxides.8The CNT-confined manganese oxide particles are facile to form lower oxidation-state species compared to exterior particles,as evidenced by XRD and Raman spectra.Thus the manganese oxides encapsulated inside the CNTs are oxidized at relatively higher potential compared to outer ones.The specific capacitances of the samples are listed in Table 1,which were calculated by integrating the area of CV curves at 2mV s À1(See ESI w ,SI3).It shows that the double-layer capacitance of blank cCNTs and oCNTs is 25and 37F g À1,respectively.The oCNTs have a higher value since that their inner surfaces are also accessible to electrolyte ions.The specific capacitance of MnO 2-in -CNT is 225F g À1,which is much higher than that of MnO 2-out -CNT (144F g À1).It is noted that the specific capacitance of the reference MnO 2(13F g À1)is much lower than those reported by literatures,5,17in which MnO 2was mixed with conductive additives (acetylene carbon,graphite,etc.)and binders.Herein,all samples were deposited directly by the Electrostatic Spray Deposition (ESD)method to avoid the influence of additional carbonaceous and other materials (see ESI w SI4).The insufficient conductivity of the reference MnO 2deposited on glassy carbon substrate results in such low specificcapacitance.Fig.2(A)Raman spectra and (B)XRD patterns of (a)cCNTs,(b)oCNTs,(c)MnO 2-out -CNT,(d)MnO 2-in -CNT,and (e)reference MnO 2.Fig.3Cyclic Voltammetry curves of blank cCNTs (solid line),oCNTs (dashed line),MnO 2-out -CNT (dotted line)and MnO 2-in -CNT (dash dotted line)at scan rate 2mV s À1in 1M Na 2SO 4.When MnO2particles are supported on CNTs,either inside or outside the channels,their pseudocapacitances increase greatly due to the improvement of electrical conductivity.The MnO2-normalized pseudocapacitance of MnO2-out-CNT is790F gÀ1 by subtracting the double-layer capacitance of cCNTs from total capacitance,which is similar to the result(784F gÀ1) reported in the ref.6d.For the sample MnO2-in-CNT,the MnO2-normalized pseudocapacitance is1250F gÀ1,which is much higher than that of MnO2-out-CNT.As we know,highly reversible redox reactions at the surface and subsurface of active materials are the nature of charge storage in pseudo-capacitor.The coexistence of Mn2O3and MnO2inside CNTs would tend to form Mn(IV)/Mn(III)redox couples,which is the keystone of Faradaic redox reactions of MnO2(eqn(1))when cycled in aqueous electrolyte.The exclusive contribution of Mn2O3on the capacitance is ruled out by a comparison experiment with Mn2O3-in-CNT and Mn2O3-out-CNT as electrode materials(see ESI w SI5).Such a Mn(IV)/Mn(III) assembly incorporated inside CNT facilitates the reversible insertion-deinsertion of Na+or H+present in the electrolyte,15,18 which further enhance the reversibility of redox reactions. Meanwhile,we found despite that MnO2nanoparticles with specific capacitance as high as1380F gÀ1were reported,15the theoretical value of1110F gÀ1is expected for a redox process involving one electron per manganese atom.However,the pseudocapacitance of MnO2-in-CNT based on MnO2(1250F gÀ1) is larger than the theoretical value,implying that the contribution from the CNT double-layer capacitance in MnO2-in-CNT substantially exceeds that of blank oCNTs.Gogotsi et al. reported the anomalous capacitance increase in carbide-derived carbon with pore sizes lower than1nm.19These results were explained by a desolvation of the electrolyte ions entering to subnanometer pores,resulting in a sieving effect at pore sizes below the size of the solvated ions.19For the sample MnO2-in-CNT,the nanotube space was occupied by MnO2 nanoparticles encapsulated inside CNTs(Fig.1a)thus forming subnanometer channels.Although we cannot accurately verify the contribution of the sieving effect in MnO2-in-CNT,a simple estimation could be made