离散数学第三版(尹宝林版)第一章习题解答
- 格式:pdf
- 大小:18.38 MB
- 文档页数:14
习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。
精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。
习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。
6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。
第一章命题逻辑基本概念4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.8.p:2<1,q:3<2(1)p→q,(2)p→┐q,(3)┐q→p,(4)┐q→p,(5)┐q→p,(6)p→q,13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16.设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
§1.1 命题和逻辑连接词习题1.11. 下列哪些语句是命题,在是命题的语句中,哪些是真命题,哪些是假命题,哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)你喜欢计算机吗? (3)地球上海洋的面积比陆地的面积大。
(4)请回答这个问题! (5)632=+。
(6)107<+x 。
(7)园的面积等于半径的平方乘以圆周率。
(8)只有6是偶数,3才能是2的倍数。
(9)若y x =,则z y z x +=+。
(10)外星人是不存在的。
(11)2020年元旦下大雪。
(12)如果311=+,则血就不是红的。
解是真命题的有:(1)、(3)、(7)、 (9) 、(12) ;是假命题的有:(5)、 (8) ;是命题但真值现在不知道的有: (10)、 (11);不是命题的有:(2)、(4)、(6)。
2. 令p 、q 为如下简单命题:p :气温在零度以下。
q :正在下雪。
用p 、q 和逻辑联接词符号化下列复合命题。
(1)气温在零度以下且正在下雪。
(2)气温在零度以下,但不在下雪。
(3)气温不在零度以下,也不在下雪。
(4)也许在下雪,也许气温在零度以下,也许既下雪气温又在零度以下。
(5)若气温在零度以下,那一定在下雪。
(6)也许气温在零度以下,也许在下雪,但如果气温在零度以上就不下雪。
(7)气温在零度以下是下雪的充分必要条件。
解 (1)q p ∧;(2)q p ⌝∧;(3)q p ⌝∧⌝;(4)q p ∨; (5)q p →;(6))()(q p q p ⌝→⌝∧∨;(7)q p ↔。
3. 令原子命题p :你的车速超过每小时120公里,q :你接到一张超速罚款单,用p 、q 和逻辑联接词符号化下列复合命题。
(1)你的车速没有超过每小时120公里。
(2)你的车速超过了每小时120公里,但没接到超速罚款单。
(3)你的车速若超过了每小时120公里,将接到一张超速罚款单。
(4)你的车速不超过每小时120公里,就不会接到超速罚款单。
离散数学习题及解答作业题与解答第⼀章19 (2)、(4) 、(6)21 (1)、(2) 、(3)19、(2)解答: (p→┐p)→┐q 真值表如下:所以公式(p→┐q)→┐q 为可满⾜式19、(4)解答: (p→q)→(┐q→┐p) 真值表如下:所以公式(p→q)→(┐q→┐p)为永真式19、(6)解答: ((p→q)∧(q→r))→(p→r) 真值表如下:所以公式((p→q)∧(q→r))→(p→r)为永真式21、(1)解答: ┐(┐p∧q)∨┐r 真值表如下:所以成假赋值为:01121、(2)解答: (┐q∨r)∧(p→q)真值表如下:所以成假赋值为:010,100,101,11021、(3)解答: (p→q)∧(┐(p∧r)∨p)真值表如下:所以成假赋值为:100,101第⼆章5、(1) (2) (3) 6、(1) (2) (3) 7、(1) (2) 8、(1) (2) (3) 5、求下列公式的主析取范式,并求成真赋值(1) (┐p→q)→(┐q∨p)┐(┐p→q) ∨(┐q∨p)┐(┐(┐p) ∨q) ∨(┐q∨p)(┐p ∧┐q) ∨(┐q∨p)(┐p ∧┐q) ∨(p ∧┐q)∨(p ∧q)所以00,10,11 为成真赋值。
(2) (┐p→q)∧(q∧r)(┐┐p∨q)∧(q∧r)(p∨q)∧(q∧r)(p∧q∧r)∨(q∧r)(p∧q∧r)∨(p∧q∧r)∨(┐p∧q∧r)(p∧q∧r)∨(┐p∧q∧r)m3∨m 7,所以011,111 为成真赋值。
(3) (p∨(q∧r))→(p∨q∨r)┐(p∨(q∧r))∨(p∨q∨r)(┐p∧(┐q∨┐r))∨(p∨q∨r)(┐p∧┐q)∨(┐p∧┐r)∨(p∨q∨r)(┐p∧┐q)∨((┐p∧┐r)∨(p∨q∨r))(┐p∧┐q)∨((┐p∨p∨q∨r)∧(┐r∨p∨q∨r) )(┐p∧┐q)∨(1∧1)(┐p∧┐q)∨11m0∨m1∨m 2∨m3∨m4∨m5∨m 6 ∨m 7,所以000, 001, 010, 011, 100, 101, 110, 111 为成真赋值。
离散数学第三版课后习题答案【篇一:离散数学(第三版)陈建明,刘国荣课后习题答案】念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)a={x | x ∈n∧x是偶数∧ x<15}2)b={x|x∈n∧4+x=3} 3)c={x|x是十进制的数字} [解] 1)a={2,4,6,8,10,12,14}2)b=?3)c={0,1,2,3,4,5,6,7,8,9} 2. 用谓词法表示下列集合: 1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29} [解] 1){n?n?i?(?m?i)(n=2m+1)};2){n?n?i?n?0?n7};3){p?p?n?p2?p30??(?d?n)(d?1?d?p?(?k?n)(p=k?d))}。
3. 确定下列各命题的真假性: 1) 2)?∈? 3)??{?} 4)?∈{?}5){a,b}?{a,b,c,{a,b,c}} 6){a,b}∈(a,b,c,{a,b,c}) 7){a,b}?{a,b,{{a,b,}}} 8){a,b}∈{a,b,{{a,b,}}} [解]1)真。
因为空集是任意集合的子集; 2)假。
因为空集不含任何元素; 3)真。
因为空集是任意集合的子集; 4)真。
因为?是集合{?}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集; 6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集; 8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合a,b,c,确定下列命题的真假性: 1)如果a∈b∧b∈c,则a∈c。
2)如果a∈b∧b∈c,则a∈c。
3)如果a?b∧b∈c,则a∈c。
[解] 1)假。
例如a={a},b={a,b},c={{a},{b}},从而a∈b∧b∈c但a∈c。
(完整版)洪帆《离散数学基础》(第三版)课后习题答案第1章集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合(3) 2{|,10240515}i i I i i i ∈--<≤≤且答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i Ii ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的?(1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ? 答:错误(3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ? 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的?(1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ? 正确 (4) {{},1,3,4}a R ? 正确 (5)R S = 错误 (6) {}a S ? 正确 (7) {}a R ?错误(8) R φ?正确(9) {{}}a R φ?? 正确(10) {}S φ?错误(11) R φ∈错误(12) {{3},4}φ?正确5、列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ?答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ?。
