相交线与平行线
- 格式:docx
- 大小:13.10 KB
- 文档页数:4
相交线与平行线笔记整理
相交线与平行线是几何学中的重要概念,下面是有关相交线和平行线的笔记整理:
一、相交线:
1. 定义:在平面上,如果两条直线有一个公共的交点,则称这两条直线为相交线。
2. 特性:
- 两条相交线的交点只有一个。
- 两条相交线的两个交线角互为补角。
- 如果两条相交线的交线角互为补角,则这两条直线相交。
二、平行线:
1. 定义:在平面上,如果两条直线没有交点,且方向相同或者重合,则称这两条直线为平行线。
2. 特性:
- 平行线不相交,也没有公共的交点。
- 平行线的交线角为零度。
- 平行线的交线角是对应角,即对应于同一边的内角互为补角。
三、判定平行线的方法:
1. 对称判定法:如果两条直线作为一条直线的平分线,且分出的同侧角相等,则这两条直线平行。
2. 次对称法:如果两条直线与另外一条直线作为一对同位角,且同位角相等,则这两条直线平行。
3. 逆定理法:如果两条直线垂直于同一条直线,则这两条直线
平行。
4. 夹角法:如果两条直线与另外一条直线的夹角相等,则这两条直线平行。
5. 给定角的补角法:如果两条直线与另外一条直线的同侧内角互为补角,则这两条直线平行。
四、平行线性质:
1. 平行线的任意一对内错线互为消角。
2. 平行线的任意一对内错线互为内错角。
3. 平行线与切线的夹角等于对应弧所对的圆心角。
4. 平行线所夹平行线上的交线角相等。
以上是有关相交线与平行线的笔记整理,希望对你有所帮助。
平行线与相交线的证明平行线与相交线是几何学中常见的概念,它们之间存在着一些有趣的性质和定理。
本文将探讨平行线与相交线之间的关系,并给出相关证明。
1.平行线的定义在平面几何中,两条直线如果在同一平面内无论延长多远都不会相交,那么它们被称为平行线。
常用符号表示为:∥。
2.相交线的定义两条直线在同一平面内相交于一点,则这两条直线被称为相交线。
3.平行线与相交线之间的性质(1)两条平行线分别与一条相交线相交,所得的对应角是相等的。
证明:设直线l和m为平行线,n为相交线,交于点A,如图所示。
A-------\| || n || |B-------C\要证明∠BAC=∠BCA,我们假设∠BAC=α,∠BCA=β。
由平行线l和m的性质可知,∠BAC与∠ACB是同位角,同位角相等,即α=∠ACB。
又∠BAC与∠BCA是内错角,内错角相等,即α=β。
综上所述,根据角的性质,得证∠BAC=∠BCA。
(2)两条平行线分别与一条相交线相交,所得的内错角之和等于180°。
证明:设直线l和m为平行线,n为相交线,交于点A,如图所示。
A-------\| || n || |B-------C\要证明∠BAC+∠BCA=180°,根据前述证明可知∠BAC=∠BCA=α。
根据角的定义,可知α+α=180°。
通过简单的运算得到2α=180°,即α=90°。
综上所述,根据角的性质,得证∠BAC+∠BCA=180°。
通过以上证明可以得出,平行线与相交线之间存在着一些重要的性质和定理,这些性质和定理在几何学中具有重要的应用。
深入理解这些性质和定理,有助于我们更好地理解和解决与平行线和相交线相关的问题。
总结:本文通过证明的方法,阐述了平行线与相交线的性质和定理。
通过证明我们可以得出两条平行线与一条相交线的角度关系和内错角之和等于180°的结论。
这些定理和性质在几何学中起着重要的作用,并且可以应用到实际问题中。
平行线和相交线平行线和相交线在几何学中是重要的概念,它们具有不同的性质和特点。
本文将介绍平行线和相交线的基本概念,以及它们在几何学中的应用和相关定理。
一、平行线的概念和性质平行线是指在同一个平面上永远不会相交的两条直线。
在几何学中,我们通常使用符号"//"来表示两条平行线。
平行线具有以下性质:1. 平行线的对应角相等:当两条平行线被一条截线所交,所形成的对应角是相等的。
这个性质可以用来证明两条线平行的方法之一。
2. 平行线的任意两点之间的距离相等:平行线上的任意两点之间的距离都是相等的。
这个性质在实际中得到广泛应用,例如在建筑设计中测量平行的墙壁之间的距离。
3. 平行线的斜率相等:如果两条直线的斜率相等,则它们是平行线。
这个性质可以用来判断两条线是否平行的另一种方法。
二、相交线的概念和性质相交线是指在同一个平面上交叉的两条直线。
相交线具有以下性质:1. 相交线的对应角相等:当两条相交线被一条截线所交,所形成的对应角是相等的。
这个性质可以用来证明两条线是否相交。
2. 相交线的垂直角互补:当两条相交线形成直角时,它们被称为垂直线。
垂直线之间的对应角是互补的,即它们的和为90度。
3. 相交线的交点:相交线的交点是两条线的唯一公共点。
这个交点在几何学中具有重要的地位,它可以被用来确定形状、测量长度等。
三、平行线和相交线的应用和定理平行线和相交线在几何学中有许多重要的应用和相关定理,其中一些包括:1. 直线平行定理:如果一条直线与两条平行线相交,那么它将分别与这两条平行线的对应角相等。
2. 平行线的传递性:如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
3. 平行线与垂直线的关系:如果两条直线相交,并且其中一条直线与第三条直线垂直,那么另一条直线也与第三条直线垂直。
这些定理和性质在解决几何问题时起着重要的作用,它们被广泛运用于建筑、设计、测量等领域。
总结:平行线和相交线是几何学中重要的概念。
