古希腊三大作图问题
- 格式:ppt
- 大小:124.50 KB
- 文档页数:16
引人入胜的千古难题——三大尺规作图问题尺规作图是我们熟知的内容。
尺规作图对作图的工具——直尺和圆规的作用有所限制。
直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
于是他们热衷于在尺规限制下探讨几何作图问题。
数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。
尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。
所谓三大几何作图难题就是在这种背景下产生的。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。
于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。
但是,尽管费了很大的气力,却没能把看来容易的事做成。
于是,第二个尺规作图难题——三等分任意角问题产生了。
正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。
古希腊三大几何问题既引人入胜,又十分困难。
数学名题欣赏第9讲1 . 古希腊三大几何作图难题的非尺规解法公元前四世纪,古希腊的智人学派(也称巧辩学派)提出并研究了三大几何作图问题:立方倍积问题、三等分角问题和化圆为方问题.立方倍积问题: 已知一个立方体. 仅用圆规和直尺, 作一个立方体, 使其体积等于已知立方体的体积的两倍.三等分角问题: 任意给定一个角. 仅用圆规和直尺, 把该角三等份.化圆为方问题: 已知一个圆. 仅用圆规和直尺, 作一个正方形, 使其面积等于已知圆的面积.直到十九世纪, 人们才证明了, 用圆规和直尺不可能解决上述三个几何作图问题. 1837年,旺策尔(P.Wantzel)证明了立方倍积和三等分角的不可能性. 1882年,林德曼(C. Lindemann)证明了 的超越性,从而推断,只用圆规和直尺不能化圆为方.虽然著名数学家克莱茵于1895年已经对三大作图问题作了总结,严格证明了, 仅用尺规绝不可解这些问题,彻底解决了两千多年的悬案,但用其他几何方法还是可以准确地(非测量地)解决这三个问题的.一立方倍积问题的丝线解法历史传说关于立方倍积问题的提出,传说很多. 埃拉托塞尼(Eratosthenes,公元前226年——公元前195年)在名著《柏拉图》一书中写道:太阳神阿波罗向提洛岛的人们宣布, 瘟疫即将流行. 为了摆脱灾难,必须把德里安祭坛的体积扩大,使之变为现在这个立方体祭坛的体积的两倍,而且要求仍然是一个立方体. 工匠们百般努力,百思不得其解,于是去请教柏拉图. 柏拉图提醒大家,神发布这个谕示,并不是想得到一个体积加倍的祭坛,而是以此难题来责难希腊人对数学的忽视和对几何学的冷淡.埃拉托塞尼是国王托勒密(Ptolemy)之子的家庭教师,他把自己关于立方倍积的工作上报给托勒密国王,引起了国王的重视,并在全国悬赏征解.又有一个传说, 说的是古代一位希腊悲剧诗人, 他描述过一位名叫弥诺斯的匠人为皇族格劳科斯修坟的故事. 弥诺斯说,原来设计的每边都是百尺的立方体坟墓,对于殉葬者众多的皇家而言还嫌太小,皇家要求他把其体积加倍.当时古希腊关于立方倍积的传说满天飞,可见人们对这一问题的重视和兴趣. 设k 是已知立方体的棱长,x 是所求立方体的棱长,于是, 332x k =.解法一 希腊数学家梅纳奇马斯(Menaechmus ,前375——前325)考虑了两条抛物线2x ky =和22y kx =的交点. 由于42232x k y k x ==,所以332x k =. 于是, 这两个抛物线的交点(非原点)的横坐标即为所求的立方体之棱长.解法二 笛卡儿(Descartes ,1596—1650)只用上面两条抛物线中的一条就求得了x . 事实上,上述两条抛物线的交点(), x y 满足222x y ky kx +=+, 此为中心在, 2k k ⎛⎫ ⎪⎝⎭、的圆. 此圆过两抛物线的交点,所以为求两抛物线的交点的横坐标x ,只需求上述圆与两条抛物线之一的交点即可(圆比抛物线容易作出).解法三 在上述方法中要作抛物线,这件事用尺规不能完成. 下面介绍一种巧妙的“丝线作图法”.1. 作边长为k 的正三角形ABC ,延长CA 到D ,使得AD k =;2. 作直线DB 和AB ;3. 取丝线一条, 在其上标出两点E 和F ,使EF k =;4. 拉直丝线,使其通过C 点,且点E 和F 分别落在DB 和AB 上. 于是可证:x =,即x 为体积加倍的立方体的棱长.注 x 的求法如下. 由上图, ||GC BE ,故2x k ky=. 在BCF ∆中使用余弦定理, 得()2222222cos3x k k y ky k y ky π+=+-=++, 即222x kx y ky +=+. 于是得332x k =. 故x =.二 用木工尺三等分任意角木工尺就是图中所示的直角尺. 设尺的拐角内点为B , 在和BD 垂直的尺边上取一点C , 使BC 等于尺宽AB . 任意给定一角EOF ∠. 用木工尺作一条与OE 相距为尺宽AB 的平行线l . 令尺边上的点A 落在l 上, C 落在OF 上, 尺边DB 过点O , 则沿DB 画出的直线l '与OF 的夹角等于13EOF ∠.事实上, Rt CBO Rt ABO Rt AGO ∆≅∆≅∆, 于是αβγ==.三 用割圆曲线化圆为方割圆曲线是古希腊数学家希庇亚斯为解决化圆为方问题而发明的. 设点A 是已知圆的圆心,AB 为一条半径.把线段AB 绕点A 顺时针匀速旋转90 到AD 的位置,同时, 与AD 平行的直线BC 匀速平移到AD 位置, 且AB 和BC 同时到达AD . 可以证明, 在运动过程中, 线段AB 和直线BC 始终相交. 它们的交点的轨迹称为割圆曲线(图中的粗实线).