精选河南省中考数学模拟试卷(有详细答案)
- 格式:doc
- 大小:620.00 KB
- 文档页数:30
河南中考数学模拟题 一、选择题(每小题3分,共24分)题号1 2 3 4 5 6 7 8 答案 C D A C D B B A二、填空题(每小题3分,共21分)9、 x 1=0,x 2=2; 10、52; 11、1310688.5⨯; 12、56° ; 13、π41; 14、5,10,1><<-<x x x ; 15、 8 ;三、解答题16、解:原式=12--a a ; 由题意知:a ≠1,2,-2;当a=0时,原式=2102012=--=--a a ; 当a=-1时,原式=23112112=----=--a a . 17、解:(1)△AEB ≌△AFC ;△EFB ≌△CDF ; (2)当点D 运动到BC 中点时,△BED 为直角三角形.提示:当点D 运动到BC 中点时,点F 运动到AB 的中点,则CF ⊥AB ,∠ACF =30°=∠EBF ,则∠EBD =90°,所以△BED 为直角三角形.18、解:(1)被抽测学生的体育成绩的样本容量为__50__,m = 10 ;抽取部分学生体育成绩的中位数为 48分;(2)84.47)550104915481247846(501=⨯+⨯+⨯+⨯+⨯(分) (3)3005051015500=++⨯(人) 19、解:(1)∵在Rt △CED 中,∠CED =60°∴CE =21DE=38cm , DC =3CE=383cm ,(2)设OD=OB=x cm ,则OC=(x+383)cm ,OA=(x+150)cm ,∵在Rt △CED 中,∠CED =60°∴OA =2OC即x+150=2(x+383),解得: x =150-76320、解:(1)y=100x (0≤x ≤6)y=-75x+1050(6<x ≤14)(2)由题意得:F (7,525),所以乙的速度为525÷7=75(km/h )21、解:(1)设每台电脑x 万元,每台电子白板y 万元,⎩⎨⎧=+=+5.225.32y x y x 解得:⎩⎨⎧==5.15.0y x 所以每台电脑0.5万元,每台电子白板1.5万元(2)设购进电脑n 台,则购进电子白板(30-n )台,总费用为Q 万元, 则30)30(5.15.028≤-+≤n n解得:1715≤≤n∵n 取正整数,∴n=15,16,17.∴共有三种方案Q=45)30(5.15.0+-=-+n n n当n=17时,Q 有最小值为28,此时,购进电脑17台,则购进电子白板13台,22、解:(1) a(2)四个等腰直角三角形面积和为 a 2正方形 A BCD 的面积为 a 2∴MNPQ S 正方形= S △ARE + S △DWH + S △GCT + S △SBF = 4S △ARE =2(3)3223、解:(1)由题意可得:C (-3,0)设)3)(1(+-=x x a y ,则)30)(10(3+-=-a ,解得:a =1 ∴32)3)(1(2-+=+-=x x x x y(2)①由题意知:直线BC :y=-x-3,B 、C 两点间的水平距离为0-(-3)=3过点M 作MN ⊥x 轴交线段BC 于点N ,则M (m ,322-+m m ),N (m ,-m-3) MN=(-m-3)-(322-+m m )=m m 32--827)23(2329233)3(21222++-=--=⨯--=m m m m m S ∴S 的最大值为827 ②。
2024年信阳市息县中考第三次模拟考试数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间120分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.的倒数是()A.B.C.2 D.2.2024年1月,国家统计局公布了2023年全年出生人口数约为9020000,其中数字9020000用科学记数法表示为()A.B.C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.物理实验中,小明研究一个小木块在斜坡上滑下时的运动状态,如图,斜被为,,,小木块在斜坡上,且,,则的度数为()A.B.C.D.6.对于实数a,b定义运算“⊗”为,例如,则关于x的方程的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图所示,某同学自制了一个测角仪:等腰直角三角板的底边和量角器直径平行.若重锤线与的夹角为,那么被测物体表面的倾斜角的度数为()A.B.C.D.8.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.小亮调查了全班同学一周学会炒的菜品数量,结果如图所示,则全班同学一周学会炒的菜品数量的平均数是()A.2B.2.6C.3D.3.19.一个不透明的口袋里有1个红色小球,1个黄色小球,1个蓝色小球,这3个球除颜色外都相同,从口袋中随机摸出一个小球,记下颜色后放回口袋,摇匀后再从中随机摸出一个小球,则两次都摸到黄色小球的概率是()A.B.C.D.10.如图,抛物线与x轴交于点A,B,对称轴为直线,若点A的坐标为,则下列结论:①点B的坐标为;②;③;④点在抛物线上,当时,则,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11.使有意义的x的取值范围是.12.不等式组的解集是.13.请你写出一个图像经过点的函数解析式:.14.如图,矩形中,,,点、分别是、上的动点,,则的最小值是.15.如图,在矩形中,,点E是的中点,将沿折叠后得到,延长交射线于点F,若,则的长为.三、解答题(本大题共8个小题,共75 分)16.(10分)(1)计算:.(2)解方程:17.(9分)为了解甲、乙两所学校八年级学生综合素质整体情况,对两校八年级学生进行了综合素质测评,并对成绩作出如下统计分析.【收集整理数据】分别从两所学校各随机抽取了a名学生的综合素质测试成绩(百分制,成绩都是整数且不低于分).将抽取的两所学校的成绩分别进行整理,分成A,B,C,D,E,F六组,用x表示成绩,A 组:,B组:,C组:,D组:,E组:,F组:,其中乙校E组成绩如下:,,,,,,,,,,,,,,.【描述数据】根据统计数据,绘制出了如下统计图.【分析数据】两所学校样本数据的平均数、中位数、众数、方差如下表:学校平均数中位数众数方差甲校乙校b79根据以上信息,解答下列问题:(1),;(2)补全条形统计图;(3)甲校共有人参加测试,若测试成绩不低于80分的为优秀,估计甲校测试成绩优秀的约有人;(4)从平均数、中位数、众数、方差中,任选一个统计量,解释其在本题中的意义.18.(9分)如图,在中,.(1)实践与操作:按照下列要求完成尺规作图,并标出相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线交于点,交于点;②在线段的延长线上截取线段,使,连接,,.(2)猜想与证明:试猜想四边形的形状,并进行证明.19.(9分)如图,已知正比例函数的图象与反比例函数的图象相交于点和点B.(1)求反比例函数的解析式;(2)请结合函数图象,直接写出不等式的解集;(3)如图,以为边作菱形,使点C在x轴正半轴上,点D在第一象限,双曲线交于点E,连接,求的面积.20.(9分)在郑州之林公园内有一座如意雕塑(图1),它挺拔矗立在前端,展现出了郑东新区的美好蓝图与如意和谐的愿望.综合实践小组想按如图2 所示的方案测量如意雕塑的高度EF:①在如意雕塑前的空地上确定测量点A,当测量器高度为时,测得如意雕塑最高点E的仰角;②保持测量器位置不变,调整测量器高度为时,测得点E的仰角,已知点A,B,C,D,E,F,G在同一竖直平面内,请根据该小组的测量数据计算如意雕塑的高度.(结果精确到1m .参考数据:21.(9分)2024 年郑州市中招体育考试抽号流程为:第一次抽号确定素质类项目(从1 分钟跳绳、50米跑、掷实心球、立定跳远四项素质类项目中抽考1 项);第二次抽号确定运动健康技能类统考项目(从篮球运球投篮、足球运球射门、排球垫球三项运动健康技能类中抽考1项).某班为了备战中考体育,统一采购了一批跳绳和足球,已知跳绳与足球的总数量为50个(每种都购买),下面是经过调查,甲、乙两个商店的跳绳和足球售价信息及优惠方案:商店足球单价跳绳单价优惠方式甲所购商品按原价打八折乙足球原价,跳绳五折(1)在调查过程中,由于粗心,将足球与跳绳的单价遗失了,只知道甲、乙两个商店的足球和跳绳的单价相同,如果按原价买根跳绳与个足球需要花元,花同样的钱还能按原价买根跳绳与个足球,求跳绳与足球的单价;(2)已知跳绳的数量不超过足球数量的一半,若跳绳与足球只能在同一家店购买,则在哪家店购买,该班所需总费用最低?求出这个最低总费用.22.(9分)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?23.