2017年最新人教版六年级数学下册知识点归纳总结
- 格式:docx
- 大小:49.30 KB
- 文档页数:11
第一章负数1、数的相对性,为了表示两种相反意义的量,就出现了负数,如-3.5,-4等。
2、负数的读法:先读“负”,再读数,如-3读作负三。
正数前面的“+”可以省略不写;0既不是正数,也不是负数。
3、数轴的定义:规定了原点、正方向和单位长度的直线。
4、负数都在0的左边,正数都在0的右边,在数轴上,右边的数大于左边的数。
第二章百分数1、打折:商店有时降价出售商品,叫做打折扣销售,俗称“打折”,几折就表示十分之几,也就是百分之几十。
2、成数:农业收成,经常用“成数”来表示。
成数表示一个数是另一个数的十分之几,俗称“几成”;一成是十分之一,改写成百分数是10%;两成是十分之二,即20%;三成五是十分之三点五,即35%……3、税率:纳税是按照一定的比率把集体或个人收入的一部分缴纳给国家。
集体或个人缴纳的税款叫做应纳税额,应纳税额与各种收入中应纳税部分的比率叫做税率。
即税率=应纳税额÷各种收入。
4、利率:存入银行的钱叫本金,取款时银行多支付的钱叫利息;单位时间内的利息与本金的比率叫做利率。
利息=本金×利率×时间存入银行后取钱时应得的本息=本金+利息例如:银行规定:存期三个月利率为3.33%,存期半年利率为3.78%,存期一年利率为4.14%,存期两年利率为4.68%,存期三年利率为5.40%,如现有20000元,存期两年,两年后能取多少钱?方法一、20000×4.68%×2=1872(元) 20000+1872=21872(元)方法二、20000+20000×4.68%×2=21872(元)第三章圆柱和圆锥1、圆柱是由3个面围成的。
圆柱的上、下两个面叫做底面,圆柱周围的面叫做侧面。
圆柱两个底面之间的距离叫做高。
圆柱的底面形状是圆,侧面是曲面,侧面展开图是长方形,长方形的长是圆柱底面的周长,长方形的宽是圆柱的高。
一个长方形绕着一条边所在的直线旋转一周就是圆柱。
六年级数学下册一、二单元知识点概括整理第一单元负数1.负数:在数轴线上,负数都在 0 的(左边),全部的负数都比自然数小。
负数用负号“-”标志,如 -2,,-45,-0.6 等。
2.正数:大于 0 的数叫正数(不包含0),数轴上 0(右侧)的数叫做正数若一个数大于零( >0),则称它是一个正数。
正数的前方能够加上正号“+”表示。
来正数有(无数个),此中有(正整数,正分数和正小数)。
3.( 0)既不是正数,也不是负数,它是正、负数的界线。
全部的负数都在 0 的(左边),负数都小于 0,正数都大于 0,负数都比正数(小)。
第二单元圆柱和圆锥1、圆柱的特点:(1)底面的特点:圆柱的底面是完整相等的两个圆。
(2)侧面的特点:圆柱的侧面是一个曲面。
(3)高的特点:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面睁开图:当沿高睁开时睁开图是(长方形);这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。
这个长方形的面积等于(圆柱的侧面积),由于长方形面积 =长×宽,因此圆柱的侧面积=底面周长×高当底面周长和高相等时,沿高睁开图是(正方形);当不沿高睁开时睁开图是(平行四边形)。
4、圆柱的侧面积:圆柱的侧面积 =底面的周长×高,用字母表示为: S 侧=Ch。
h=S 侧÷ C C= S 侧÷ hS 侧=πdh=2∏rh5、圆柱的表面积:圆柱的表面积 =侧面积 +底面积× 2。
即 S表=S侧+S底×2=Ch+ π(C÷∏÷ 2) 2 ×2=π dh+π(d ÷2) 2×2=2πrh+ πr 2× 2(计算时最好分步使用公式,免得出现计算错误。
)6、圆柱表面积在实质中的应用:无盖水桶的表面积 =侧面积 +一个底面积油桶的表面积 =侧面积 +两个底面积烟囱通风管的表面积 =侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积 +一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积 +两个底面积:油桶、米桶、罐桶类7、圆柱的体积: V=Sh h=V ÷S S=V÷hV= πr 2h(已知r)V= π(d ÷2) 2h(已知d)V= π(C÷π÷ 2) 2 h(已知C)8、把一个圆柱体切分红若干份拼成一个近似的长方体,在这个过程中,形状发生了变化,体积没有发生变化。