由于此曲线把以A 为圆心、以AB 为半径的14圆切割成两块, 所以该曲线称为割圆曲线. 如图建立坐标系, 设AB a =, 则割圆曲线的方程为tan2yx yaπ=.于是002lim limtan2y y y aAG x yaππ→→===. 由于我们利用割圆曲线, 所以AG 是已知线段. 于是,我们可用尺规作出线段2222AB a al a AG ππ===和线段b , 使得222b al a π==. 于是, 以b 为一边的正方形的面积等于已知圆的面积2a π.注1 证明: 在运动过程中, 线段AB 和直线BC 始终相交.设AB 旋转的角速度为ω,BC 平移的速度为v ,则因AB 和BC 同时到达AD , 所以2a vπω=. 于是2v a ωπ=.在t 时刻, B ''的纵坐标cos a t ω=.B C ''的纵坐标221. ()y a vt a at a t ωωππ⎛⎫=-=-=-* ⎪⎝⎭今证2cos 1t t ωωπ>-. 令t ωα=, 则要证2cos 10. ()2παααπ⎛⎫>-<<** ⎪⎝⎭22cos 1sin ααααππ'⎛⎫+-=-+ ⎪⎝⎭.当20arcsin απ<<时, 2cos 10αααπ'⎛⎫+-> ⎪⎝⎭; 当2arcsin 2παπ<<时, 2cos 10αααπ'⎛⎫+-< ⎪⎝⎭. 又在0α=或2π时, 2cos 10ααπ+-=, 所以2cos 1002παααπ⎛⎫+-><< ⎪⎝⎭. 即 ()**成立. 所以线段AB和直线BC 始终相交.注 2 由 ()*, 得22y t aππω=-, 所以22y t aππϕω=-=, 于是割圆曲线的方程为tan2yx yaπ=.2 . 捆绑立方体若把橡皮筋套在一个立方体的顶点A 的近旁, 使此橡皮筋成一个三角形,那么只要一松手,则橡皮筋会向A 的方向滑过去而脱落. 再看与此立方体的一个面平行的平面, 它截得的正方形MNPQ 若是橡皮筋,我们将它弄成不与立方体的面平行,它仍然会凭它的“收缩成面积最小的特性”而恢复成一个与该立方体的面平行的正方形. 可见, 与立方体的面平行的正方形MNPQ 是稳定的捆绑.上述这种与立方体的面平行的正方形橡皮筋共三族,每个面上有两族橡皮筋垂直地分布于该面上. 在立方体表面上的每个点处, 都通过两条稳定(最牢靠)捆绑的橡皮筋. 除此之外,是否还可能有牢靠捆绑的橡皮筋呢? 有!-的棱长为1. 考虑其表面上的六边形ABCDEF, 并设其六边分别在立方体的六个面上. 若ABCDEF是一条橡皮筋且是稳定的捆绑,则其长度将在弹力作用下变为最短. 考虑立方体的侧面展开图. 由于ABCDEF达到了最短, 故A、B、C、D、E、F、A共线. 于是, 直线ABCDEFA与AQ夹45 角, 六边形ABCDEF 的各边与所在面上的一条对角线平行. 这些对角线组成了展开图中的两条平行虚线, 它们是ABCDEFA的两个极端位置. 对应在正方体上,这两个极端位置是PRX∆和QWU∆.显然, 六边形ABCDEF的周长为32正方体的一个面的对角线长度23倍).另外, AB CD EF ==, BC DE FA ==, ||AB DE , ||BC EF , ||CD FA , 且ABCDEF 是每个角都是120 的平面六边形, 它所在的平面平行于平面QWU 和平面PRX .稳定的捆绑ABCDEF 的位置是可变的, 它所在的平面可以平行于平面QWU 而在平面QWU 和平面PRX 之间平移(但ABCDEF 的周长始终保持为常数而各边也在自身所在的面内平移且保持平行于同一条对角线. 在平面展开图上, 两条虚线之间的带状区域被缠绕在立方体上(三棱锥S PRX -以外的各面上).若把稳定捆绑的六边形ABCDEF 的各边延长,则可形成两个中心重合且对应边平行的正三角形, 它们所围成的区域的公共部分的边界即六边形ABCDEF .一共有四族捆绑六边形,每族所在的平面互相平行,且平行于立方体的三个面上的三条对角线. 这四族捆绑线和开头讲的三族捆绑线(平行于立方体的面)合起来, 共有七族捆绑线.在立方体的表面上的每一点处, 恰有四条捆绑线通过. 于是, 在立方体的表面上,共编织了四层捆绑线.若要把棉纱绕在一个立方体上且不致使棉纱松脱,则应垂直于立方体的棱缠绕或缠在三棱锥S PRX∆所在的平面平行. 共有七种缠-以外的表面上,每圈线与PRX绕方式. 用垂直于棱的方式(三种)缠了两层之后改用平行于PRX∆等三角形的方式(四种)再缠两层,以后周期性地重复进行,则可缠绕成一个十分别致而结实的线团.3 . 糕点售货员的打包技术顾客买了一盒点心,要求售货员把长方体的点心盒用尼龙绳捆紧,便于携带. 售货员至少有两种捆绑方式.一是正交十字法. 如图. 这是一种牢固的包扎方法.二是上下压角法(这与前面讲的捆绑立方体很类似). 如图. 捆扎的尼龙绳形成了一个空间八边形ABCDEFGH. 要使捆扎最紧, 必须使该空间八边形的周长最短. 我们从纸盒的平面展开图上来分析.在展开图上, 仅当A、B、C、D、E、F、G、H共线时, 封闭折线ABCDEFGHA(尼龙绳)才最短. 设上述八点共线. 则直线AB可在一定的范围内平移. 图中的两条虚线是AB 的极限位置, AB 可在这两条虚线所夹的范围内平移. 设纸盒的长、宽、高分别为a 、b 、c , 则不论AB 在上述范围内的哪个位置, 八边形ABCDEFGH 的周长都是同一值L =周长的最小值), 相应的捆扎都是牢固的.这种别致、最优的捆扎方式, 样式新颖, 使得绳子不仅可以沿着自身的走向移动, 而且可在盒子的表面平移, 平移时, 绳子的总长还保持不变, 恒为L =另外, 该方法所用的绳子的长度L =字法所用的绳子的长度224a b c ++.绳子的第一个极端位置 绳子的一般位置绳子的第二个极端位置 以上三个位置画在同一图上在绳子的一般位置的图示中, 注意||AB FE 且AB FE =, ||DC GH 且DC GH =,AH ED =且68AHP EDP ∠=∠, BC FG =且68BCP FGP ∠=∠.