(10分)(1)【发现】如图1,正方形的边长为4,点E为中点.连接.将绕点A顺时针旋转至连接交于点G.爱思考的小明做了这样的辅助线,过点E作,交于点H……请沿着小明的思路思考下去,则(2)【应用】如图2,菱形的边长为3,且,连接,点E为上一点,连接.将绕点A顺时针旋转至,连接交于点G,若,求的值;(3)【拓展】如图3,在四边形中,,且.点E为上一点,连接.将绕点A顺时针旋转至,连接交于点C,,请直接写出的长.2024年息县中考第三次模拟考试数学参考答案一、选择题(每小题3分,共30分)1.D2.C3.C4.B5.B6.A7.B8.B9.B10.B二、填空题(每小题3分,共15分)11.12.13.,,(答案不唯一).14.1015.2或三、解答题(本大题共8个小题,共75 分)16.(10分)解:(1).(5分)(2)原方程可化为.方程两边同乘,得.解得.检验:当时,.∴原方程的解是(5分)17.(9分)(1),(2分)(2)(2分)(3)解:(人)(3分)故答案为:;(4)解:平均数表示两个学校抽取的人成绩的平均成绩;(2分)众数表示两个学校抽取的人中得分在某个分数的人数最多;中位数表示两个学校抽取的人中,将成绩从小到大排列后,位于中间位置的成绩;方差表示两个学校抽取的人的成绩稳定性.18.(9分)(1)解:按照要求,如图所示,即为所求作的图形.(5分).(2)猜想:四边形为菱形.证明:为的垂直平分线,,,∴四边形为平行四边形,又,∴四边形为菱形.(4分)19.(9分)(1)解:把点代入正比例函数可得:,∴点,把点代入反比例函数,可得:,∴反比例函数的解析式为;(3分)(2)解:∵点A与点B是关于原点对称的,∴点,∴根据图象可得,不等式的解集为:或;(2分)(3)解:如图所示,过点A作轴,垂足为G,∵,∴在中,,∵四边形是菱形,∴,,∴.(4分)20.(9分)延长交于,延长交于,则米,米,,∴米,设米,在中,,∴,在中,,∴,∵,∴,∴(米),∴(米),答:如意雕塑的高度约为米.21.(9分)(1)解:设跳绳的单价为元根,足球的单价为元个,依题意,得:,解得:.(3分)答:跳绳的单价为元根,足球的单价为元个.(2)设购买跳绳条,则购买足球()个,∵跳绳的数量不超过足球数量的一半,∴∴设总费用为元,依题意,得:.(2分),∵∴随的增大而减小,∴当时,最小,为(元),,∵∴随的增大而减小,∴当时,最小,为(元)∵,(4分)∴在甲家店购买,该班所需总费用最低,这个最低总费用为元.22.(9分)(1)(5分)解:由题意得:抛物线的顶点坐标为,设抛物线解析式为,把点代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;(2)(4分)设小明带球向正后方移动米,则移动后的抛物线为,把点代入得,解得(舍去),,∴当时他应该带球向正后方移动1米射门.23.(10分)(1)(3分)过点E作,交于点H,∵正方形的边长为4,∴四边形是矩形,四边形是矩形,∴,∵点E为中点,∴,∵将绕点A顺时针旋转至∴∵,∴,∴,∴,∴,∴;(2)(4分)过点E 作,作,∵菱形的边长为3,且,∴是等边三角形,,∵∴,,,∴,∴,∵,∴,∴是等边三角形,∴,∵将绕点A顺时针旋转至,∴,,即是等边三角形,∴,∵,∴,∴,∴,∴;(3)(4分)过点E作,作,交延长线于点R,交于点Q,∵,∴∴,,∵,∴,∵,∴,设,则,∵将绕点A顺时针旋转至,∴,∵,∴,即,过点B作,过点A作,则,∴,∴,∴,解得:(负值舍去),经检验:是方程的解,∴。
2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
2024年河南省中考数学复习模拟试卷(四)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都互为相反数;②多项式3xy2﹣4x3y+12是三次三项式;③任何正数都大于它的倒数;④+1变为30x=100x+15利用了等式的基本性质.其中正确的说法有( )A.0个B.1个C.2个D.3个2.将圆锥如图放置,现用一个平面截去它的上半部分,则从正面看下半部分的几何体可能的图形是( )A.B.C.D.3.长兴是浙江省的北大门,与苏、皖两省接壤,位于太湖西南岸,全县区域面积1430平方公里,现有户籍人口约64万.将1430用科学记数法表示为( )A.0.143×104B.1.43×103C.14.3×102D.143×10 4.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于( )A.145°B.110°C.70°D.35°5.化简:﹣,结果正确的是( )A.1B.C.D.x2+y2 6.如图,⊙O是是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为( )A.1B.C.2D.7.如图,在边长为的正方形中,是边上一动点不含,两点,将沿直线翻折,点落在点处;在上有一点,使得将沿直线翻折后,点落在直线上的点处,直线交于点,连接,则以下结论中正确的是( )线段长度的最小值为;四边形的面积最大值为;当≌时,;当为中点时,是线段的垂直平分线.A.B.C.D.8.一套书共有上、中、下3册,将它们任意摆放到书架的同一层上,这3册书从左向右恰好成上、中、下顺序的概率是( )A.B.C.D.9.函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是( )A.B.C.D.10.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A.B.C.D.二、填空题(每小题3分,共15分)11.“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则8人无座位;每排坐31人,则空26个座位,根据题意可列方程 12.方程组的解为 .13.王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择统计 图.14.在平面直角坐标系中,对于点,如果点的纵坐标满足,那么称点为点的“关联点”.例如点的“关联点”的坐标为点;如果点的关联点的坐标为,则此时 .15.如图,已知在△ABC中,AB=AC,AC的垂直平分线分别交AB于点D,交AC于点E.若∠DCB=30°,则∠DCA= °.三、解答题(本大题共8个小题,共75分)16.计算:17.为了解地铁14号线与7号线的日客运强度,获得了它们2022年1月份工作日(共21天)日客运强度(单位:万人/公里)的数据,并对数据进行整理、描述和分析.下面给出了部分信息:a.地铁14号线2022年1月份工作日日客运强度的数据的频数分布直方图如下(数据分成6组:0.50≤x<0.70,0.70≤x<0.90,0.90≤x<1.10,1.10≤x<1.30,1.30≤x<1.50,1.50≤x≤1.70);b.地铁14号线2022年1月份工作日日客运强度的数据在1.30≤x<1.50这一组是:1.37 1.37 1.37 1.38 1.41 1.47 1.48 1.48 1.49c.地铁14号线与7号线2022年1月份工作日日客运强度的平均数、中位数如下:平均数中位数地铁14号线 1.37m地铁7号线 1.08 1.1根据以上信息,回答下列问题:(1)写出表中m的值;(2)日客运强度反映了地铁的拥挤程度,小明每天上班均需乘坐地铁,可以选择乘坐地铁14号线或乘坐地铁7号线.请帮助小明选择一种乘坐地铁的方式,并说明理由;(3)2022年一共有249个工作日,请估计2022年全年的工作日中,地铁14号线日客运强度不低于1.3万人/公里的天数(直接写出结果).18.如图,四边形是平行四边形.(1)尺规作图不写作法,保留作图痕迹:作出的角平分线,交于点;在线段上截取,连接;(2)在所作图中,经过学习小组讨论发现四边形是菱形,并给出以下证明,请你补充完整.证明:四边形为平行四边形,▲;.平分,▲..▲.,而,▲ .,四边形为菱形.19.已知:如图,,,连结.(1)求证: .(2)若,,求的长.20.如图,小明要测量操场旗杆高度AH .立两根高1米的标杆BC 和DE ,两竿相距BD=15米,D 、B 、H 成一线,小明从BC 退行2米到F ,着地观察A ,A 、C 、F 三点共线;从DE 退行3米步到G ,从G 看A ,A 、E 、G 三点也共线.请你帮小明算出旗杆的高度AH 及HB 的距离.21.A ,B 两种型号的空调,已知购进3台A 型号空调和5台B 型号空调共用14500元;购进4台A 型号空调和10台B 型号空调共用25000元.(1)求A ,B 两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A 种型号的空调多少台?22.如图所示,一小球从地面上的点处抛出,球的抛出路线是抛物线的一部分,以过的水平线为轴,以过且垂直于轴的直线为轴建立平面直角坐标系,是一个坡度为的斜坡,若小球到达最高点的坐标为,(坡度:坡角的正切)(2)小球在斜坡上的落点的垂直高度为 米;为2,请判断小球能否飞过这个广告牌?