相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
平行线与相交线1. 引言在几何学中,平行线与相交线是基本概念,它们在直线几何中具有重要的作用和应用。
本文将详细介绍平行线与相交线的定义、性质以及相关的定理,通过例题展示其应用。
2. 平行线的定义与性质2.1 平行线的定义平行线是指在同一个平面上,永不相交的直线。
用符号"||"表示。
2.2 平行线的性质(1) 平行线具有传递性,即若直线L1与直线L2平行,直线L2与直线L3平行,那么直线L1与直线L3也平行。
(2) 平行线具有对称性,即若直线L1与直线L2平行,则直线L2与直线L1也平行。
(3) 平行线与同一条直线交叉时,其内外的对应角相等。
(4) 平行线与同一平面上的直线交叉时,形成对应角相等的等角。
3. 相交线的定义与性质3.1 相交线的定义相交线是指在同一个平面上,交叉于一点的两条直线。
3.2 相交线的性质(1) 两条相交线形成的交点是唯一的。
(2) 两条相交线的垂直平分线通过交点,并且垂直平分线相互垂直。
(3) 两条相交线形成的交点两侧的对应角相等。
(4) 两条相交线形成的内角之和等于180度。
4. 平行线与相交线的关系4.1 平行线与相交线的特殊关系(1) 平行线与相交线形成的对应角相等。
(2) 平行线与相交线形成的内角,外角之和均为180度。
(3) 平行线与一个相交线的两组对应角互为补角。
4.2 平行线截断相交线的性质(1) 平行线截断相交线,对所截断的相交线上的任意两点,其间距与平行线上对应两点的间距相等。
(2) 平行线截断相交线后,所截线段互相平分。
5. 相关定理与应用5.1 同位角定理若两条平行线被一条横截线相交,则同位角相等。
5.2 平行线的判定定理若两条直线的同位角相等,则这两条直线平行。
5.3 平行线的性质定理若一条直线与平行线相交,则生生四个对应角中,有两个角互为补角。
5.4 平行线的倾斜角定理若两条平行线被一条横截线相交,则被横截线所分段的两条平行线倾斜角相等。
平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。
平行线的特点是它们的斜率相等,且不相交。
若两条直线平行,则可表示为l,m。
平行线的性质:1.平行线具有等于90°的斜角。
2.平行线与同一条直线垂直的直线也是平行线。
这一性质被称为垂直平行线定理。
3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。
4.平行线的反身性质:如果l,m,则m,l。
二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。
2.点斜式法:通过两点确定的直线斜率相等来判定。
3.斜率法:两直线斜率相等,则平行。
4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。
三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。
相交线两两相交于一点,称之为交点。
相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。
2.两条相交线总有一对互为垂直的直线。
3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。
四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。
2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。
3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。
4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。
五、应用举例1.在平行四边形中,对角线互相平分。
2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。
3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。
4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。
在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。
七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。
在相交线中,我们主要研究的是对顶角和邻补角。
对顶角相等,邻补角互补。
同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。
2. 平行线:平行线是指两条直线在同一平面内,且不相交。
平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。
此外,我们还学习了平行线的性质和判定方法。
3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。
这些性质是平行线的基本性质,也是解决相关问题的关键。
4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。
通过这些判定方法,我们可以确定两条直线是否平行。