如用多条绳子捆紧盒子, 并使各条绳子的位置不同(彼此平行),则图示如上. 把上述平面展开图中的两条虚线所夹的区域视为一条宽带子, 则可用该带子牢固地捆紧纸盒, 这就好像用多条绳子捆扎一样.4 . 怎样判断一个自然数能否被2,3,5,7,9,11和13整除?设n 是自然数, 则(1)n 可以被2(或5)整除⇔n 的个位数可以被2(或5)整除.换言之, n 可以被2(或5)整除⇔n 的个位数是偶数(或0和5之一).例如, 9034可以被2整除, 但21537不能被2整除. 24910和7729215可以被5整除,但28849不能被5整除.该方法的意义(实用价值)在于: 不需要实际做除法即可判断一个数n 能否被2或5整除, 这比计算2n ÷和5n ÷简便.(2)n 可以被3(或9)整除⇔n 的各位数字之和可以被3(或9)整除.例如, 80274可被3整除, 但不能被9整除, 因为8027421++++=可被3整除, 但不能被9整除. 直接验证:80274326758÷=,8027498919÷=余3.35441不能被3整除, 因为3544117++++=不能被3整除. 直接验证: 35441311813÷=余2.2041857可被9整除, 因为204185727++++++=可以被9整除. 直接验证:20418579226873÷=.该方法的意义(实用价值)在于: 用较小的计算量即可判断一个数n 能否被3或9整除, 这比计算3n ÷和9n ÷简便. 以下各方法的用处类此.(3)n 可以被11整除⇔n 的偶位数字之和与奇位数字之和的差可以被11整除.例如,6283706可以被11整除,因为()()687623022+++-++=可以被11整除.52416不能被11整除, 因为()()5462112++-+=不能被11整除.(4)判断n 能否被7(或11, 13)整除的方法 方法一 n 可以被7(或11, 13)整除⇔n 的最后三位数字组成的数和其余各位数字组成的数的差可以被7(或11, 13)整除.例如, 30445828可以被7整除, 因为3044582829617-=可被7整除.208832不能被7整除, 因为832208624-=不能被7整除.575344可以被11整除,因为575344231-=可被11整除. 39901不能被11整除, 因为90139862-=不能被11整除.58513可以被13整除, 因为51358455-=可以被13整除.78310不能被13整除,因为31078232-=不能被13整除. 注意 上述方法可以反复使用, 能达到简化计算的效果. 如判断30445828可否被7整除时, 先求出3044582829617-=, 然后, 对29617, 再计算61729588-=, 它可以被7整除, 从而29617也可以被7整除, 于是,30445828可以被7整除. 方法二 从n 的个位起, 每3位分为一段, (例如,28702448n =可以写成28,702,448n =), 则n 能被7(或11, 13)整除⇔奇数段数字之和与偶数段数字之和的差可以被7(或11, 13)整除.例如, 3,998,460,228可以被7整除, 因为()()9982283460763+-+=可以被7整除.4,879,201,421不能被7整除,因为()()87942142011095+-+=不能被7整除. 9,880,409,341可以被11整除, 因为()()8803419409803+-+=可以被11整除.125,789,641,237不能被11整除, 因为()()789237125641260+-+=不能被11整除.801,139,985,200,009可以被13整除,因为()()80198591392001456++-+=可以被13整除. 5,784,269,131,458不能被13整除, 因为()()7841315269458183+-++=不能被13整除. 注意 上述方法也可以反复使用, 以达到简化计算的目的. 如上面判断801,139,985,200,009可以被13整除时, 先计算出()()80198591392001456++-+=, 然后, 可以对1,456, 计算4561455-=, 它可以被13整除, 所以1,456也可以被13整除, 从而801,139,985,200,009可以被13整除.5 . 消九验算法例1 56385215⨯=对不对? 利用下面讲的消九验算法可以简便地加以验证.对乘数56,有5696÷=余2. 对乘数385, 有385942÷=余7.两个余数的乘积为14,1491÷=余5. 对乘积21560,有2156092395÷=余5.最后两个余数相同,我们可以基本..断定5638521560⨯=是正确的(事实上, 此计算确实正确).说基本..断定5638521560⨯=是正确的, 而不说肯定正确, 是因为可能有这种情况出现, 就是计算虽然有错, 但用上述方法仍然得到最后两个余数相同的结果.比如, 2417318⨯=显然是错的, 但2492÷=余6, 1791÷=余8, 6848⨯=, 4895÷=余3, 318935÷=余3. 最后两个余数相同.由此可见, 上述方法不是绝对可靠的!例2 38227103⨯=对不对?382942÷=余4, 2793÷=余0, 400⨯=, 090÷=余0, 1031291145÷=余7. 因07≠, 所以断定3822710312⨯=是错的.这就是说, 如果最后的两个余数不同, 则一定可以断定计算出错.例3 把消九验算法灵活变通一下, 可以简化验算时的计算.检验例1中的5638521560⨯=是否正确.对56: 5611+=;+=,112对385: 38516+=;++=,167+=;⨯=, 1452714对21560: 2156014+=.++++=,145最后的两个计算结果相同, 可基本断定5638521560⨯=正确.