通过计算说明理由.23.【阅读学习】(1)小娟是这样解决的:如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα== .易得∠BOC=2α.设BC=x,则AC=3x,则AB= x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .(2)【问题解决】值.答案1.B2.A3.B4.B5.B6.D7.A8.D9.B10.D11.30x+8=31x-2612.13.扇形14.或15.4016.解:原式=-1-3-+1=-3.17.(1)解:根据条形统计图可得,1+1+2+3+9=16,14号线的中位数第11个数据在1.30≤x<1.50这一组第4个数据为1.38,故答案为:1.38;(2)解:选择7号线,理由如下:7号线的客运强度的平均数及中位数均小于14号线,说明人流量较小,所以选择7号线;(3)166天18.(1)解:如图,、为所作;(2)证明:四边形为平行四边形,,.平分,,.,,而,四边形为平行四边形,,四边形为菱形.19.(1)证明:∵∴又∵,在和中∴;(2)解:由(1)可知,∴,,又∵,∴,∴是等边三角形,∴,又∵,∴.20.设BH=x,AH=y,根据题意可得:BC∥AH,DE∥AH,则△FCB∽△FAH,△EDG∽△AHG,故,,即,,则,解得:x=30,y=16,答:建筑物的高度AH为16m及HB的长度为30m.21.(1)解:设A种型号空调的进价为x元,B种型号空调的进价为y元,根据题意,可列方程组为解得:答:A种型号空调的进价为2000元,B种型号空调的进价为1700元;(2)设能购进A种型号的空调m台,则购进B种型号的空调30-m台,根据题意,可列不等式为解不等式,得∵m取最大正整数,∴m=10.答:最多能购进A种型号的空调10台22.(1)解:∵最高点的坐标为,∴设抛物线解析式为:,∵抛物线过原点,∴代入点可得:,解得:,即抛物线的函数解析式为:;(2)(3)解:小球不能飞过这个广告牌,理由与如下:∵,原点,∴设直线的解析式为:,代入,可得:,∴,∴直线的解析式为:,∵点的横坐标为2,∴,在抛物线上,当时,,∵,∴小球不能飞过这个广告牌.23.(1)x;(2)解:如图,连接NO,并延长交⊙O于Q,连接MQ,MO,作MH⊥NO于H.在⊙O中,∠NMQ=90°.∵∠Q=∠P=β,OM=ON,∴∠MON=2∠Q=2β.∵tanβ=,∴设MN=k,则MQ=2k,∴NQ= .∴OM= NQ= .∵,∴.∴MH= .在Rt△MHO中,sin2β=sin∠MON= .。
河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
河南省中考数学模拟试卷一.选择题(本大题共6小题,每小题3分,满分18分)1.若a的倒数仍为a,则a的值是()A.1 B.0 C.﹣1 D.±12.下列四幅汽车标志,是中心对称图形的是()A.B.C.D.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.“红灯停绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全.小刚每天从家骑自行车上学都经过三个路口,且每个路口安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是()A.B.C.D.5.菱形AOCB在平面直角坐标系中的位置如图,若OA=2,∠AOC=45°,则B点的坐标是()A.(﹣2﹣,)B.(﹣2+,)C.(2+,)D.(2﹣,)6.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8二.填空题(本大题共9小题,每小题3分,满分27分)7.分解因式:﹣a2b+2ab﹣b的结果为.8.自古以来,黄岩岛就是中国领土.早在元朝就将其纳入中国版图,并实施主权管辖.黄岩岛面积约150 000 000平方米,用科学记数法表示为.9.若x﹣y=﹣1,xy=,则代数式(x+1)(y﹣1)的值为.10.关于x的方程x2﹣3x﹣5=0的两根为x1,x2,则x12x2+x1x22的值为.11.将两张矩形纸片如图摆放,其中一矩形顶点落在另一矩形的边上,则∠1+∠2等于.12.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为.13.如图,△ABC中,AB=AC=1,∠ABC的平分线交AC于D,若∠A=36°,则cosA等于.14.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标是.15.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,…的圆心依次按点A,B,C,D,E,F循环,分别记为l1,l2,l3,l4,l5,l6…当AB=1时,l2012等于.三.解答题16.(1)计算:|1﹣|+﹣﹣(π﹣3)0+;(2)先化简:÷,再从﹣1≤x≤1中选取一个适当的整数求值.17.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?18.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?19.“关注校车,关爱儿童”成为今年全社会热议的焦点话题之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送的儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.20.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.21.如图,已知一次函数y=kx+b(k≠0)的图象分别与x轴、y轴相交于A、B两点,并且与反比例函数y=(m≠0)的图象相交于第一象限内的一点C,线段CD⊥x轴于点D,OA=OB=OD=1.(1)请直接写出A、B、D三点的坐标.(2)求一次函数与反比例函数的表达式.(3)连接OC,求△AOC的面积.22.如图,AB为⊙O的直径,过点C作⊙O的切线,AD垂直切线于D,交⊙O于点E.(1)求证:AC平分∠BAD;(2)若∠ABC=60°,CD=2,求AE的长.23.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.河南省中考数学模拟试卷一.选择题(本大题共6小题,每小题3,满分181.若a的倒数仍为a,则a的值是()A.1 B.0 C.﹣1 D.±1【解答】解:倒数是它本身的数有1和﹣1,故选D.2.下列四幅汽车标志,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形.故错误;B、是中心对称图形.故正确;C、不是中心对称图形.故错误;D、不是中心对称图形.故错误.故选B.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.4.“红灯停绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全.小刚每天从家骑自行车上学都经过三个路口,且每个路口安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是()A.B.C.D.【解答】解:共有8种情况,遇到两次红灯的概率是,故选B.5.菱形AOCB在平面直角坐标系中的位置如图,若OA=2,∠AOC=45°,则B点的坐标是()A.(﹣2﹣,)B.(﹣2+,)C.(2+,)D.(2﹣,)【解答】解:作AD⊥y轴于D;则∠ADO=90°,如图所示:∵四边形AOCB是菱形,∠AOC=45°,∴AB=OA=2,∠AOD=45°,∴AD=OD=OA•sin45°=2×=,∴BD=2+,∴点B的坐标为(﹣2﹣,);故选:A.6.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8【解答】解:∵点C(1,2),BC∥y轴,AC∥x轴,∴当x=1时,y=﹣1+6=5,当y=2时,﹣x+6=2,解得x=4,∴点A、B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2≤k≤9.故选:A.二.填空题(本大题共9小题,每小题3分,满分27分)7.分解因式:﹣a2b+2ab﹣b的结果为﹣b(a﹣1)2.【解答】解:原式=﹣b(a2﹣2a+1)=﹣b(a﹣1)2.故答案为:﹣b(a﹣1)2.8.自古以来,黄岩岛就是中国领土.早在元朝就将其纳入中国版图,并实施主权管辖.黄岩岛面积约150 000 000平方米,用科学记数法表示为 1.5×108.