5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。
同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。
以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。
第二章相交线与平行线第1节两直线的位置关系∙知识点聚焦1.相交线与平行线(1)相交线:在同一平面内如果两条直线只有一个公共点时,我们称这两条直线相交.∙(2)平行线:在同一平面内,永不相交的两条直线叫做平行线.注:(1)在同一平面内,两条直线的位置关系有相交和平行两种.(2)两条直线相交,只有一个交点.2.对顶角与邻补角(1)对顶角:两条直线相交所成的四个角中,一个角的两边与另一个角的;两边互为反向延长线,这两个角叫作对顶角,对顶角相等.注:相等的角不一定是邻补角.(2)邻补角:两条直线相交所成的四个角中,两个角有一条公共边,另一边互为反向延长线,这两个角叫作邻补角,邻补角互补.注:互补的角不一定是邻补角.3.余角和补角(1)余角①定义:如果两个角的和是o90,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.②性质:同角或等角的余角相等.(2)补角180那么称这两个角“互为补角”,简称“互补”,①定义:如果两个角的和是o也可以说其中一个角是另一个角的补角.②性质:同角或等角的补角相等.4.垂线(1)定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足.(2)性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直. ②连接直线外一点与直线上的所有点的连线中,垂线段最短.简称垂线段最短.(3)点到直线的距离:直线外一点到这条到这条直线的垂线段的长度,叫作点到直线的距离.注:距离是指线段的长度,是一个数量;线段是图形,它们之间不能等同. (4)垂线的画法一靠:用三角尺一条直角边靠在已知直线上. 二移:移到三角尺使已知点落在它的另一条直角边上. 三画:沿着这条直角画线.注:①画一条线段或射线的垂线,就是画它们所在直线的垂线.②过一点作线段的垂线,垂足可以线段上,也可以在线段的延长线上.典型例题 例1.如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共 构成哪几对邻补角?分析:⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角.12对邻补角.ABC DEF例2.如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.分析:⑴∵OE 、OF 平分∠BOC 、∠AOC ∴,21BOC EOC ∠=∠,21AOC FOC ∠=∠∴)(212121AOC BOC AOC BOC FOC EOC EOF ∠+∠=∠+∠=∠+∠=∠又∵︒=∠+∠180AOC BOC ∴︒=︒⨯=∠9018021EOF⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.例3.(1)已知,如图,直线AB 、CD 交于点O ,且o BOC AOD 120=∠+∠,求AOC ∠的度数.(2)如图,AB 、CD 、EF 交于点O ,o AOE 25=∠,o DOF 45=∠,求AOD ∠的对顶角的度数.(3)如图,AB 、CD 交于点O ,OE 平分AOD ∠,o BOD BOC 30-∠=∠,求CO E ∠的度数.分析:(1)由对顶角相等可得o BOC AOD 60=∠=∠,从而可得o o o A O C 12060180=-=∠.CEF(2)由对顶角相等可知o DOF EOC 45=∠=∠,从而可得o o o o A O D 1102545180=--=∠.(3)o BOD COB 180=∠+∠,o BOD BOC 30-∠=∠,则o C O B 75=∠,o BOD 105=∠,o COB AOD 75=∠=∠,OE 平分AOD ∠,则o AOE 5.37=∠, o BOD AOC 105=∠=∠,则o o o AOE COA COE 5.1425.37105=+=∠+∠=∠.例 4.已知,如图所示直线AB 、CD 、EF 交于点O ,BOD APF ∠=∠2,AOC COE ∠=∠23,求COE ∠的度数.分析:方程思想,将图中的角用未知数表示,找到等量关系,设方程,一般设较小的为x .例5.如图,OE 与CD 相交与点O ,且21,90∠=∠︒=∠=∠COE DOE .(1)BOE AOE ∠∠与有什么关系?为什么? (2)BOC AOD ∠∠与有什么关系?为什么? 分析:(1)BOE AOE ∠∠与相等.因为21,902,901∠=∠︒=∠+∠︒=∠+∠且BOE AOE ,所以BOE AOE ∠=∠.(2)BOC AOD ∠∠与相等,21,1802,1801∠=∠︒=∠+∠︒=∠+∠且BOC AOD ,所以BOC AOD ∠=∠.例6.(1)如图,已知o ACB 90=∠,AB CD ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长;线段DB 的长为点 到直线 的距离.AE CB OD12(2)如图,在直角三角形ABC 中,o C 90=∠,c AB =,b AC =,a BC =,则AB BC AC BC AB AB AC -++-+-= .