道理: 56被9除所得的余数=“5611+=”被9除所得的余+=”被9除所得的余数=“112数. 对385,14和21560有类似结果.我们看到, 本例中的方法比前两个例子中的方法在计算上简便多了!例4检验例2中的3822710312⨯=是否正确.对382: 38213+=;++=, 134对27: 279+=, 削去9, 得0;⨯=;400对10312: 103127++++=.最后的两个计算结果不同: 07≠, 于是可以断定3822710312⨯=是错的.6 . 素数的故事(1)名不符实的冠名素数并不素(朴素). 它的定义和名称似乎给人一种印象,认为素数是质朴简单的一种最基本的数. 其实, 算术中的麻烦事大都是由它惹起的. 例如,我们知道的哥德巴赫猜想和孪生素数的黎曼猜想就是典型的例子. 1989年,Amdabl Six小组在美国加利福尼亚圣克拉大学用Amdabl 1200超级计算机捕捉到一对孪生素数: 11235⨯±. 可见素数名不符实.170659521还有一个在数学史上贻笑大方的、名不符实的故事,它是关于威尔逊定理的. 有一个关于素数的定理,用英国法官威尔逊(J.Wilson,1741——1793)的名字冠名.威尔逊定理 若2p ≥为自然数,则p 是素数p ⇔整除()1!1p -+.事实上,这条定理是莱布尼茨首先发现,后经拉格朗日证明的. 但威尔逊的一位擅长拍马屁的朋友沃润(E .Waring)在1770年出版的一本书中, 却吹嘘说是威尔逊发现的这一定理,而且还宣称这个定理永远不会被证明,因为人类没有好的符号来处理素数. 这种话传到高斯的耳朵里. 当时, 高斯也不知道拉格朗日证明了这一定理,他在黑板前站着想了五分钟,就向告诉他这一消息的人证明了这一定理! 高斯批评威尔逊说:“他缺乏的不是符号而是概念.”两百多年来,全世界的数论教科书上都照样把这一定理称为威尔逊定理. 看来还历史以本来面貌,更换本定理的冠名已无必要,也不易纠正这么多年来文献与教材上的称呼了.威尔逊定理应用很广. 例如, 对较大的素数p ,我们虽然无力算出()1!p -的值,但却知道()1!p -被p 除的余数是1p -.由于威尔逊定理的戏剧性的冠名以及它的内容的重要性,有人戏称:“如果一个人不知道威尔逊定理,那他就白学了算术.”(2)不能实施的素数判别法从字面上看,威尔逊定理已经明白无误地给出了一个简洁的四则运算算法,可以判断任何一个正整数是不是素数. 可惜()1!p -太无情了,它使得我们没有那么的多时间和抄写空间(纸张或计算机内存)来弄清()1!p -是几! 例如,1876年,法国数学家卢卡斯(A .Lucas)用手和笔发现了一个39位的素数12721170141183460469231731687303715884105727p =-=.若用威尔逊定理来判断p 是否是素数, 就需要计算()()1271!211!p ⎡⎤-=--⎣⎦,以每页书可排2000个阿拉伯数字计算,()127211!⎡⎤--⎣⎦可以印成500页的书至少33210⨯本,这比全世界的总藏书量还多得多! 因此, 用威尔逊定理去判断一个大数是否是素数, 这是行不通的! 可见,威尔逊定理只有理论价值,它是一个无实施价值的判别法,或者说,它是一个无效的坏算法.我们渴望设计出一个有效算法, 来判别任给的正整数是否是素数. 这种迫切性从费马数和哥德巴赫猜想等问题上可以感觉到.所谓费马数,是指形如221n n F =+的数,其中0, 1, 2, n = . 03F =, 15F =, 217F =, 3257F =, 465537F =, 54294967297F =.从0F 到4F , 容易判定它们都是素数,5F 是42亿多的大数,费马当年无力判断5F 是否是素数,他只是大胆地猜想, 一切n F 都是素数. 1732年,欧拉算出56416700417F =⨯,从而否定了费马关于费马数素性的猜想.1880年,法国数学家卢卡斯算出627417767280421310721F =⨯.1971年,有人对7F 得出素因子分解.1981年,有人得出8F 的素因子分解.1980年,有人得出9448F 的一个因子是94501921⨯+.1984年,有人得出23471F 的一个因子是23473521⨯+.1986年,有人用超级计算机连续运算十天, 得知20F 是合数.人们至今知道的素费马数还只是03F =, 15F =, 217F =, 3257F =, 465537F =.这个问题不能彻底解决的要害, 是人们至今没有搞出判别素数的有效算法.也有一种潜在的厄运,那就是判定一个数是否是素数和移动河内塔上的盘子一样,本质上就不存在有效算法!(3)素数病毒越来越多把π的小数点删去,π就改写成了一个阿拉伯数字的无穷序列. 问:长几的前缀是素数? 例如,3与31是素数;314159是第三个素前缀;1979年美国数学家贝利(R .Baillie)等人发现π上的第四个素前缀31415926535897932384626433832795028841. 敢问:π还有第五个素前缀吗? 第六个,第七个,……呢?把π换成 2.71828e =…,…, lg 2, lg 3,…, 再问同类问题,又该怎么解答呢? 即使是温和一些的问题,例如下面的问题, 其解答仍然是悬案!()121111110101011019n n n n --=++++=- 个. 问: 当n 为素数时,1111n 个是否是素数? 真是心血来潮! 随便一问就会难倒人! 这样提出问题会使人对素数产生一种反感. 在形形色色应接不暇的问题当中,似应首选那些具有重要应用背景或理论背景,又有能力解决的问题去研究.(4)重要的问题是落实算术基本定理算术基本定理告诉我们,任一大于1的整数n 都可以唯一地表成某些素数的乘积,即12m n p p p = , 其中1p , 2p , …, m p 是被n 唯一确定的素数.问题是,如何由n 具体地求出1p ,2p , …, m p ? 这是一个有重要实用背景和计算机计算的时间复杂度理论背景的大问题. 