【解答】解:将150 000 000用科学记数法表示为1.5×108.故答案为1.5×108.9.若x﹣y=﹣1,xy=,则代数式(x+1)(y﹣1)的值为0.【解答】解:∵x﹣y=﹣1,xy=,∴原式=xy﹣x+y﹣1=xy﹣(x﹣y)﹣1=﹣+1﹣1=0.故答案为:010.关于x的方程x2﹣3x﹣5=0的两根为x1,x2,则x12x2+x1x22的值为﹣15.【解答】解:根据题意得x1+x2=3,x1x2=﹣5,所以x12x2+x1x22=x1x2(x1+x2)=﹣5×3=﹣15.故答案为﹣15.11.将两张矩形纸片如图摆放,其中一矩形顶点落在另一矩形的边上,则∠1+∠2等于90°.【解答】解:如图,作EF∥AD,∵AD∥BC,∴EF∥BC,∴∠1=∠3,∠2=∠4,而∠3+∠4=90°,∴∠1+∠2=90°.故答案为90°.12.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为2.【解答】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.故答案为2.13.如图,△ABC中,AB=AC=1,∠ABC的平分线交AC于D,若∠A=36°,则cosA等于.【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵BD平分∠ABC,∴∠CBD=∠ABC=36°.∵∠A=∠CBD,∠C=∠C,∴△CBD∽△CAB,∴=,∴CB2=CA•CD,设AD=x,则BC=x,CD=1﹣x,∴x2=1﹣x,解得:x1=,x2=(不合题意,舍去),∴AD=.作DE⊥AB,垂足为E,∵AD=BD,DE⊥AB,∴AE=AB=;在Rt△ADE中,cosA=cos36°===.故答案为.14.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标是(﹣3,3).【解答】解:如图所示,点A的对应点A′的坐标是(﹣3,3).故答案为:(﹣3,3).15.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,…的圆心依次按点A,B,C,D,E,F循环,分别记为l1,l2,l3,l4,l5,l6…当AB=1时,l2012等于.【解答】解:如图,∵六边形ABCDEF是正六边形,∴∠FAK1=180°﹣120°=60°;同理可求l2、l3…l2012的圆心角均为60°∴,,=,∴可以猜测:,∴=.故答案为.三.解答题16(1)计算:|1﹣|+﹣﹣(π﹣3)0+;(2)先化简:÷,再从﹣1≤x≤1中选取一个适当的整数求值.【解答】解:(1)原式=﹣1+﹣2﹣1+3=1;(2)原式=•(x+1)(x﹣1)=x+1,当x=0时,原式=0+1=1.17.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是3600m,他途中休息了20min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【解答】解:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600∴解得:∴函数关系式为:y=55x﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.18.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?【解答】解:(1)调查人数=10÷20%=50(人);(2)户外活动时间为1.5小时的人数=50×24%=12(人);补全频数分布直方图;(3)表示户外活动时间1小时的扇形圆心角的度数=×360°=144°;(4)户外活动的平均时间=(小时),∵1.18>1,∴平均活动时间符合上级要求;户外活动时间的众数和中位数均为1小时.19.“关注校车,关爱儿童”成为今年全社会热议的焦点话题之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送的儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.【解答】解:(1)设单独租用35座客车需x辆.由题意得:35x=55(x﹣1)﹣45,解得:x=5.∴35x=35×5=175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4﹣y)辆.由题意得:,解这个不等式组,得1≤y≤2.∵y取正整数,∴y=2.∴4﹣y=4﹣2=2.∴购进小车的费用为:32×2+40×2=144(万元).答:本次购进小车的费用是144万元.20.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.21.如图,已知一次函数y=kx+b(k≠0)的图象分别与x轴、y轴相交于A、B两点,并且与反比例函数y=(m≠0)的图象相交于第一象限内的一点C,线段CD⊥x轴于点D,OA=OB=OD=1.(1)请直接写出A、B、D三点的坐标.(2)求一次函数与反比例函数的表达式.(3)连接OC,求△AOC的面积.【解答】解:(1)∵OA=OB=OD=1,∴A(﹣1,0),B(0,1),D(1,0).(2)设一次函数解析式为y=kx+b,把A(﹣1,0),B(0,1)分别代入解析式得,,解得,∴一次函数即AB解析式为y=x+1,当x=1时,y=2,即C(1,2),∴反比例函数解析式:y=.(3)∵A(﹣1,0),C(1,2),∴S△AOC=OA•y C=×1×2=1.22.如图,AB为⊙O的直径,过点C作⊙O的切线,AD垂直切线于D,交⊙O于点E.(1)求证:AC平分∠BAD;(2)若∠ABC=60°,CD=2,求AE的长.【解答】(1)证明:如图1,连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD+∠ADC=180°,∴AD∥OC,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,则AC平分∠DAB;(2)解:如图2,连接OE,∵AB是⊙O的直径,∴∠ACB=90°,又∵∠B=60°,∴∠1=∠3=30°,在Rt△ACD中,CD=2,∠1=30°,∴AC=2CD=4,在Rt△ABC中,AC=4,∠CAB=30°,∴AB===8,∵∠EAO=2∠3=60°,OA=OE,∴△AOE是等边三角形,∴AE=OA=AB=4.23.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.【解答】解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.参与本试卷答题和审题的老师有:1987483819;caicl;2300680618;lanchong;wdzyzmsy@;星期八;sks;gsls;HJJ;sjw666;sjzx;疯跑的蜗牛;zhehe;dbz1018;gbl210;守拙;wd1899;zcx(排名不分先后)菁优网2016年4月27日第21页(共21页)。
2024年中招第一次模拟考试数学试题注意事项:1.本试题卷共6页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效,3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分,下列各题均有四个答案,其中只有一个是正确的.)1. 的相反数是()A. 正有理数B. 负有理数C. 正无理数D. 负无理数答案:B解析:解:的相反数是,是负的有理数,故选:B .2. 如图所示几何体,其主视图是()A. B. C. D.答案:A解析:解:根据题意可得,该几何体是一个长方体挖去半个圆柱体,∴其主视图是“”,故选:A.3. 年我国经济回升向好,国内生产总值超过万亿元,增长,增速居世界主要经济体前列.数据万亿用科学记数法可以表示为的形式,则n的值为()A. B. C. D.答案:B解析:解:万亿,故选:B .4. 提高全民安全意识,倡导安全文明风尚.下列安全提示标志既是轴对称图形又是中心对称图形的是()A. 紧急出口B. 避险处C. 小心地滑D. 急救药箱答案:D解析:解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D .5. 传统文化如同一颗璀璨的明珠,熠熠生辉.为增强学生体质,同时让学生感受中国传统文化,某校将国家非物质文化遗产“抖空竹”引入阳光特色大课间.如图①是某同学“抖空竹”时的一个瞬间,小红同学把它抽象成数学问题:如图②,已知,,,则的度数为()A. B. C. D.答案:C解析:解:如图所示,过点作,∵,∴,∴,∴,∴,故选:C .6. 下列计算正确的是()A. B.C. D.