行列式练习题(新)
- 格式:doc
- 大小:202.46 KB
- 文档页数:7
第一章 行列式习题1. n 阶行列式D 的值为c ,若将D 的第一列移到最后一列,其余各列依次保持原来的次序向左移动,则得到的行列式值为 。
(1(1)n c --)2. n 阶行列式D 的值为c ,若将D 的所有元素改变符号,得到的行列式值为 。
((1)n c -)3. 2(1)(2,1,21,2,,1,)(21)0(23)0122k k N k k k k k k k k --+=-++-+++=+?。
4. 由行列式的定义计算行列式413331233626xx x x xx展开式中4x 和3x 的系数。
(3412, 12x x -)(分析:4x 的系数:四个元素中必须全都包含x 。
第一行只能取11a ,第三行只能取33a ,这样第二、四行只能取22a 和44a ,则此项为(1234)411223344(1)4312N a a a a x x x x x -=⋅⋅⋅=。
3x 的系数:(2134)(4231)3331221334441223314(1)(1)3912N N a a a a a a a a x x x -+-=--=-。
)5. 已知1703,3159,975,10959能被13整除,不直接计算行列式17033159097510959的值,证明他是13的倍数。
证明:12341701703170170341000131531593153159410021309709750979754103109510959109510959l c c l c c l c c l +⋅+⋅=⋅+⋅,能被13整除。
注意,以下两个行列式:170317037033159315915909759759751095910959959≠,所以一定要加到最后一列上。
6. 设行列式311252342011133--=--D ,求11213141243A A A A +--及2123242-++M M M 。
(0和-5)解:112131412112423424301011333A A A A -+--==----。
行列式 练习题一、判断题1. 行列式的行数和列数可以相同也可以不同。
( )2. n 阶行列式共有2n 个元素,展开后共有n !项。
( )3. n 阶行列式展开后的n !项中,带正号的项和带负号的项各占一半。
( )4. 行列式D 中元素ij a 的余子式ij M 与其代数余子式ij A 符号相反。
( )5. 上(下)三角形行列式的值等于主对角线上元素的乘积。
( )6. 行列式与它的转置行列式符号相反。
( )7. 行列式中有一行的元素全部是零则行列式的值为零。
( )8. 行列式中有两行元素相同,行列式的值为零。
( )9. 行列式中有两行元素成比例,行列式的值为零。
( ) 10.互换行列式的两行,行列式的值不变。
( ) 11. 行列式中某一行的公因子k 可以提到行列式符号之外。
( ) 12. 行列式中若所有元素均相同,则行列式的值为零。
( ) 13. 行列式的值等于它的任一行(列)的元素与其对应的代数余子式乘积。
( )14. 行列式某一行(列)的元素与另一行(列)的对应的元素的代数余子式乘积之和为零。
( ) 15. 齐次线性方程组的系数行列式0D ≠,则它仅有零解。
( )二、填空题1.=______x yyx -。
2.sin cos =______cos sin θθθθ-。
3. 123246=______345。
4.2-20310=______450。
5.=______a x xx b x x x c。
6. 211123=0______49x x x =,则。
7.222031,005D =-已知111213=______M M M -+则。
8.=______x y x y y x y x x y x y+++。
9.100110=______011001a b c d---。
10.222=______a b c a b c b c c a a b+++。
11. 已知21341023,15211152D =-则1323432=______A A A ++。
线性代数第1章行列式试卷及答案第一章行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 2 61422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组??=+=-=-+0404033232321kx x x x x kx x 有非零解,则k =( B )9.(考研题)行列式0000000ab a bcd c d=( B )A.()2ad bc - B.()2ad bc -- C.2222a d b c - D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112aa a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A 24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
第九讲行列式单元测试题点评一、填空题〔每题2分,总分值20分〕1.全体3阶排列一共有6个,它们是123,132,213,231,312,321;2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次对换变为奇排列;3. 行列式D和它的转置行列式D'有关系式D D'=;4. 交换一个行列式的两行〔或两列〕,行列式的值改变符号;5. 如果一个行列式有两行〔或两列〕的对应元素成比例,那么这个行列式等于零;6. 一个行列式中某一行〔列〕所有元素的公因子可以提到行列式符号的外边;7. 把行列式的某一行〔列〕的元素乘以同一数后加到另一行〔列〕的对应元素上,行列式的值不变;8. 行列式的某一行〔列〕的元素与另一行〔列〕的对应元素的代数余子式的乘积之和等于零;9.111212221122; 00nnnnnnaa aa aa a aa=10.当k=22±时,542k kk=。
二、判断题〔每题3分,总分值24分〕1.1)(,)(31221±==k i i i i k i i i n n ππ则若〔∨〕的符号的一般项则设n n j i j i j i nnn n n n a a a a a a a a a a a a D2211D ,.2212222111211=.)1()(21n j j j π-是〔×〕3. 假设n(n>2)阶行列式D=0,那么D 有两行〔列〕元素一样. (×) 4.假设n 阶行列式D 恰有n 个元素非0,那么D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法那么求解。