是数论的中心课题之一,也是计算机科学的主攻方向之一. 假设某年某人设计出了一个有效算法,能在多项式时间内求得12m n p p p = 中的1p , 2p , …, m p 的值,那么当n 是素数时,n 就是1p ,即此算法可以有效地判定素数,从而可以在多项式时间内解决前面提出的诸多问题. 例如, 费马数n F 是否为素数(n是任意给定的自然数),无理数(例如π)的前缀是否是素数等问题. 这里说的“多项式时间”是指对一个问题,存在一个多项式()p n ,n 是要判定的整数的输入长,即它的位数的一个倍数.在实用上,例如在保密通讯与密码破译当中,需要对大合数进行素因子分解. 一般地, 这种大合数有百位之大,所以, 目前各军事大国都集中大量人力物力,研究这种合数的素分解问题,但至今并未听说有明显进展.如果真搞出素分解算法,则对任给定的大偶数,可以在多项式时间内把它表成两个素数之和或发现哥德巴赫猜想的反例.我们期望的这种素分解的有效算法能解决这么多非常之难的问题,可见设计出它的难度是诸多数论难题难度之集大成! 即使这种算法存在,也是很难设计出来. 我们甚至还应想到它根本就不存在,以免望梅止渴,水中捞月!7 . 蚂蚁在砖上爬行的最佳行迹一只蚂蚁从一块砖的一个顶点爬向对角顶点,它应沿着怎样的路线爬行,才能使其行迹(所用时间)最短?''''-. 蚂蚁欲从点A爬向对角顶点C'.它可以有种种不同的爬行方式. 如图所示. 不失一般性, 我们设蚂蚁沿路径A F C'→→爬行, 最后到达C'. 设AB a=, AD b=, AA c'=. 在长方体的侧面展开图上, 显然当点F使A、F、C'共线时,路径A F C'→→最短. 此时, 该路径的长度同理,AEC'=,AGC'在图示的从A 到C '的所有六条路径中, 最短者即为所求的最短路径. 另一方面, 由平面展开图可知,AHC AFC ''=且AFC H '是平行四边形, AJC AEC ''=且AEC J '是平行四边形, AIC AGC ''=且AGC I '是平行四边形. 因此, 我们只需考虑路径AFC '、AEC '和AGC ', 并从中挑选最短者. 设a b c >>, 则易知AFC '(也就是AHC ')是最短路径且AFC AHC ''=.一般地, 在展开图是平面图形的立体表面上,蚂蚁从一点爬向另一点时,其最省时的行迹皆为展开图上连接此两点的各直线段中的最短者对应的立体上的那条曲线段.例如, 在圆柱上,蚂蚁要从A点爬向B点. 把此圆柱的侧面展开, 则图中的两个线段AB中的较短者对应的圆柱面上的曲线(圆柱螺线)即为从A到B的最短路径.蚂蚁在圆锥上爬行的最佳路线也可用前面的展开图方法加以解决. 有趣的是,如果它是从圆锥底面圆周上一点A爬向此圆周上的另一点B,则最短路径不是沿圆周爬行,而是先向上爬,到达一个最高点后再向下爬行. 其最佳爬行路线在展开图上是直线段AB.对于不可展开成平面的曲面,寻求蚂蚁从其上一点爬向另一点的最佳路线就不像上面的解法那么方便了. 一般而言,不能用初等数学的方法来讨论. 例如在球面上,蚂蚁从一点A爬向另一点B,则应沿A、B所在的大圆上的劣弧AB爬行. 沿大圆爬行时,路径弯曲的程度最小,最接近直线段,但证明这一点并非易事.设在某曲面上存在一条蚂蚁的最佳行迹l ,使它从A 点爬到B 点, 所走路径最短. 现在l 上穿一个洞(点洞), 蚂蚁爬行时不能从该洞上走过, 则这时可能已不存在最佳行迹了. 事实上,设无洞时最佳行迹是唯一的. 因蚂蚁爬到洞附近时必须绕行,因此有无穷条行迹,都与无洞时的最佳行迹相差无几,且越来越接近于原最佳行迹,但哪一条也不是最佳的,都可以再缩短,可见这时已找不到最短行迹了.。
数学史(7):智者学派与三大作图问题自公元前479年波斯人在米卡利(Mycale)之战中败北,雅典便成为希腊城邦联盟中的主要城市和商业中心,经济发达,政治民主、人文昌明。
爱奥尼亚学派、毕达哥拉斯学派以及其他学生都被吸引到雅典来。
这里人们的重点就放在抽象推理方面,并以使理性统治遍及整个自然界和人类作为其宗旨。
一、智者学派简介智者(sophists,原指古希腊的哲人,后泛指有智慧、有能力、技艺超群者)学派是雅典的第一个学派,包括各方面的学者大师:文法、修辞、辩证法、演讲术、伦理、几何、天文和哲学。
他们以收费授徒为职业,在各种公共集会上发表演说,回答各种问题,对青年进行修辞、论辩和演说等知识技能的训练,教授参政治国、处理公共事务的本领。
智者学派最主要的代表人物是普罗泰戈拉(Protagoras,约公元前481-前411年),也是第一个收取学费并称己为智者的。
他提出了哲学史上最著名的观点之一:人是万物的尺度,是第一个将哲学主题从自然转向人本的哲学家。
他也是第一个采取苏格拉底式讨论方法的人。
智者学派研究数学的主要目标之一是用数学来了解宇宙是怎样运转的。
有好些数学结果是为解决三个著名的作图问题而得出的副产品。
二、古希腊三大作图问题1、立方倍积:作一立方体,使其体积两倍于给定立方体的体积。
传说希腊提洛斯岛上瘟疫流行,居民求神得指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。
”但各种尝试都无法实现,就请教柏拉图。
柏拉图告诉他们说神的本意不是要两倍大的祭坛,而是借此谴责希腊人不重视数学并对几何不够尊崇。
由于这一个传说,立方倍积问题也就被称为提洛斯问题。
2、化圆为方:做一正方形使其与给定的圆等面积。
传说这是公元前5世纪哲学家阿那克萨戈拉在狱中对着方铁窗和圆月亮想到的问题。
3、用尺规三等分任意角。
该问题传说是亚历山大国王为公主造别墅时遇到的。
这三个问题的妙处在于它们非常简单,实际上却有着深刻的内涵。
它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规,也就是尺规作图。
古希腊三大作图难题北京化工大学 殷光中概述:尺规作图,即只用直尺和圆规作几何图形,其来源于《几何原本》,以后在一个时期内成为数学中的重要研究课题[1]。