最新人教版六年级下册数学知识点归纳总结一、整数的应用1. 正整数和负整数的概念与表示方法2. 整数的加法、减法,同号相加、异号相减3. 整数相减的应用:表示温度的正负数4. 整数的乘法,乘法的规律:正数乘以负数、两个负数相乘5. 整数的除法,除法的规律:正数除以负数、负数除以负数6. 数轴的使用与整数的大小关系7. 运算口诀:整数运算的顺序二、小数的运算1. 小数的基本概念与表示方法2. 小数的加法、减法,同等份、不同等份相加3. 小数的乘法,小数点的移动与小数的乘法4. 小数的除法,小数点的移动与小数的除法5. 小数的四舍五入与估算三、图形的认识1. 平面图形:三角形、四边形、五边形、六边形、圆形2. 空间图形:立体图形,例如长方体、正方体、圆柱体、圆锥体、球体3. 图形的名称、性质和应用,如三角形的边和角的命名,平行四边形的性质四、数据的分析与统计1. 统计调查和数据的收集2. 数据的整理、分析与表示3. 数据的综合分析与解决实际问题五、时、钟、日、历1. 时:24小时制和12小时制,时针和分针的运动规律2. 钟:钟与表之间的区别,钟的读法,钟的常见问题与计算3. 日历的读法与计算:年、月、日、星期的关系,日期的推算和计算六、长度、质量和容量的换算1. 长度的换算:千米、米、分米、厘米、毫米2. 质量的换算:千克、克、毫克3. 容量的换算:升、毫升、立方厘米七、变量的使用1. 变量的引入:未知数和代数式的概念2. 代数式的运算:同类项的合并、代数式的加法和减法3. 代数式的应用:解决实际问题八、多边形的认识1. 多边形的定义与分类:凸多边形和凹多边形2. 各种凸多边形的性质:对称性、直角、等边等3. 了解平行四边形、菱形和正方形的性质和判定方法九、数与式的初步认识1. 根据已知条件写出适当的算式2. 根据算式解决实际问题并进行验证十、周长和面积的计算1. 周长:矩形、正方形、三角形的周长计算2. 面积:矩形、正方形、三角形的面积计算3. 图形的面积之间的关系:面积相等的图形十一、简便计算1. 简便算法:加损术、增补数术、差积法2. 快算:取整数求近似、五步算等以上是最新人教版六年级下册数学知识点的归纳总结。
人教版小学六年级数学下册知识要点总结人教版小学六年级数学下册知识要点总结本册教材主要包括以下内容:圆柱和圆锥的认知、圆柱的侧面积和表面积的计算方法、圆柱的体积计算公式、圆锥的体积计算公式、比例的基本性质、正比例和反比例的意义、比例尺的应用、图形的放大与缩小、确定位置的方法、解决问题的策略、统计的基本概念、平均数的计算方法、众数与中位数的意义和应用、扇形统计图的认知、折线统计图的认知、圆的周长和面积的计算方法、圆的认知、负数的初步认识、百分数的意义及应用。
一、圆柱和圆锥的认知圆柱和圆锥都是常见的几何体,圆柱是由两个相等的圆形底面和一个封闭的曲面围成,而圆锥则是由一个圆形底面和一个扇形围成。
圆柱与圆锥之间存在一些基本关系,如等底等高的圆柱和圆锥的体积相等。
二、圆柱的侧面积和表面积的计算方法圆柱的侧面积是其侧面展开后的表面积,可以用底面周长乘以高来计算。
圆柱的表面积是其侧面积加上两个底面的面积,可以用底面周长乘以高再加上两个底面的面积来计算。
三、圆柱的体积计算公式圆柱的体积可以用底面积乘以高来计算,公式为V=πr²h,其中V为体积,r为底面半径,h为高。
四、圆锥的体积计算公式圆锥的体积可以用底面积乘以高再除以3来计算,公式为V=1/3πr²h,其中V为体积,r为底面半径,h为高。
五、比例的基本性质比例的基本性质是如果a:b=c:d,那么ad=bc。
这个性质可以用来解决一些比例问题,例如用比例来分配数量等。
六、正比例和反比例的意义正比例是指两个变量中的一个成倍增加,另一个也成倍增加,例如路程和时间成正比。
反比例是指两个变量中的一个成倍增加,另一个反而成倍减少,例如速度和时间成反比。
七、比例尺的应用比例尺是指将实际距离与图上距离之间的比值,可以用作地图和其他平面图的绘制。
在实际应用中,需要根据实际需要选择合适的比例尺。
八、图形的放大与缩小图形的放大与缩小是指将一个图形按照一定的比例放大或缩小,以获得一个新的图形。
人教版六年级下册数学知识点归纳整数的乘除法规则整数的乘除法规则是六年级下册数学课程中的一个重要知识点。
通过学习这些规则,同学们可以更好地理解和应用整数的乘除法运算。
在本文中,我们将对人教版六年级下册数学知识点归纳整数的乘除法规则进行详细讲解。
一、整数的乘法规则在乘法运算中,同号相乘得正,异号相乘得负。
具体规则如下:1. 正数乘以正数,结果为正数。
例如:3 × 4 = 12。
2. 负数乘以负数,结果为正数。
例如:(-2) × (-3) = 6。
3. 正数乘以负数,结果为负数。
例如:5 × (-2) = -10。
4. 负数乘以正数,结果为负数。
例如:(-4) × 3 = -12。
二、整数的除法规则在除法运算中,同号相除得正,异号相除得负。
具体规则如下:1. 正数除以正数,结果为正数。
例如:12 ÷ 3 = 4。
2. 负数除以负数,结果为正数。
例如:(-6) ÷ (-2) = 3。
3. 正数除以负数,结果为负数。
例如:8 ÷ (-4) = -2。
4. 负数除以正数,结果为负数。
例如:(-10) ÷ 2 = -5。
三、整数的乘除法运算混合运算在整数的乘除法混合运算中,需要遵循运算法则的先后顺序。
具体运算步骤如下:1. 先进行乘法运算,再进行除法运算。