答案:D解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算错误,不符合题意;D、,原式计算正确,符合题意;故选;D.7. 如图,把两个边长为的小正方形沿对角线剪开,用得到的个直角三角形拼成一个大正方形,则大正方形的边长最接近的整数为()A. B. C. D.答案:A解析:解:根据题意,小正方形的对角线为,∵,∴,∴,∴大正方形的边长最接近的整数是3, 故选:A .8. 已知二次函数(是常数,),当时,,若此一元二次方程有两个不相等的实数根,则该二次函数的图象可能是()A. B. C. D.答案:C 解析:解:当时,有两个不相等的实根,∴,即二次函数图象与轴有两个交点,∴根据图示可得,A 、与轴无交点,不符合题意;B 、与轴有一个交代,不符合题意;C 、与轴有两个交点,符合题意;D 、与轴有一个交代,不符合题意; 故选:C .9. “准、绳、规、矩”是古代使用的测量工具, 一个简单结构的“矩”(如图①),由于使用时安放的位置不同,能测定物体的高低远近及大小,把矩放置在如图②所示的位置,令(单位:),(单位:),若,则关于的函数解析式为( )A. B. C. D.答案:A解析:解:根据题意,,∴,∵四边形是矩形,∴,,,,∴,∴,故选:A .10. 如图,在平面直角坐标系中,的顶点A,B,O的坐标分别为、、.点,,,…中的相邻两点关于的其中一个顶点对称.如:点,关于点A对称;点,关于点B对称;点,关于点O对称;点,关于点A对称;点,关于点B对称;点,关于点O对称,…,对称中心分别是A,B,O,…,且这些对称中心依次循环,若的坐标是,则点的坐标是()A. B. C. D.答案:B解析:解:∵的坐标是,A的坐标为,∴的坐标是同理可得:的坐标是,的坐标是,的坐标是,的坐标是,的坐标是,由此可知:与的坐标相同∵∴与的坐标相同故选:B二、填空题(每小题3分,共15分)11. 实数在数轴上的位置如图所示,请把按从小到大的顺序用“”号连接为______________.答案:解析:解:如图所示,∴,故答案为:.12. 用配方法解方程时,配方后得到的方程为________________.答案:解析:解:,移项得,,等式两边同时加上1得,,∴,故答案:.13. 在某市初中升学体育终结性评价考试的素质类项目中,小明从“1分钟跳绳”、“立定跳远”、“双手正面掷实心球”、“50米跑”四个项目中随机选择两项,则他选择“立定跳远”与“50 米跑”两个项目的概率是_________________.答案:解析:解:将“1分钟跳绳”,“立定跳远”,“双手正面掷实心球”,“50米跑”表示为A,B,C,D,列表把所有等可能结果表示出来,如表所示,A B C DA----B----C----D----共有种等可能结果,出现“立定跳远”,“50米跑”的结果为,共种,∴选择“立定跳远”与“50 米跑”两个项目的概率是,故答案为:.14. 如图①是清明上河园中供人们游玩的古代的马车.如图②是马车的侧面示意图,车轮的直径为,车架经过圆心,地面水平线与车轮相切于点,连接,.小明测出车轮的直径米,米,则的长为__________米答案:解析:解:如图所示,连接,延长,作延长线于点,∵与切与点,∴,且,∴,∴,∴,∵是直径,∴,则,,∴,在中,,在中,,∴,∴在中,,∴的长为,故答案为:.15. 如图1,点P从矩形的顶点A出发,沿A→D→B以的速度匀速运动到点B,图2是点P 运动时,的面积y()随时间x(s)变化的关系图象,则a的值为_____.答案:4解析:解:∵矩形中,,∴当点P在边上运动时,y的值不变,由图像可知,当时,点与点重合,,∴,即矩形的长是,∴,即.当点P在上运动时,y逐渐减小,由图像可知:点从点运动到点共用了,∴,在中,,∴,解得.故选:C.三、解答题(本大题共8个小题,共75分)16. (1)计算:(2)化简:答案:(1),(2)解析:(1)解:;(2)17. 今年春节期间,开封跻身全国热门文旅目的地前五名,人们常常穿着汉服进入各大景区,汉服的销售成为热门,某汉服商店计划购进A ,B 两款汉服,为调研顾客对两款汉服的满意度,调整进货方案,设计了下面的调查表.序号维度分值A 款得分B 款得分满意度打分标准1舒适性202性价比203时尚性20不满意基本满意满意非常满意商店随机抽取了20名顾客试穿两款汉服,并对其进行评分,收回全部问卷,并将调查结果绘制成如下统计图和统计表.A 、B 两款汉服性价比满意度人数分布统计图A 、B 两款汉服各项得分平均数统计表舒适性得分平均数性价比得分平均数时尚性得分平均数综评平均数A B注:将舒适性、性价比和时尚性三个方面得分的平均数按的权重计算,可得出综评平均数.(表中数据精确到)B 款汉服性价比满意度得分在范围的数据是:11 12131313 14 1414请根据以上信息,回答下列问题:(1)此次调研中A 款汉服性价比满意度达到“非常满意”的人数为;(2)补全条形统计图,根据图、表中信息可得出:B 款汉服性价比得分的中位数为分;(3)根据统计图、表中数据,请计算 B 款汉服综评平均数,并参照调查问卷中的满意度打分标准,分析并写出顾客对B 款汉服的满意度情况;(4)综合以上信息,请你给该汉服商店进货方面提一条建议,并说明理由.答案:(1)6(2)补全条形图见解析:,(3)顾客对B 款的满意情况良好,尤其是对B 款的时尚性方面满意度良好(4)汉服商店在进货时,可考虑A 款汉服在数量比B 款汉服的数量多一些(答案不唯一)小问1解析:解:根据题意,非常满意的百分比为,∴(人),故答案为:6;小问2解析:解:共有人,∴基本满意的人数为:(人),补全条形统计图如下,B款汉服性价比得分的中位数是第10,11位顾客分数的平均值,∴,故答案为:;小问3解析:解:B款基本满意的占,满意的占,非常满意的占,在舒适性和性价比方面,B款的平均分小于A款的平均分;在时尚性方面,B款的平均分高于A款的平均分;∴顾客对B款的满意情况良好,尤其是对B款的时尚性方面满意度良好;小问4解析:解:根据题意,A款基本满意的占,满意的占,非常满意的占,∴汉服商店在进货时,可考虑A款汉服在数量比B款汉服的数量多一些(答案不唯一).18. 如图所示是小华完成的尺规作图题,已知:矩形.作法:①分别以点为圆心,以大于长为半径,在两侧作弧,分别交于点;②作直线;③以点为圆心,以长为半径作弧,交直线于点,连接.根据小华的尺规作图步骤,解决下列问题.(1)填空:.(2)过点作,交直线于点.①求证:四边形是平行四边形;②请直接写出平行四边形的面积和矩形的面积的数量关系.答案:(1)(2)①证明过程见解析:;②小问1解析:解:根据作图可得,是线段的垂直平分线,,∴,∴,即是等边三角形,∴,∴,故答案为:;小问2解析:解:∵四边形是矩形,∴,,∴,①∵是的垂直平分线,∴,∴,即,∵,∴四边形是平行四边形;②如图所示,设与交于点,∴,∴平行四边形的面积为,矩形的面积为,∴.19. “黄河风”雕塑位于开封市金明广场,寓意着开封像一艘巨轮,开足马力,永往直前. 某数学小组开展综合与实践数学活动,以“测量黄河风雕塑高度”为课题,制定了测量方 案.为了减小测量误差,该小组在测量仰角以及两点间的距离时,都分别测量了两次并取它 们的平均值作为测量结果,测量数据如下表:课题测量黄河风雕塑的高度实物图成员组长:×××组员:×××,×××,×××测量工具卷尺、测角仪 …测量示意图说明:表示黄河风雕塑的高度,测角仪的高度,点C ,F 与点B 在同一直线上,点C ,F 之间的距离可直接测得,且点A ,B ,C ,D ,E ,F 在同一平面内测量项目第一次第二次平均值的度数的度数测量数据C,F之间的距离参考数据(1)请帮助该小组的同学根据上表中的测量数据,求黄河风雕塑的高度.(结果精确到)(2)为测量结果更加准确,你认为在本次方案的实行过程中,该小组成员应该注意的事项有哪些.(写出一条即可)答案:(1)黄河风雕塑的高度约为(2)测角仪测量时要与地面垂直(答案不唯一,合理即可)小问1解析:解:设,交于G,如图,由题意知,,,在中,,,在中,,,,,解得,,即黄河风雕塑的高度约为.小问2解析:解:该小组成员应该注意的事项有:测角仪测量时要与地面垂直;测量时卷尺要拉直(答案不唯一,合理即可).20. 某数学活动小组研究一款如图①简易电子体重秤,当人踏上体重秤的踏板后,读数器可以显示人的质量(单位:).图②是该秤的电路图,已知串联电路中,电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为.根据与之间的关系得出一组数据如下:…123q6…4p2(1)填空:,;(2)该小组把上述问题抽象为数学模型,请根据表中数据在图③中描出实数对的对应点,画出函数的图象,并写出一条此函数图象关于增减性的性质.(3)若电流表量程是,可变电阻与踏板上人的质量之间函数关系如图④所示,为保护电流表,求电子体重秤可称的最大质量为多少千克?