古希腊三大作图难题:1.作一立方体,其体积为所知立方体体积的两倍;2.画圆为方,即作一正方形使其面积为已知圆的面积;3.尺规三等分任意角)之一。
众所周知,二等分任意给定角用尺规很容易就能解决。
而充满探索与挑战精神的人们又会想到用尺规如何三等分任意给定角,此后,许多数学家纷投入这一问题的解决。
直到十九世纪,人们才严格证明了三等分任意角仅凭尺规不可能实现。
到此,这一问题才告一段落。
期间,有许多超越了尺规限制的作图方法:比如:希皮阿斯发明的割圆曲线,阿基米德螺线和尼科梅德斯蚌线等[2]。
人们万万也不会想到但他们在潜心研究一些未解决的问题的时候,许多新的发现也会应运而生……1、三等分任意角科学需要大胆的想象,或许引入数学公式可以实现超越尺规而三等分角,于是我想到了倍角的相关公式,引发了以下一系列的思考: 1.1.1 n 倍角的正切值展开通式tan1α=t tan2α=212t t- tan3α=23313t t t --tan4α=4236144tt t t +-- tan5α=42535101105t t t t t +-+-tan6α=64253151516206t t t t t t -+-+- tan7α=64275373521121357t t t t t t t -+--+-tan8α=86427532870281856568t t t t t t t t +-+--+-…… 有如下特征:① 分子分母各项均是“+,-”交替出现,且分子上为t 的奇次幂,分母上为t 的偶次幂。
② 我们将分子分母上相同序项对齐,则分子上的次数比分母上依次高一,且其系数有如下关系: 若tann α=...1......8463422194735231++-+-++-+-t m t m t m t m t n t n t n t n nt ; 则有,tan(n+1) α=...)()(1...)()()1(42121522311-+++--+++-+t m n t m n t m n t m n t n .即:对正相加分别作为下式相应项的分子系数;由下往上左偏相减作为下式相应项的分母系数 。
困扰世人三大数学几何问题,最后是怎么破众所周知,尺规作图要求只能用没有刻度直尺、圆规。
用没有刻度的直尺与圆规可以做出许多种图形,但有些图形很难画不出来。
数学几何作图发展史上有三大问题看似简单,但真正做出来却非常困难,这三大问题被称为最有名几何作图三大问题。
三大几何问题分别是是:1、化圆为方:求作一正方形使其面积等于一已知圆化圆为方是古希腊尺规作图问题之一,即:求一正方形,其面积等于一给定圆的面积。
由π为超越数可知,该问题仅用直尺和圆规是无法完成的。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。
2、三等分任意角;三等分角是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实了这个问题无解。
该问题的完整叙述为:在只用圆规及一把没有刻度的直尺将一个给定角三等分。
在尺规作图(尺规作图是指用没有刻度的直尺和圆规作图)的前提下,此题无解。
对于某些角如90度、180度三等分并不难,但是否所有角都可以三等分呢?例如60度,若能三等分则可以做出20度的角,那么正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360度/18=20度)。
其实三等分角的问题是由求作正多边形这一类问题所引起来的。
若将条件放宽,例如允许使用有刻度的直尺,或者可以配合其他曲线使用,可以将一给定角分为三等分。
3、倍立方:求作一立方体使其体积是一已知立方体的二倍。
传说中,这问题的来源,可追溯到公元前429年,一场瘟疫袭击了希腊提洛岛(Delos),造成四分之一的人口死亡。
岛民们推派一些代表去神庙请示阿波罗的旨意,神指示说:要想遏止瘟疫,得将阿波罗神殿中那正立方的祭坛加大一倍。
人们便把每边增长一倍,结果体积当然就变成了8倍,瘟疫依旧蔓延;接着人们又试着把体积改成原来的2倍,但形状却变为一个长方体……有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明——古希腊三大几何难题古希腊三大几何难题提出者:智者学派展开雅典有一个智者学派,代表人物有希比阿斯、安提丰、普罗泰格拉等。
智者学派以诡辩著称,当时流行几何,哲学家、数学家常常看口闭口都是几何。
于是三大几何难题就诞生了。
(1)化圆为方:作一个正方形,使其面积与已知圆面积相等。
(2)倍立方:作一个正方体,使其体积是已知正方体的2倍(3)三等分角:三等分任意角于是呢,有一堆数学家就开始做。
题目规则是尺规作图。
可他们没做出来,于是就做,做呀做呀,他们殚精竭虑、千方百计,就是没做出来,一个都没有,但是一直有人做,于是阿基米德螺线诞生了,于是圆锥曲线诞生了……但是这么多几何线诞生,也没把题目做出来,于是两千年过去了。
19世纪有一个人叫旺策尔,证明了这个题目光用尺规是作不出来的。
证明这个几何题目的方法,竟然是代数。
推理方法很值得借鉴。
简单说一下---------------------------------------------------------------------------------推理第一步:尺规作图可以怎么折腾归纳只有5点:①做连接两点的直线段,或延长此线段;②作两直线的交点;③以已知点为圆心;④作圆与直线交点;⑤作两圆交点;第二步:只用尺规可以作出什么样的线段设a1、a2、a3、a4、…… an是已知线段,同时用ai表示它们的长度,并设a1=1. 则光用尺规只能将之进行+、一、×、÷、√(根号),即进行加、减、乘、除、开偶次方根。
ai+aj没问题,ai -aj没问题,若x=ai× aj,则有1/ai=aj/x ,作一个相似三角形即可。