2. 先按照同号相乘的规则,进行乘法运算。
3. 再按照同号相除的规则,进行除法运算。
4. 当出现多个乘除号时,按从左向右的顺序进行运算。
例如:计算 -6 × (-2) ÷ 3 的结果。
按照运算法则,先进行乘法运算:-6 × (-2) = 12。
然后进行除法运算:12 ÷ 3 = 4。
所以,-6 × (-2) ÷ 3 = 4。
四、练习题下面给出一些乘除法运算的练习题,供同学们巩固学习成果:1. 2 × (-8) = ?2. (-5) ÷ 2 = ?3. (-12) × (-3) = ?4. 16 ÷ (-4) = ?请同学们根据整数的乘除法规则进行计算,并写出计算结果。
第一单元负数1、负数的由来:为了表示相反意义的两个量〔如盈利亏损、收入支出……〕,光有学过的0 1 3.4 2/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数〔不包括0〕,数轴上0左边的数叫做负数。
假设一个数小于0,那么称它是一个负数。
负数有无数个,其中有〔负整数,负分数和负小数〕负数的写法:数字前面加负号“-〞号,不可以省略例如:-2,-5.33,-45,-2/5 正数:大于0的数叫正数〔不包括0〕,数轴上0右边的数叫做正数假设一个数大于0,那么称它是一个正数。
正数有无数个,其中有〔正整数,正分数和正小数〕正数的写法:数字前面可以加正号“+〞号,也可以省略不写。
例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比拟两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比拟大小,数字大的就大,数字小的就小。
负数之间比拟大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6〔一〕、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折〞。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多〔少〕百分之几〔几分之几〕的数的解题方法进展解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多〔少〕百分之几〔几分之几〕的数的解题方法进展解答。
六年级数学下册知识点归纳(人教版)下面是人教版六年级数学下册的主要知识点归纳:
1. 分数和有理数
- 分数的概念及表示方法
- 分数的比较与排序
- 分数的加减法
- 分数的乘除法
- 分数的化简与约分
- 分数的整数部分和小数部分
2. 数据的分析与统计
- 读取和解读统计图表(条形图、折线图等)
- 根据统计图表回答问题
- 数据的整理和分类
- 数据的计算和分析
- 概率的简单理解(可能性大小)
3. 平面图形的认识和计算
- 图形的种类及属性(三角形、四边形、多边形等)
- 图形的边数、顶点数和角数的关系
- 图形的画法和计算
- 图形的面积和计算
4. 空间与立体图形
- 立体图形的分类和特点(长方体、正方体、圆柱体、圆锥体、测量体等)
- 立体图形的展开图和表面积的计算
- 立体体积的计算
- 空间方位的认识和描述
5. 长度、质量和时间的计量
- 长度的换算(厘米、分米、米等)
- 质量的换算(克、千克等)
- 时间的读写和计算(小时、分钟、秒等)
- 带有两个计量单位的问题
6. 两位数和三位数的整数计算
- 两位数和三位数的加减法
- 两位数和三位数的乘法
- 两位数和三位数的除法
- 四则运算的综合应用
这些知识点是六年级数学下册的主要内容,掌握了这些知识点,就能够进行相应的数学运算和问题解决。
人教版新课标六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
六年级数学下册总复习知识点总结姓名记忆情况【数的认识】知识点1一.数的意义1.整数:像0,1,2,3···这样的数是自然数,也是整数。
像-1,-2,-3···这样的数是负数。
自然数和负数都称为整数。
①整数的个数是无限的。
②没有最小的整数,也没有最大的整数。
2.自然数:表示物体个数的0,1,2,3···叫做自然数。
①最小的自然数是0,表示一个物体也没有。
②自然数的个数是无限的。
③没有最大的自然数。
④自然数是整数的一部分。
⑤自然数有两方面的意义:一表示事物的多少,称为基数。
二表示事物的顺序,称为序数。
⑥自然数的单位是“1”。
3、小数:把单位“1”平均分成10份、100份、1000份······这样的一份或几份的数叫小数,小数可以看成分母是10、100、1000的分数,也可以用小数来表示。
一位小数表示十分之几,两位小数表示百分之几,。
小数的基本性质:在小数的末尾添上0或者去掉0,小数的大小不变。
4、计数单位:个、十、百······十分之一,百分之一······叫计数单位。