〔×〕6.假设行列式D 的一样元素多于2n n -个,那么D=0. (×)7.111213132333212223122223313233112131a a a a a a a a a a a a a a a a a a =(×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。
一、填空题1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题1.由定义计算行列式nn 0000010020001000-= ( ). (A )!n(B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x x x x f 21123232101)(=中,3x 的系数是( ).(A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8.三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程229132513232213211x x --=0的根为___________ .二、计算题1.8171160451530169144312----- 2.dcb a10110011001---3.abbb a b b b aD n=4.111113213************n n n n n a a a a x a a a a x a a a a x a a a a x D ---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n 。
.第1章行列式(作业1) 一、填空题1.设自然数从小到大为标准次序,则排列13 ⋯(2n1)24 ⋯(2n)的逆序数为,排列13⋯(2n1)(2n)(2n 2)⋯2的逆序数为.2.在6阶行列式中,a23a42a31a56a14a65这项的符号为. 3.所有n元排列中,奇排列的个数共个.二、选择题00010002001.由定义计算行列式=().n100000000n(A)n(n1)!()(n1)(n2)()n!(B)(1)2C (1)2n! D (1)n(n1)n!nx x102.在函数1x23中,x3的系数是(). f(x)3x22112x(A)1 (B)-1 (C)2 (D)33.四阶行列式的展开式中含有因子a32的项,共有()个. (A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式 D det(a ij)定义式:1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于n2n,则此行列式的值等于多少?说明理由.......第1 章 行列式 (作业2) 一、填空题a11 a12 a134a 11 2a 11 3a 12 a13 1.若D=a21 a22 a23 1,则D14a21 2a21 3a22 a23_____. a31 a32 a33 4a 312a 31 3a 32 a331 12 31 2 x 2 2 3的根为___________. 2.方程3 1 =0 2523 1 9 x 2二、计算题2 13 4a 1 0 0 4 1 9 161 b 1 01. 15 45 60 2.1 c 130 0 117 1 80 1 da b b b a b 3.Dnb ba.....x a1a2a1x a2a1a2x 4.D n1a1a2a3a1a2a3.an11a n11a n11x1a n1x11x12x1n x21x22x2n5.计算n阶行列式D n(n2)。
第一章 行列式试题及答案一 选择题 (每小题3分,共30分)⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( )(A) n (B) n /2 (C) 2n(D) n (n -1)/2⑵ 在函数()xx x x x x f 2142112---=中,x 3的系数是( )(A) -2 (B) 2 (C) -4 (D) 4⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( )(A) 1 (B) -1 (C) (-1)n (D) (-1)n(n -1)/2⑷ 设nn λλλλλλNO2121=,则n 不可取下面的值是( )(A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17⑸ 下列行列式等于零的是( )(A)100123123- (B) 031010300- (C) 100003010- (D) 261422613-⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++111222c bcacbc b ab ac ab a ( )(A) 100010001222+c bc ac bc b ab ac ab a (B) 1111122222+++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a(C) 101011122222+++++c bc bc b ac abc bc ac bc b ab ac aba(D) 111222bc ac bc ab acab c bc ac bc b ab acab a+⑻ 设a ,b ,c 两两不同,则0222=+++c b a c b a ba a c cb 的充要条件是( )(A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2=b 2, c =0⑼ 四阶行列式=44332211a b a b b a b a ( )(A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2)⑽ 齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ只有零解,则λ应满足的条件是( )(A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1二 填空 (每小题3分,共15分)⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。