同样,若x=ai÷aj则1/x=ai/aj,若x=√(ai),则x^2=ai/×a1,x 是ai/与a1的比例中项,仿照射影定理的模型可以作出。
古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规,这种作图工具的限制使得三大几何作图问题成为数学史上的难解之题.三等分角问题即将任意一个角进行三等分.1837年,法国数学家旺策尔第一个证明了三等分角问题是古希腊那种尺规作图不可能的问题.但如果放宽作图工具的限制,该问题还是可以解决的.阿基米德创立的方法被誉为最简单的方法,他仅利用只有一点标记的直尺和圆规就巧妙地解决了这个问题.三等分角问题的深入研究导致了许多作图方法的发现及作图工具的发明.倍立方体问题即求作一个立方体,使其体积是已知一立方体的两倍,该问题起源于两千年希腊神话传说:一个说鼠疫袭击提洛岛(爱琴海上的小岛),一个预言者宣称己得到神的谕示,须将立方体的阿波罗祭坛的体积加倍,瘟疫方能停息;另一个说克里特旺米诺斯为儿子修坟,要体积加倍,但仍保持立方体的形状.这两个传说都表明倍立方体的问题起源于建筑的需要.1837年,洁国数学家旺策尔证明了倍立方体问题是古希腊那种尺规作图不可能的问题.倍立方体问题的研究促进了圆锥曲线理论的建立和发展.化圆为方问题即求作一正方形,使其面积等于一已知圆的面积.这是历史上最能引起人们强烈兴趣的问题之一,早在公元前5世纪就有许许多多的人研究它.希腊语中甚至有一个专门名词表示“献身于化圆为方问题”.1882年,德国数学家林德曼证明了化圆为方问题是古希腊那种尺规作图不可能的问题,从而解决了2000多年的悬案.如果放宽作图工具的限制,则开始有多种方法解决这个问题,其中较为巧妙的是文艺复兴时期的著名学者达·芬奇设计的:用一个底与己知圆相等,高为己知圆半径一半的圆柱在平面上滚动一周;所得矩形的面积等于已知圆面积,再将矩形化为等面积的正方形即化圆为方问题的研究促使人们开始用科学的方法计算圆周率的值,对穷竭法等科学方法的建立产生了直接影响.。
尺规作图与古希腊三大作图问题1 尺规作图初学几何,最令同学们感兴趣的就是尺规作图。
尺规作图是指用无刻度的直尺和圆规作图。
只用直尺、圆规可以完成许多作图问题,比如我们在中学时就已熟知的:作已知线段的垂直平分线。
以及作已知角的角平分线。
稍复杂一点的:作圆内接正六边形。
在所有这些问题中,直尺的功能仅仅是作为一个画直线的工具,而不能用以测量或标示出距离。
只用直尺和圆规作图的传统要回溯到古希腊时期,希腊人认为直线和圆是最基本的图形,而直尺和圆规使它们具体化,所以便选择只用这两种工具作图。
尺规作图有五项“公法”:•(1)根据两个已经确定的点作出经过这两个点的直线。
•(2)以一个已经确定的点为圆心,以两个已经确定的点之间的距离为半径作圆。
•(3)确定两个已经作出的相交直线的交点。
•(4)确定已经作出的相交的圆和直线的交点。
•(5)确定已经作出的相交的两个圆的交点。
“合法”的尺规作图,便是用直尺、圆规有限次运用上述五项基本的“公法”进行作图,从而解决很多复杂的作图问题。
2 古希腊三大作图问题古希腊人研究尺规作图,提出了三个著名的尺规作图作图问题:•倍立方体:给定立方体的一边,求作另一立方体(的边),使后者体积是前者体积的两倍。
•三等分角:三等分任意一个角。
•化圆为方:作一正方形使其与给定的圆面积相等。
问题的提出是自然的,因为这些是古希腊人在解决了一些作图题之后的引伸:•以正方形对角线为一边的正方形有两倍于前者的面积,便理所当然地提出相应的倍立方体问题;•可以作角平分线,即可以二等分任意角,自然地就想继续搞三等分;•化圆为方是古希腊人在求作一定形状的图形使之与给定图形等面积这类问题中的一个典型问题。
古希腊三大作图问题既引人入胜,又十分困难。
问题的妙处在于它们从形式上看起来十分简单,但实际上有着非常深刻的内涵。
在探索这三个问题的过程中就隐含了近代代数学的思想,直到19世纪,这三个作图题的不可能性才被证实,这时相距问题的第一次提出已经过去了2000多年。
三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明.倍立方A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视.B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现.说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底.历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误.因为如果边长加倍,表面积变成原来的四倍,体积变成八倍.当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径.这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其变为两倍”.当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立方体就变成两倍.这样他的难点被分解成另一个不太复杂的问题.“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境.于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法.这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项.据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项.应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性.……化圆为方A.安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形.