整数的计数单位是:个、十、百,千。
万。
,小数的计数单位是:十分之一、百分之一,千分之一。
十进制计数法:每相邻两个计数单位之间的进率是十,这种以“十”为基础进位的计数方法,叫做十进制计数法。
十个一是十,十个十是一百,十个一百是一千,十个一千是一万,.......十个十分之一是一,十个百分之一是十分之一,十个千分之一是百分之一,......数位:各个计数单位所占的位置,叫做数位。
整数部分数位可分级,每四位为一级:个位、十位、百位、千位是个级,表示多少个一,万位、十万位、百万位、千万位是万级,表示多少个万,亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
六年级数学下册(人教版)全册笔记超详细第一章有理数
1.1 正数与负数
- 正数:大于0的数,例如1、2、3等
- 负数:小于0的数,例如-1、-2、-3等
- 零:等于0的数
1.2 有理数的比较
- 有理数可以通过大小进行比较,大小两者关系如下:
- 正数 > 零 > 负数
- 绝对值大的数较小
- 绝对值相等时,正数较大
1.3 有理数的四则运算
- 加法:
- 同号相加:保留符号,绝对值相加
- 异号相加:符号取绝对值大的数,绝对值相减
- 减法:
- 减去一个数等于加上这个数的相反数
- 乘法:
- 同号相乘为正,异号相乘为负
- 除法:
- 除以一个非零数等于乘以这个数的倒数
1.4 有理数的应用
- 有理数在日常生活中的应用很广泛,例如温度的正负、海拔的正负等。
第二章几何图形
2.1 直角三角形
- 直角三角形有一个角度为90度的直角,其他两个角度之和为90度。
- 直角三角形的两条直角边可以通过勾股定理计算斜边的长度。
2.2 平行四边形
- 平行四边形的对边是平行线段,对角线相等且平分。
2.3 等边三角形
- 等边三角形三条边的边长相等。
第三章数据的整理与描述
3.1 表格的制作和填写
- 制作表格时,要保证表格清晰易读,标题明确。
3.2 概率与统计
- 概率是指某个事件在相同条件下重复进行多次试验时发生的
次数的频率。
- 统计是对收集到的数据进行整理和描述,包括频数、频率、中位数等。
以上是六年级数学下册(人教版)全册的超详细笔记,希望对您有帮助!。
第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出,, ),光有学过的0 1 3.4 2/5 ,, 是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于 0 的数叫负数(不包括0),数轴上 0 左边的数叫做负数。
若一个数小于 0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“ -”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于 0 的数叫正数(不包括0),数轴上 0 右边的数叫做正数若一个数大于 0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如: +2,5.33 ,+45,2/54、0既不是正数,也不是负数,它是正、负数的分界限负数都小于 0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数< 0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
也可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
1/3 >1/6 -1/3<-1/67.温馨提示:水结冰时的温度是0 摄氏度, 0 在这里的意义不是表示“没有”,而是一个具体的数。
在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80﹪,六折五 =6.5/10=65/100=65 ﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。
例如:一成 =1/10=10﹪八成五=8.5/10=85/100=80 ﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加 10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率( 1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率( 1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