分析:(1)垂线的性质.(2)垂线段最短+两点间线段最短.例7.探索规律(1)2条直线相交于一点,有多少对不同的对顶角? (2)3条直线相交于一点,有多少对不同的对顶角? (3)4条直线相交于一点,有多少对不同的对顶角?(4)n 条直线相交于一点,有多少对不同的对顶角?分析:两条直线相交时可出现两对不同的对顶角,故找对顶角的对数其实质就是找有多少对不同的直线相交.课堂练习1.下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面没有公共点的两条射线平行2.下面四个图形中,∠1与∠2是对顶角的图形有( )A.0B.1C.2D.33.如图所示,∠1的邻补角是( )A .BOC ∠B .BOE ∠和AOF ∠C .AOF ∠D .BOE ∠和AOC ∠4.下列各图中,∠1与∠2互为余角的是( )A. B .C .D .5.如图,直线1l 与2l 相交于点O ,1l OM ⊥,若o 44=∠α,则=∠β等于( )A .o 56B .o 46C .o 45D .o 446.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( )个.A .0B .1C .2D .37.如图,已知直线AB 与CD 交于点O ,ON 平分DOB ∠,若o BOC 110=∠,则AON ∠的度数为___度.8.如图所示,o ACB 90=∠,AB CD ⊥,BC DE ⊥,①钝角与锐角互补; ②α∠的余角是α∠-090; ③β∠的补角是β∠-o 180;④若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余.10.已知:如图,三条直线AB ,CD EF 相交于O ,且EF CD ⊥,11.已知,所示,o ACB 90=∠,cm BC 5=,cm AC 12=,12.通过画图,寻找对顶角和邻补角(不含平角):(1)若2条直线相交于同一点,则有 对对顶角, 对邻补角. (2)若3条直线相交于同一点,则有 对对顶角, 对邻补角. (3)若4条直线相交于同一点,则有 对对顶角, 对邻补角.(4)通过(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于同一点,则可形成 对对顶角, 对邻补角.13.如图,AB ,CD ,EF 相交于点O ,如果o AOC 65=∠,o DOF 50=∠.(1)求BOE ∠的度数;(2)计算AOF ∠的度数,发现射线OA 有什么特殊性吗?14.如图,AOB 是一条直线,o EOC BOD AOD 90=∠==∠.1:3:=∠∠AOE BOD , (1)求COD ∠的度数. (2)图中有哪几对角互为余角? (3)图中有哪几对角互为补角?15.将一张长方形纸片按图中的方式折叠,BC ,BD 为折痕,求CBD ∠的大小.16.已知:如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COB ∠,1:4:=∠∠DOE AOD .求AOF ∠的度数.17.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.18.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .CDBAEO19.已知:直线AB 与直线CD 相交于点O ,o BOD 45=∠.(1)如图1,若AB EO ⊥,求DOE ∠的度数; (2)如图2,若FO 平分AOC ∠,求DOF ∠的度数.20.如图所示,已知直线AB 、CD 交于点0,x =1,1-=y 是方程34-=+y ax 的解,也是方程a ay bx 21+=-的解,且a b AOD AOC ::=∠∠,AB EO ⊥. (1)求EOC ∠的度数.(2)若射线OM 从OC 出发,绕点O 以s o /1的速度顺时针转动,射线ON 从OD 出发,绕点O 以s o /2的速度逆时针第一次转动到射线OE 停止,当ON 停止时,OM 也随之停止.在转动过程中,设运动时间为t ,当t 为何值时,ON OM ⊥. (3)在(2)的条件下,当ON 运动到EOC ∠内部时,下列结论:①BON EOM ∠-∠2不变;②BON EOM ∠+∠2不变,其中只有一个是正确的,请选择并证明.第2节 探索直线平行的条件∙知识点聚焦1.同位角具有1∠和5∠这样位置关系的角称为同位角, 图中的同位角还有2∠和6∠,3∠和7∠,4∠和8∠ 2.内错角具有3∠和5∠这样位置关系的角称为内错角, 图中的内错角还有4∠和6∠ 3.同旁内角具有4∠和5∠这样位置关系的角称为同旁内角,图中的同旁内角还有3∠和6∠ 注:(1)同位角、内错角、同旁内角是成对出现的,两直线被第三条直线所截形成的8个角中有4对同位角,2对内错角,2对同旁内角.(2)同位角、内错角、同旁内角各自的位置关系:同位角是“同旁同侧”,内错角是“内部异侧”,同旁内角“内部同侧” 4.两条直线平行条件(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等.两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称:内错角相等.两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称:同旁内角互补.