答案:(1),(2)作图见解析:,电流随可变电阻的增大而减小(3)电子体重秤可称的最大质量为千克小问1解析:解:已知电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为,∴当时,,即;当时,,解得,,即;故答案为:,;小问2解析:解:根据题意,…12346…432根据表格数据在平面直角坐标系中描点如下,∴根据图示,电流随可变电阻的增大而减小;小问3解析:解:根据题意,设可变电阻与人的质量的函数关系为,且该直线过,,∴,解得,,∴可变电阻与人的质量的函数关系为:,∴可变电阻随人质量增大而减小,当时,,∴;当时,,∴;∵,∴不能超过;当时,,解得,,∴,解得,,∴电子体重秤可称的最大质量为千克.21. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某生产厂家销售的甲、乙两种头盔,已知甲种头盔比乙种头盔的单价多元,购进甲种头盔个,乙种头盔个,共需元.(1)求甲、乙两种头盔的单价;(2)某商店欲购进两种头盔共个,正好赶上厂家进行促销活动,其方式如下:甲种头盔按单价的八折出售,乙种头盔每个降价元出售.如果此次购买甲种头盔的数量不低于乙种头盔的数量,那么应购买多少个甲种头盔可以使此次购买头盔的总费用最少?最少费用是多少元?答案:(1)甲种头盔的单价是元,乙种头盔的单价是元(2)应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元小问1解析:解:设购买乙种头盔的单价为元,则甲种头盔的单价为元,根据题意,得,解得:,,答:甲种头盔的单价是元,乙种头盔的单价是元;小问2解析:解:设购只甲种头盔,则购只乙种头盔,设总费用为元,则,解得:,,∵,∴随的增大而增大,∴时,取最小值,最小值,答:应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元.22. 开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离为50米,若以点O为原点,所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离为72米,请求出此时这条钢拱之间水面的宽度;(3)当时,求y的取值范围.答案:(1)(2)(3)小问1解析:解:∵,,∴,,设抛物线解析式为,把代入得:,解得:,∴抛物线解析式为.小问2解析:解:∵,∴,∴,把代入得:,解得:,∴此时这条钢拱之间水面的宽度为;小问3解析:解:∵,∴抛物线的定做坐标为,∴当时,y取最大值50,∵,∴抛物线开口向下,则离对称轴越远,函数值越小,∵,∴当时,y取最小值,,∴当时,.23. 问题情境:在数学课上,张老师带领学生以“图形的平移”为主题进行教学活动.在菱形纸片中,,对角线,将菱形沿对角线剪开,得到和.将沿射线方向平移一定的距离,得到.观察发现:(1)如图①,菱形中,;如图②,连接,四边形的形状是;操作探究:(2)将沿直线翻折,得,如图③,然后沿射线方向进行平移,连接,若添加一个条件,能否使得四边形是一个特殊的四边形?若能,请写出添加的条件和这个特殊的四边形,并写出证明过程,若不能,说明理由.拓展应用:(3)在(2)的条件下,设和相交于点,当是的三等分点时,直接写出的面积.答案:(1),平行四边形;(2)添加点为中点,可得四边形是矩形,证明见解析:;(3)的面积为或解析:解:如图所示,连接与交于点,∵四边形是菱形,∴,,,且,在直角中,,∴,如图所示,连接,∵四边形是菱形,图形平移,∴,,∴,∴四边形是平行四边形,故答案为:,平行四边形;(2)如图所示,连接,根据题意,,添加点为中点,可得四边形是矩形,证明如下,∵四边形菱形,∴,,∴,,且,∴,∴,,,∴四边形是矩形;(3)当是的三等分点,第一种情况,如图所示,过点作于点,过点作于点,,根据题意,,∴,,∴,∴,∴,根据(1)的证明可得,,∴,∴,则,∴的面积为;第二种情况,如图所示,,∴由上述证明可得,,∴,则,∴的面积为;综上所,的面积为或.。
河南省中考数学模拟试卷一、选择题(每小题3分,共24分)1.计算(﹣2)+(﹣3)的结果是()A.﹣5 B.﹣1 C.1 D.52.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.3.移动互联网已经全面进入人们的日常生活,截至2016年1月,全国4G用户总数达到3.86亿,其中3.86亿用科学记数法表示为()A.3.86×104B.3.86×106C.3.86×108D.0.162×1094.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°5.不等式组的整数解的个数为()A.1 B.2 C.3 D.46.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户)1324月用电量(度/户)40505560那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是547.已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y18.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=2二、填空题(每小题3分,共21分)9.计算+(﹣1)2017= .10.如图,根据阴影面积的两种不同的计算方法,验证了初中数学的哪个公式.答:.11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.在△ABC中,AB=AC,∠A=52°,分别以A、C为圆心,大于AC长为半径画弧,两弧交于M、N两点,作直线MN交AB于D、交AC于E,则∠DCB的度数为度.13.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k= .14.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是.15.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题(共75分)16.在学习分式计算时有这样一道题:先化简÷,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:÷=÷()=()=()(1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有.17.唐诗是我国古代文化中的隗宝,某市教育主管部门为了解本市初中生对唐诗的学习情况,进行了一次唐诗背诵大赛,随机抽取了部分同学的成就(x为整数,总分100分),绘制了如下尚不完整的统计表.组别成绩分组(单位:分)频数频率A 50≤x<60 40 0.10B 60≤x<70 60 cC 70≤x<80 a 0.20D 80≤x<90 160 0.40E 90≤x≤100 60 0.15合计 b 1根据以上信息解答下列问题:(1)统计表中a= ,b ,c=;(2)扇形统计图中,m的值为,“D”所对应的圆心角的度数是(度);(3)若参加本次背诵大赛的同学共有8000人,请你估计成绩在90分及以上的学生大约有多少人?18.如图,AB是⊙O的直径,割线DA,DB分别交⊙O于点E,C,且AD=AB,∠DAB是锐角,连接EC、OE、OC.(1)求证:△OBC≌△OEC.(2)填空:①若AB=2,则△AOE的最大面积为;②当∠ABD的度数为时,四边形OBCE是菱形.19.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)20.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).23.如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)河南省中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.计算(﹣2)+(﹣3)的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的加法.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.2.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.【考点】简单组合体的三视图;截一个几何体.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:从左面看是一个大正方形,大正方形的右上角是一个小正方形,因为是在对面,故小正方形应该是虚线,故D符合题意,故选:D.3.移动互联网已经全面进入人们的日常生活,截至2016年1月,全国4G用户总数达到3.86亿,其中3.86亿用科学记数法表示为()A.3.86×104B.3.86×106C.3.86×108D.0.162×109【考点】科学记数法—表示较大的数.