( 6)利息的计算公式:利息=本金×利率×时间利率=利息÷时间÷本金×100%(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息 =利息 - 利息的应纳税额 =利息 - 利息×利息税率 =利息× (1- 利息税率 )税后利息 =本金×利率×时间× (1- 利息税率 )购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案学后反思:做事情运用策略的好处第三单元圆柱和圆锥一、圆柱 1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式: 1. 以长方形的长为底面周长,宽为高;2. 以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加 2 倍底面积,即 S增=2πr 2②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr ,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S 底=πr 2底面周长:C底=πd=2πr侧面积:S 侧=2πrh 表面积:S 表=2S底+S 侧=2πr 2+2πrh体积:V 柱=πr 2h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积 S 表=Ch+π(C/2π)2=Ch+C2/4π,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积 =侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积 +一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积 +两个底面积:油桶、米桶、罐桶类温馨提示: 1)把一个圆柱截成n 段后,其表面积增加了2(n-1 )个底面积。
2)容积的计算方法和体积的计算方法相同,只是计算容积的数据要从里面测量。
3)圆柱的高不变,底面半径、直径或周长扩大到原来的n 倍,则体积扩大到原来的n2 倍,若底面半径、直径或周长缩小到原来的1/n ,则体积缩小到原来的1/(n2)。
4)在圆柱的立体图形中,两个底面圆心之间的距离是圆柱的高,但在圆柱的平面展开图中,长方形的宽(或正方形的边长)才是圆柱的高。
5)两个圆柱的半径比是1:a(a>0), 高的比是 a:1,则它们的体积之比是1:a。
二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面(3)高的特征:圆锥有一条高。
4、圆锥的切割:① 横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即 S 增=2rh5、圆锥的相关计算公式:底面积: S 底=π r 2底面周长:C底=πd=2πr体积:V锥=1/3πr 2h考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积。
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的 3 倍。
2 、圆柱与圆锥等底等体积,圆锥的高是圆柱的 3 倍。
3、圆柱与圆锥等高等体积,圆锥的底面积 ( 注意:是底面积而不是底面半径) 是圆柱的3 倍。
4、圆柱与圆锥等底等高,体积相差 2/3Sh四、温馨提示:(1)已知圆锥的底面半径和高,可以直接利用公式:V=πr2h ÷3 来求圆锥的体积。
(2)已知圆锥的底面直径和高,可以直接利用公式:V=π(d÷2)2h÷3 求圆锥的 V (3)已知圆锥的底面周长和高,可以直接利用公式:V=π(C÷2÷π)2h÷3 求出圆锥的体积。
4)利用 V=Sh÷3 计算圆锥的体积时不要忘记除以 3 或乘 1/3 。
题型总结①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化分析清楚两个圆柱 ( 或两个圆锥 ) 半径、底面积、底面周长、侧面积、表面积、体积之比②圆柱与圆锥关系的转换:包括削成最大体积的问题 ( 正方体,长方体与圆柱圆锥之间 )③横截面的问题④浸水体积问题: ( 水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度 ) 容积是圆柱或长方体,正方体⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3第四单元比例1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0 除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
判断两个比能不能组成比例,关键要看它们的比值是不是相等,若比值相等,则能组成比例;若比值不相等,则不能组成比例。
温馨提示: 1) 比例中等号的两侧必须都是一个比。