两直线平行. (4)平行于同一条直线的两条直线平行.(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行 5.平行线的性质:过直线外一点有且只有一条直线与这条直线平行41 2 3 5 876DCBEAF例1:如图所示:⑴图中∠1与∠2是哪两条直线被哪一条直线所截形成的?⑵图中∠1与哪个角是同位角?它们是哪两条直线被哪一条直线所截形成的? ⑶∠3与∠C 是什么位置关系的角?它们是哪两条直线被哪一条直线所截形成的?分析:⑴∠1与∠2是直线AB 、DE 被直线EF 所截形成的;⑵∠1与∠B 是同位角,它们是直线EF 、BC 被直线AB 所截形成的; ⑶∠3与∠C 是同旁内角,它们是直线AC 、DE 被直线BC 所截形成的.例2: 如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:分析:(1)∠1和∠2:是AB 、EF 被直线CD 所截而得到的,一组同位角(2)∠1和∠3:是AB 、CD 被直线CD 所截而得到的,一对内错角(3)∠1和∠6:是AB 、CD 被直线CD 所截而得到的,一对同旁内角(4)∠2和∠6:是EF 、CD 被直线AB 所截而得到的,一对同位角 (5)∠2和∠4:是EF 、AB 被直线CD 所截而得到的,一对同旁内角 (6)∠3和∠5:是EF 、CD 被直线AB 所截而得到的,一对内错角 (7)∠3和∠4:是AB 、CD 被直线EF 所截而得到的,一对同旁内角 例3:如图,根据下列条件,可推得哪两条直线平行?并说明理由. ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°; ⑶∠ACD =∠BAC ;3CFEBAD1 423 65ABCDO分析: ⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.例4: 如图,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.分析:如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°课堂练习01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( ) A .∠AMF B .∠BMF C .∠ENC D .∠ENDl 1l 2l 3 l 4l 5l 6图⑴l 1l 2 l 3l 4l 5l 6图⑵A E BCF DABC D FEMNα第1题图 第2题图ABDC第4题图03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( ) ①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( )A .4cmB .5cmC .小于4cmD .不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC = .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD , ∠1=∠2,那么直线AB 与CD 的位置关系如何?ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A C D EB A BC DEF 1 213.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( )⑵∵∠2= (已知)∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 .使AD ∥BC .15.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点; ⑵总共有29个交点.1 23 AB C DE F第13题图 AB C D E F第14题图GFEDCB A第3节 平行线的性质∙知识点聚焦1. 平行线的性质(1)两条平行线被第三条直线所截,同位角相等.简称为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等.简称为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补.简称为:两直线平行,同旁内角互补.2.平行线的判定与性质的区别与联系 (1)直线平行的条件同位角相等;内错角相等;同旁内角互补;两直线平行; (2)平行线的性质两直线平行;同位角相等;内错角相等;同旁内角互补;例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么? (2) 从︒=∠1101可以知道3∠是多少度吗?为什么? (3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 分析:(1)︒=∠1102( 两直线平行,内错角相等.)(2)︒=∠1103 ( 两直线平行,同位角相等.) (4)︒=∠704 (两直线平行,同旁内角互补.)例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么? 分析:因为CF AE //,所以FGB A ∠=∠因为CD AB //,所以C FGB ∠=∠ 所以︒=∠39C例3 如图,AB ∥CD ,AE 、DF 分别是∠BAD 、∠CDA 的角平分线,AE 与DF 平行吗?