我们假设这个内接图形是正方形.然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段.接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形.他以同样的方法重复这一过程,得到的内接图形为十六边形.他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合.正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形.B.布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形.然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等.因此他说圆被化成正方形.三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑.但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分.用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段.假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ.由于ZE已知且等于ΔH,所以ΔH 也已知.Δ已知,所以H位于在适当位置给定的圆周上.由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上.但它也位于在适当位置给定的圆周上,所以H已知.证明了这一点后,用下述方法三等分已知直线角.首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB 的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一.因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍.但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ.由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍.如果我们平分角ABΔ,那么就三等分了角ABΓ.用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线.设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB 的2倍,我认为B位于一双曲线上.因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等.设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*A Δ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上.显然Γ点在圆锥曲线顶点H截取的线段ΓH是横轴AH的二分之一.综合也是清晰的.因为要求分割AΓ使得AH是HΓ的2倍 ,就要过H以AH为轴画共轭轴为AH的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度.如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了.。
数学世界三大难题位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。
大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。
这延续了两千多年才得到解决的世界性难题:要求只许使用直尺(没有刻度,只能作直线的尺)和圆规进行几何作图:⑴三等分角问题:三等分一个任意角;⑵立方倍积问题:求作一个立方体,使它的体积是一个已知立方体的体积的两倍;⑶化圆为方问题:求作一个正方形,使它的面积是一个已知圆的面积。
它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。
许多学者都致力于这三个问题的研究,企图用尺规作图来解决这些问题,但一直未获成功。
直到1887年23岁的万芝尔,首先证明“三等分角”和“立方倍积”都是尺规不能问题。
他的证明基础:解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。
而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。
具体方法是这样的:假设已知立方体的棱长为1,所求立方体的棱长为x,应有x3=2。
但此方程无有理根,32超出了有理数加、减、乘、除、开平方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题。
1882年,林德曼借助于e iπ=—1证明了 是超越数,从而也证明了“化圆为方”是尺规不能问题。
虽然这三大问题已被解决,但是现在世界各地还有许许多多的数学爱好者还在研究它们,四川省乐山市叮咚街有一个租书的老汉就研究这三个问题三十年,痴心不改。
你打入“世界三大数学难题”去google搜索,572,000条有关信息马上就跳出来。
足见这三大问题在推动数学发展的同时,自身所具有的跨越时空的迷人魅力。
近代数学史有四色猜想、费马大定理,歌德巴赫猜想。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:a n+b n=c n是不可能的(这里n大于2;a,b,c,n都是非零整数)。