by assuming MnO2-normalized pseudocapacitance of MnO2-in-CNT is close to the theoretical value,the double-layer capacitance is about150%as high as that of blank bining the Mn(IV)/Mn(III)redox couples and the amplified double-layer capacitance,the composite MnO2-in-CNT produce higher specific capacitance compared to MnO2-out-CNT.In summary,we reported a striking enhancement of the capacitive performance of MnO2nanoparticles confined inside CNTs as the electrode materials for electrochemical capacitors. The formation of Mn(IV)/Mn(III)redox couples is responsible for the significant increase in the pseudocapacitance of manganese oxides encapsulated.Meanwhile,CNT double-layer capacitance increased from the desolvation of electrolyte ions (sieving effect)inside the channels of CNTs blocked by MnO2 nanoparticles.This synergetic effect leads to a significant increase in the specific capacitance on the CNT-confined MnO2composites.This work was supported by US Defense Advanced Research Projects Agency(No.HR0011-08-1-0036)and American Chemical Society(Petroleum Research Fund, 49301-0N110).The authors also thank AMERI staffin FIU. Notes and references1(a) B. E.Conway,Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications,Kluwer,New York, 1999,p.29;(b)ler and P.Simon,Science,2008,321,651. 2P.Simon and Y.Gogotsi,Nat.Mater.,2008,7,845.3J.P.Zheng,P.Cygan and T.Jow,J.Electrochem.Soc.,1995,142, 2699.4J.Chang and W.Tsai,J.Electrochem.Soc.,2003,150,A1333.5H.Y.Lee,S.W.Kim and H.Y.Lee,Electrochem.Solid-State Lett.,2001,4,A19.6(a)S.B.Ma,K.W.Nam,W.S.Yoon,X.Q.Yang,K.Y.Ahn, K.H.Oh and K.B.Kim,J.Power Sources,2008,178,483;(b)X.Xie and L.Gao,Carbon,2007,45,2365;(c)E.Raymundo-Pinero,V.Khomenko, E.Frackowiak and F.Beguin, J.Electrochem.Soc.,2005,152,A229;(d)Z.Fan,J.Chen,B.Zhang,B.Liu,X.Zhang and Y.Kuang,Diamond Relat.Mater.,2008,17,1943;(e)H.Zhang,G.Cao,Z.Wang,Y.Yang,Z.Shi and Z.Gu,Nano Lett.,2008,8,2664.7S.C.Pang,M.A.Anderson and T.W.Chapman,J.Electrochem.Soc.,2000,147,444.8(a)W.Chen,X.Pan,M.G.Willinger,D.S.Su and X.Bao,J.Am.Chem.Soc.,2006,128,3136;(b)W.Chen,X.Pan and X.Bao, J.Am.Chem.Soc.,2007,129,7421.9(a)X.Pan,Z.Fan,W.Chen,Y.Ding,H.Luo and X.Bao,Nat.Mater.,2007,6,507;(b)W.Chen,Z.Fan,X.Pan and X.Bao, J.Am.Chem.Soc.,2008,130,9414;(c)X.Pan and X.Bao, mun.,2008,47,6271;(d) E.Castillejos, P.J.Debouttiere,L.Roiban,A.Solhy,V.Martinez,Y.Kihn, O.Ersen,K.Philippot,B.Chaudret and P.Serp,Angew.Chem., Int.Ed.,2009,48,2529.10S.J.Pennycook,Ultramicroscopy,1989,30,58.11P.C.Eklund,J.M.Holden and R.A.Jishi,Carbon,1995,33,959. 12(a) F.Buciuman, F.Patcas,R.Craciun and D.R.T.Zahn, Phys.Chem.Chem.Phys.,1999,1,185;(b)M.C.Bernard,A.H.L.Goff,B.V.Thi and S.C.de Torresi,J.Electrochem.Soc.,1993,140, 3065.13Y. F.Han, F.Chen,Z.Zhong,K.Ramesh,L.Chen andE.Widjaja,J.Phys.Chem.B,2006,110,24450.14D.Ugarte,A.Chatelain and W.A.de Heer,Science,1996,274, 1897.15M.Toupin,T.Brousse and D.Blanger,Chem.Mater.,2004,16, 3184.16A.J.Bard,R.Parsons and J.Jordan,Standard Potentials in Aqueous Solutions,Marcel Dekker,New York,1985.17(a)M.Toupin,T.Brousse and D.Belanger,Chem.Mater.,2002, 14,3946;(b)Y.U.Jeong and A.Manthiram,J.Electrochem.Soc., 2002,149,A1419.18S.Devaraj and N.Munichandraiah,J.Electrochem.Soc.,2007, 154,A80.19(a)J.Chmiola,G.Yushin,Y.Gogotsi,C.Portet,P.Simon and P.L.Tabema,Science,2006,313,1760;(b)J.Chmiola,rgeot, P.L.Taberna,P.Simon and Y.Geogotsi,Angew.Chem.,Int.Ed., 2008,47,3392.Table1Specific capacitances of the samplesSample Specific capacitanceobtained byCV curves(F gÀ1)aSpecific capacitancenormalized byMnO2(F gÀ1)cCNTs25—oCNTs37—MnO21313MnO2-out-CNT144790bMnO2-in-CNT2251250ca Calculated by integrating area of CV curves.b Based on weight percentage of MnO2by subtracting the specific capacitance of blank cCNTs.c Based on weight percentage of MnO2by subtracting the specific capacitance of blank oCNTs.。