【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3.86亿用科学记数法表示为:3.86×108.故选:C.4.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.5.不等式组的整数解的个数为()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【解答】解:,解不等式①得,x>﹣,解不等式②得,x≤1,所以,不等式组的解集是﹣<x≤1,所以,不等式组的整数解有﹣1、0、1共3个.故选C.6.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户)1324月用电量(度/户)40505560那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是54【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.【解答】解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.7.已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】根据x1、x2、x3与对称轴的大小关系,判断y1、y2、y3的大小关系.【解答】解:∵二次函数y=﹣x2﹣7x+,∴此函数的对称轴为:x=﹣=﹣=﹣7,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.8.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=2【考点】三角形的内切圆与内心;翻折变换(折叠问题).【分析】设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC 的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC中,利用勾股定理求得(舍去),从而求出a,b的值,所以BC+AB=2+4.再设DF=x,在Rt △ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.【解答】解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选A.二、填空题(每小题3分,共21分)9.计算+(﹣1)2017= 2 .【考点】实数的运算.【分析】原式利用算术平方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=3﹣1=2,故答案为:210.如图,根据阴影面积的两种不同的计算方法,验证了初中数学的哪个公式.答:a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】首先用边长是a的正方形的面积减去边长是b的正方形的面积,求出左边图形的面积是多少;然后根据长方形的面积=长×宽,求出右边阴影部分的面积,判断出验证了初中数学的哪个公式即可.【解答】解:左边图形的面积是:a2﹣b2,右边图形的面积是:(a+b)(a﹣b),∴根据阴影面积的两种不同的计算方法,验证了初中数学的平方差公式:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,3)(2,3)﹣(4,3)(5,3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.12.在△ABC中,AB=AC,∠A=52°,分别以A、C为圆心,大于AC长为半径画弧,两弧交于M、N两点,作直线MN交AB于D、交AC于E,则∠DCB的度数为12 度.【考点】线段垂直平分线的性质;等腰三角形的性质;作图—基本作图.【分析】首先根据题意可得MN是AC的垂直平分线,根据垂直平分线的性质可得AD=DC,进而得到∠A=∠ACD=52°,然后再根据等腰三角形的性质计算出∠ACB的度数,进而得到答案.【解答】解:由题意得:MN是AC的垂直平分线,∵MN是AC的垂直平分线∴AD=DC,∴∠A=∠ACD=52°,∵AB=AC,∴∠ACB=÷2=64°,∴∠DCB=64°﹣52°=12°,故答案为:12.13.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k= 2+2或2﹣2.【考点】反比例函数图象上点的坐标特征;勾股定理.【分析】把P点代入y=求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k 的值.【解答】解:∵点P(1,t)在反比例函数y=的图象上,∴t==2,∴P(1.2),∴OP==,∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+,2)或(1﹣,2)∵反比例函数y=的图象经过点Q,∴2=或2=,解得k=2+2或2﹣2故答案为2+2或2﹣2.14.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是6π.【考点】扇形面积的计算.【分析】图中阴影部分的面积=扇形ABD的面积+三角形DBE的面积﹣三角形ABC的面积.又由旋转的性质知△ABC≌△DBE,所以三角形DBE的面积=三角形ABC的面积.【解答】解:∵根据旋转的性质知∠ABD=60°,△ABC≌△DBE,∴S△ABC ﹣S△DBE,∴S阴影=S扇形ABD+S△DBE﹣S△ABC=S扇形ABD==6π.故答案是:6π.15.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【考点】一元一次方程的应用.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟, =,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题(共75分)16.在学习分式计算时有这样一道题:先化简÷,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:÷=÷(通分、因式分解)=(分式的除法法则)=(约分)(1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有2,﹣2,1 .【考点】分式的化简求值.【分析】(1)根据通分、约分、分式的除法法则解答;(2)根据分式有意义的条件进行解答即可.【解答】解:(1)原式═÷(通分、因式分解)=(分式的除法法则)=(约分)故答案为:通分,分解因式;分式的除法法则;约分;(2)∵x﹣4≠0,x﹣1≠0,∴x≠±2,1.故答案为:2,﹣2,1.17.唐诗是我国古代文化中的隗宝,某市教育主管部门为了解本市初中生对唐诗的学习情况,进行了一次唐诗背诵大赛,随机抽取了部分同学的成就(x为整数,总分100分),绘制了如下尚不完整的统计表.组别成绩分组(单位:分)频数频率A 50≤x<60 40 0.10B 60≤x<70 60 cC 70≤x<80 a 0.20D 80≤x<90 160 0.40E 90≤x≤100 60 0.15合计 b 1根据以上信息解答下列问题:(1)统计表中a= 80 ,b=400 ,c= 0.15 ;(2)扇形统计图中,m的值为20 ,“D”所对应的圆心角的度数是144 (度);(3)若参加本次背诵大赛的同学共有8000人,请你估计成绩在90分及以上的学生大约有多少人?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)首先根据A组的频数和频率确定b值,然后根据频数÷样本容量=频率求得a和c的值即可;(2)用整体1减去其他小组的百分比即可求得m的值;用周角乘以D所占的百分比即可求得其圆心角的度数;(3)用学生总人数乘以90分以上的频率即可求得人数.【解答】解:(1)∵观察频数统计图知:A组的频数为40,频率为0.1,∴b=40÷0.1=400,∴a=400×0.20=80,c=60÷400=0.15;故答案为:80,400,0.15;(2)∵m%=1﹣10%﹣15%﹣40%﹣15%=20%,∴m=20,D所在的扇形的圆心角为360×40%=144°,故答案为:20,144;(3)8000×15%=1200,所以成绩在90分及以上的学生大约有1200人.18.如图,AB是⊙O的直径,割线DA,DB分别交⊙O于点E,C,且AD=AB,∠DAB是锐角,连接EC、OE、OC.(1)求证:△OBC≌△OEC.(2)填空:①若AB=2,则△AOE的最大面积为;②当∠ABD的度数为60°时,四边形OBCE是菱形.【考点】圆的综合题.