6、给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '? (2) ()A B C '?? (3) ()A B C ?? (4)()()A B A C (5) ()A B '? (6) A B ''? (7) ()B C '? (8)B C ''? (9) 22A C - (10)22A C ? 答:(1) {3,4}B '=,{4}A B '?=(2) {1}A B ?=,{1,3,5}C '=,(){1,3,5}A B C '??= (3) {2}B C ?=,(){1,2,4}A B C ??=(4) {1,2,4,5}A B ?=,{1,2,4}A C ?=,()(){1,2,4}A B A C = (5) (){2,3,4,5}A B '?= (6) {2,3,5}A '=,{2,3,4,5}A B ''?= (7) {1,2,4,5}BC ?=,(){3}B C '?= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''?=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ?=10、给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B CD = (2) (())A B C D φ=(3) ()B A C -?解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ?=,(){4,5}B A C -?= (4) ()A B D '??解:{3,4,5,6}A B B A '?=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '??=11、给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或(5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =? {3,6,9}=A D ? {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}??L{3,6,9,10,11,12,}()A D B '==??L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-?--?-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ?12、判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。
习题 1.11. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴ 中国有四大发明。
⑵ 计算机有空吗?⑶ 不存在最大素数。
⑷ 21+3 < 5。
⑸ 老王是山东人或河北人。
⑹ 2 与 3 都是偶数。
⑺ 小李在宿舍里。
⑻ 这朵玫瑰花多美丽呀!⑼ 请勿随地吐痰!⑽ 圆的面积等于半径的平方乘以p。
⑾只有 6 是偶数, 3 才能是 2 的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺ ⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴ 李辛与李末是兄弟。
⑵ 因为天气冷,所以我穿了羽绒服。
⑶ 天正在下雨或湿度很高。
⑷ 刘英与李进上山。
⑸ 王强与刘威都学过法语。
⑹ 如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻ 除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵ p:天气冷;q:我穿羽绒服;⑶ p:天在下雨;q:湿度很高;⑷ p:刘英上山;q:李进上山;⑸ p:王强学过法语;q:刘威学过法语;⑹ p:你看电影;q:我看电影;⑺ p:我看电视;q:我外出;r :我睡觉;⑻ p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴ 他一面吃饭,一面听音乐。
⑵ 3 是素数或 2 是素数。
⑶ 若地球上没有树木,则人类不能生存。
⑷ 8 是偶数的充分必要条件是 8能被 3 整除 ⑸ 停机的原因在于语法错误或程序错误。
⑹ 四边形 ABCD 是平行四边形当且仅当 它的对边平行 ⑺ 如果 a 和 b 是偶数,则 a +b 是偶数。
解:⑴ p :他吃饭; q :他听音乐;原命题符号化为: p ∧ q ⑵ p :3 是素数; q : 2是素数;原命题符号化为: p ∨q ⑶ p :地球上有树木; q :人类能生存;原命题符号化为: p → q⑷ p :8 是偶数; q :8能被 3整除;原命题符号化为: p ?q⑸ p :停机; q :语法错误; r :程序错误;原命题符号化为: q ∨r →p⑹ p :四边形 ABCD 是平行四边形; q :四边形 ABCD 的对边平行;原命题符号化为: p ?q 。
第一章部分习题及参考答案1 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)2.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”3.用真值表判断下列公式的类型:(1)(p→q) →(⌝q→⌝p)(2)(p∧r) ↔(⌝p∧⌝q)(3)((p→q) ∧(q→r)) →(p→r)4.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)5.用等值演算法证明下面等值式:(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)6.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)7.在自然推理系统P中构造下面推理的证明:(1)前提:p→q,⌝(q∧r),r结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r结论:p∧q8.在自然推理系统P中用附加前提法证明下面推理:前提:p→(q→r),s→p,q结论:s→r9.在自然推理系统P中用归谬法证明下面各推理:前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p参考答案:1.(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0 (4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔12.p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
:p是无理数,p为真命题。
1.2 (1)2(2)5:p能被2整除,p为假命题。
(6)qp→。
其中,2:p是素数,q:三角形有三条边。
由于p与q都是真命题,因而qp→为假命题。
p→,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命(7)qp→为假命题。
题,q为真命题,因而q(8)2000:p年10月1日天气晴好,今日(1999年2月 13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
(10)p :小李在宿舍里. p 的真值则具体情况而定,是确定的。