一、填空题1.设自然数从小到大为标准次序,则排列1 3 … 2 4 … 的逆序数为)12(-n )2(n ,排列1 3 … …2的逆序数为 .)12(-n )2(n )22(-n 2.在6阶行列式中,这项的符号为 .651456314223a a a a a a 3.所有n 元排列中,奇排列的个数共 个.二、选择题1.由定义计算行列式= ( ).nn 0000000010020001000 -(A ) (B ) (C ) (D )!n !)1(2)1(n n n --!)1(2)2)(1(n n n ---!)1()1(n n n --2.在函数中,的系数是( ).xx xx x x f 21123232101)(=3x (A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子的项,共有( )个.32a (A )4; (B )2; (C )6; (D )8.三、请按下列不同要求准确写出n 阶行列式定义式:)det(ij a D =1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于,则此行列式的值等于多少?说明理由.n n -2一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 中2.方程=0的根为___________ .229132513232213211x x --二、计算题1.2.8171160451530169144312-----dc b a10011001101---3.ab b ba b b b aD n =4.111113213211211211211n n n n n a a a a x a a a a x a a a a x a a a a x D ---+=5.计算n 阶行列式。
说明:黄色高亮部分是必做题目,其他为选作
第一章 行 列 式
专业 班 姓名 学号 第一节 行 列 式
一.选择题
1.若行列式x
52231
5
2
1- = 0,则=x [ ] (A )2 (B )2- (C )3 (D )3-
2.线性方程组⎩⎨⎧=+=+4733
221
21x x x x ,则方程组的解),(21x x = [ ]
(A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)
3.方程09
3
142
112
=x x
根的个数是 [ ] (A )0 (B )1 (C )2 (D )3
4.下列构成六阶行列式展开式的各项中,取“+”的有 [ ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a
5(A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负
6.下列n (n >2)阶行列式的值必为零的是 [ ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式
1
2
21--k k 0≠的充分必要条件是
23.已知排列397461t s r 为奇排列,则r = s = ,t =
三、计算下列行列式(要写计算过程):
1.1
32213
3
21
2.598413
1
11
3.
y
x
y
x x y x y y x y x
+++
4.
001
100000100100
5.0
00100002000010
n n -
线性代数练习题 第一章 行 列 式
专业 班 姓名 学号
第二节 行列式的性质
一、选择题:
1.如果1333231232221
131211
==a a a a a a a a a D ,3332313123222121
13
1211111232423242324a a a a a a a a a a a a D ---= ,则=1D [ ] (A )8 (B )12- (C )24- (D )24
(A )18 (B )18- (C )9- (D )27-
3. 2
2
2
2
2
222
2
222
2
222
)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c
b b b b a a a a = [ ] (A )8 (B )2 (C )0 (D )6- 二、选择题:
1.行列式
=30092
280923621534215 2. 行列式
=1
110110110110
111
2.多项式02
1
1111
)(32
1
321321321
=+++++=
x a a a a x a a a a x a a a a x f 的所有根是
3.若方程
2
2514
3
2
1
4343314321
x x -- = 0 ,则
4.行列式 ==
2
100
12100121
0012D 三、计算下列行列式:
2.
x
a a a x a a
a x
线性代数练习题 第一章 行 列 式
系 专业 班 姓名 学号
第三节 行列式按行(列)展开
一、选择题:
1.若1
111
11
1
11
111101
-------=
x A ,则A 中x 的一次项系数是 [ ]
(A )1 (B )1- (C )4 (D )4-
2
(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 3.如果
122
21
1211=a a a a ,则方程组 ⎩⎨⎧=+-=+-00
22221
211212111b x a x a b x a x a 的解是 [ ]
(A )22
2
1211a b a b x =
,2
211
112b a b a x =
(B )222
1211a b a b x -
=,2
211
112b a b a x =
(C )22
2
1211a b a b x ----=
,2
21
1112b a b a x ----=
(D )22
2
12
11a b a b x ----=
,2
21
1112b a b a x -----
=
二、填空题:
1. 行列式122
30
5
4
03
-- 中元素3的代数余子式是
3. 已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,
三、计算行列式:
1.
3
214214314324
321
2
11111
1
1n
a a ++
线性代数练习题 第一章 行 列 式
系 专业学号
一、选择题:
(A )2 M (B )-2 M (C )8 M (D )-8 M
(A )34 (B )25 (C )74
(D )6 二、选择题:。