【分析】(1)利用垂直平分线,判断出∠BAC=∠DAC,得出EC=BC,用SSS判断出结论;(2)先判断出三角形AOE面积最大,只有点E到直径AB的距离最大,即是圆的半径即可;(3)由菱形判断出△AOC是等边三角形即可.【解答】解:(1)连接AC,∵AB是⊙O的直径,∴AC⊥BD,∵AD=AB,∴∠BAC=∠DAC,∴,∴BC=EC,在△OBC和△OEC中,∴△OBC≌△OEC,(2)∵AB是⊙O的直径,且AB=2,∴OA=1,设△AOE的边OA上的高为h,∴S=OA×h=×1×h=h,△AOE最大,只有h最大,∴要使S△AOE∵点E在⊙O上,∴h最大是半径,=1即h最大=,∴S△AOE最大故答案为:,(3)由(1)知,BC=EC,OC=OB,∵四边形OBCE是菱形.∴BC=OB=OC,∴∠ABD=60°,故答案为60°.19.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,根据直角三角形的性质得出CG,再根据三角函数的定义即可得出CD的长;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,根据三角函数表示出EH,在Rt△EHC中,根据正弦的定义求值即可.【解答】解:(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,∵在Rt△CGB中,∠CBG=90°﹣60°=30°,∴CG=BC=×(30×)=7.5,∵∠DAG=90°,∴四边形ADFG是矩形,∴GF=AD=1.5,∴CF=CG﹣GF=7.5﹣1.5=6,在Rt△CDF中,∠CFD=90°,∵∠DCF=53°,∴COS∠DCF=,∴CD===10(海里).答:CD两点的距离是10;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,则∠EHD=∠CHE=90°,∴sin∠EDH=,∴EH=EDsin53°=3t ×=t ,∴在Rt △EHC 中,sin ∠ECD===. 答:sin ∠ECD=.20.已知关于x 的一元二次方程:x 2﹣(m ﹣3)x ﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x 2﹣(m ﹣3)x ﹣m 与x 轴交于A (x 1,0),B (x 2,0)两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x 2﹣x 1|)【考点】抛物线与x 轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A 、B 间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m ﹣3)]2﹣4(﹣m )=m 2﹣2m+9=(m ﹣1)2+8,∵(m ﹣1)2≥0,∴△=(m ﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x 1,x 2是原方程的两根,∴x 1+x 2=m ﹣3,x 1•x 2=﹣m .∵AB=|x 1﹣x 2|,∴AB 2=(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=(m ﹣3)2﹣4(﹣m )=(m ﹣1)2+8,∴当m=1时,AB 2有最小值8,∴AB 有最小值,即AB==221.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.【考点】一次函数的应用;一元二次方程的应用;一元一次不等式的应用.【分析】(1)根据甲团队人数为x人,乙团队人数不超过50人,得到x≥70,分两种情况:①当70≤x≤100时,W=70x+80=﹣10x+9600,②当100<x<120时,W=60x+80=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x≤100,由W=﹣10x+9600,根据70≤x≤100,利用一次函数的性质,当x=70时,W最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a元,可得W=(70﹣a)x+80=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a)=7200﹣240a(元),所以﹣70a+8900﹣=3400,即可解答.【解答】解:(1)∵甲团队人数为x人,乙团队人数不超过50人,∴120﹣x≤50,∴x≥70,①当70≤x≤100时,W=70x+80=﹣10x+9600,②当100<x<120时,W=60x+80=﹣20x+9600,综上所述,W=(2)∵甲团队人数不超过100人,∴x≤100,∴W=﹣10x+9600,∵70≤x≤100,∴x=70时,W=8900(元),最大两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元).(3)∵x≤100,∴W=(70﹣a)x+80=﹣(a+10)x+9600,=﹣70a+8900(元),∴x=70时,W最大两团联合购票需120(60﹣2a)=7200﹣240a(元),∵﹣70a+8900﹣=3400,解得:a=10.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠EAF与∠BAD满足关系∠EAF=∠BAD 时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).【考点】四边形综合题.【分析】(1)根据旋转变换的性质和正方形的性质证明△EAF≌△GAF,得到EF=FG,证明结论;(2)把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,证明△EAF≌△HAF,证明即可;(3)延长BA交CD的延长线于P,连接AF,根据四边形内角和定理求出∠C的度数,得到∠P=90°,求出PD、PA,证明∠EAF=∠BAD,又(2)的结论得到答案.【解答】(1)证明:由旋转的性质可知,△ABE≌△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠ADG=∠ABE=90°,∴G、D、F在同一条直线上,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAG=90°,又∠EAF=45°,∴∠FAG=45°,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∴EF=BE+FD;(2)当∠EAF=∠BAD时,仍有EF=BE+FD.证明:如图(2),把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,则BE=DH,∠BAE=∠DAH,∠ADH=∠B,又∠B+∠D=180°,∴∠ADH+∠D=180°,即F、D、H在同一条直线上,当∠EAF=∠BAD时,∠EAF=∠HAF,由(1)得,△EAF≌△HAF,则EF=FH,即EF=BE+FD,故答案为:∠EAF=∠BAD;(3)如图(3),延长BA交CD的延长线于P,连接AF,∵∠B=60°,∠ADC=120°,∠BAD=150°,∴∠C=30°,∴∠P=90°,又∠ADC=120°,∴∠ADP=60°,∴PD=AD×cos∠ADP=40,AP=AD×sin∠ADP=40,∴PF=PD+DF=40,∴PA=PF,∴∠PAF=45°,又∠PAD=30°,∴∠DAF=15°,∴∠EAF=75°,∠BAE=60°,∴∠EAF=∠BAD,由(2)得,EF=BE+FD,又BE=BA=80,∴EF=BE+FD=40().23.如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)【考点】二次函数综合题.【分析】(1)求C点坐标,考虑作x,y轴垂线,表示横纵坐标,易得△CDA≌△AOB,所以C 点坐标易知.进而抛物线解析式易得.(2)横坐标相同的两点距离,可以用这两点的纵坐标作差,因为两点分别在直线BC与抛物线上,故可以利用解析式,设横坐标为x,表示两个纵坐标.作差记得关于x的二次函数,利用最值性质,结果易求.(3)计算易得,BC=,因为Q为BC的中点,PQ=恰为半径,则易作圆,P点必在圆上.分三种情况进行解答.【解答】解:(1)如图1,过点C作CD⊥y轴于D,此时△CDA≌△AOB,∵△CDA≌△AOB,∴AD=BO=2,CD=AO=1,∴OD=OA+AD=3,∴C(﹣1,﹣3).将B(﹣2,0),C(﹣1,﹣3)代入抛物线y=x2+bx+c,解得 b=,c=﹣3,∴抛物线的解析式为y=x2+x﹣3.:y=kx+b,(2)设lBC∵B(﹣2,0),C(﹣1,﹣3),∴,解得,。