•为什么?分析:平行. ∵AB ∥CD ,∴∠BAD=∠CDA (两直线平行,内错角相等). ∵AE 、DF 分别是∠BAD 、∠CDA 的平分线,∴∠EAD=12∠BAD ,∠FDA=12∠CDA .∴∠EAD=∠FDA .∴AE ∥DF (内错角相等,两直线平行).例4 如图,已知∠AMB=∠EBF ,∠BCN=∠BDE ,求证:∠CAF=∠AFD .分析:∵∠AMB=∠DMN ,又∠ENF=∠AMB ,∴∠DMN=∠ENF , ∴BD ∥CE .∴∠BDE+∠DEC=180°.又∠BDE=∠BCN ,∴∠BCN+∠CED=180°, ∴BC ∥DE ,∴∠CAF=∠AFD .例5 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A 是120°,第二次拐的角B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,问∠C 是多少度?说明你的理由.分析:∠C=150°.理由:如答图,过点B 作BE ∥AD ,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°. ∵BE ∥AD ,CF ∥AD ,∴BE ∥CF (平行于同一条直线的两直线平行). ∴∠C+∠CBE=180°(两直线平行,同旁内角互补). ∴∠C=180°-∠CBE=180°-30°=150°.西B 30°A北东南例6 (1)如图,若AB ∥DE ,∠B=135°,∠D=145°,你能求出∠C 的度数吗?(2)在AB ∥DE 的条件下,你能得出∠B 、∠C 、∠D 之间的数量关系吗?并说明理由.分析:(1)如答图5-3-2,过点C 作CF ∥AB ,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行).∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补). ∴∠BCD=∠1+∠2=45°+35°=80°. (2)∠B+∠C+∠D=360°.理由:如答图5-3-2过点C 作CF ∥AB ,得∠B+∠1=180°(两直线平行,•同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行). ∴∠D+∠2=180°(两直线平行,同旁内角互补). ∴∠B+∠1+∠2+∠D=360°. 即∠B+∠BCD+∠D=360°.点拨:辅助线CF 是联系AB 与DE 的纽带.课堂练习01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等 B.同位角相等 C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52° B.南偏东52° C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种 B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.150°120°DBCE湖4321ABEFC D4P231A BEFC D12.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.13.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?14.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.第4节尺规作图知识点聚焦1.“尺规作图”的含义(1)在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.尺规作图在操作过程中不允许度量.(2)基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.2.熟练掌握尺规作图题的规范语言(1)用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .3.了解尺规作图题的一般步骤(1)已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;(2)求作:能根据题目写出要求作出的图形及此图形应满足的条件;(3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1. 例2.例3. 典型例题如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于b a -2.解:(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.求作一个角等于已知角∠MON .解:(1)作射线11M O ;(2)以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ; (4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ; (5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.如下图,已知α∠及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .∙作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.已知∠AOB ,求作∠AOB 的平分线OC .解(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点;(3)作射线OC ,则OC 为∠AOB 的平分线.如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.分析 依据角平分线的性质可以知道,蓝方指挥部必在A 区内两条路所夹角的平分线上,然后由蓝方指挥部距B 点的距离,依据比例尺,计算出图上的距离为3.5cm ,就可以确定出蓝方指挥部的位置.解 如下图,图中C 点就是蓝方指挥部的位置.例4. 例5.课堂练习1.如图,已知∠A 、∠B ,求作一个角,使它等于B A ∠-∠.2.如图作△ABC ,使得BC=a 、AC=b 、AB=c3.如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h4.如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。
平行线与相交线平行线与相交线是几何学中的重要概念,它们在解决几何问题和证明定理时起到了关键作用。
本文将详细介绍平行线和相交线的定义、性质和应用。
一、平行线的定义和性质平行线是指在同一个平面内,永远不会相交的两条直线。
具体地说,如果两条直线上的任意一对相邻角的对应角相等,则这两条直线是平行线。
平行线的性质如下:1. 平行线具有传递性,即如果直线a与直线b平行,直线b与直线c平行,则直线a与直线c平行。
2. 平行线有唯一的平行线。
3. 平行线与同一条直线相交的两个直角互补角相等。
4. 平行线与同一条直线相交的内角、外角之和为180度。
二、相交线的定义和性质相交线是指在同一个平面内,交于一点的两条直线。
具体地说,如果两条直线不平行,则它们必定相交于一点。
相交线的性质如下:1. 相交线的对应角相等:如果两条直线相交于一点,对应于同一边的相邻角相等。
2. 相交线的同位角互补:如果两条平行线被截搁,那么同位角互补。
3. 相交线的内错角互补:如果两条相交线所围成的四个角中,直线间的内错角相等。
4. 相交线的补角相等:同一直线上两个互补角相等。
三、平行线与相交线的应用1. 平行线与三角形:在三角形中,平行线与相交线可以用来证明三角形的性质。
例如,通过平行线和相交线的构造,可以证明三角形的内角和等于180度,以及两条平行线被截搁形成的同位角互补。
2. 平行线与多边形:在多边形的研究中,平行线和相交线也发挥着重要的作用。
通过平行线的划分,我们可以得到平行线截取的线段比以及多边形内外角和的关系。
3. 平行线与平面几何:在平面几何学中,平行线与相交线的知识也常用于证明平行四边形、梯形和平行线的特性。
四、总结平行线与相交线是几何学中的基本概念,它们对于解决几何问题和证明定理至关重要。
本文简要介绍了平行线和相交线的定义、性质和应用,希望能够对读者加深对这两个概念的理解,以及在几何学中的实际应用提供帮助。
在实际问题中,我们常常需要利用平行线和相交线的性质进行推理和解决问题,因此对于这两个概念的掌握是非常重要的。
相交线与平行线
1. 介绍
在几何学中,相交线和平行线是两个基本的概念。
相交线指的是在平面上两条直线交叉或相交的情况,而平行线指的是在平面上永不相交的两条直线。
本文将介绍相交线和平行线的特性、判定方法以及相关定理。
2. 相交线和平行线的特性
相交线和平行线有以下一些重要的特性:
2.1 相交线的特性
•相交线的交点称为交点。
•两条相交线上的任意一点,都分别位于另一条相交线的两侧。
•两条相交线的交点处,有且只有一条直线通过。
2.2 平行线的特性
•平行线永不相交,它们在无穷远处相交。
•两条平行线上的任意一点,都位于另一条平行线的同侧。
•平行线的斜率是相等的。
•平行线的间距在任意两个平行线上的两点之间的距离是相等的。
3. 判定相交线与平行线的方法
3.1 判定相交线的方法
为了判定两条直线是否相交,可以使用以下方法:
•方法一:计算两条直线的斜率,如果斜率不相等,则两条直线相交。
•方法二:计算两条直线的截距,如果截距不相等,则两条直线相交。
•方法三:通过解两条直线的方程组,如果方程组有唯一解,则两条直线相交。
•方法四:绘制两条直线,在图形中观察它们是否相交。
3.2 判定平行线的方法
为了判定两条直线是否平行,可以使用以下方法:
•方法一:计算两条直线的斜率,如果斜率相等且截距不相等,则两条直线平行。
•方法二:观察两条直线在图形上的位置关系,在平面上永远不相交的直线都是平行线。
4. 相交线与平行线的相关定理
在几何学中,有一些重要的定理与相交线和平行线有关:
4.1 线段等分定理
如果一条直线将另一条直线上的两点分成相等的两部分,那么这条直线与这两个点所在的直线都是相交线。
4.2 平行线夹角定理
如果两条平行线被一条直线截断,那么所截线与平行线所夹的内角与同位角相等。
4.3 平行线的性质
•平行线的任意一对内角、外角互补。
•平行线和与它们相交的一条直线之间所夹的内角之和是180度。
5. 总结
通过本文的介绍,我们了解了相交线和平行线的特性、判定方法以及相关定理。
相交线是两条直线交叉或相交的情况,而平行线是两条永不相交的直线。
相交线和平行线在几何学中有着重要的应用,可以帮助我们解决各种几何问题。