游梁式抽油机二级传动装置设计
- 格式:doc
- 大小:714.00 KB
- 文档页数:39
游梁式抽油机新型传动方案设计作者:刁海胜王宏博来源:《石油知识》 2018年第3期摘要:提出一种新的方法用于改善游梁式抽油系统电机“大马拉小车”现象。
该方法通过增加抽油机整体的转动惯量降低电机负载扭矩波动,启动时应用液力变矩器提高电动机启动扭矩,启动后应用锁止离合器提高系统的传动效率,进而实现降低抽油系统电机额定效率,改善“大马拉小车”现象的目的。
关键字:液力变矩器;仿真模型;系统效率;启动特性;负载扭矩前言常规游梁式抽油系统为克服负载启动和曲柄扭矩波动较大的缺点,常选用额定功率较大的电机来驱动,因此抽油系统稳定工作时电机的平均负载率很低,出现“大马拉小车”的现象,造成电能的浪费。
为改变上述现状,本文提出了采用液力变矩器来改善抽油系统效率的方法,并建立了该系统的仿真模型对其启动与运行特性进行仿真分析。
2 传动方案设计为降低抽油机电动机的能耗损失,提出了一种改善方法,示意图如图1所示。
图1 方案示意图本方案主要从使用液力变矩器提高电机启动扭矩和增加抽油机转动惯量提高电机轴负载扭矩稳定性两方面入手。
游梁式抽油系统由于四杆机构的限制电动机负载扭矩波动较大,为了降低扭矩波动,在抽油机的传动系统上增加一个均质平衡块以提高传动系统的转动惯量。
在抽油机工作过程中平衡块上的能量交替增加与减小,从而实现降低电机轴转速波动与扭矩波动的目的。
在小带轮上增加平衡块将增大抽油机的启动扭矩,使电机启动更为困难,为了提高电机的启动扭矩,在电机与小带轮之间增加一个液力变矩器,以此降低抽油机选用电动机的额定功率,并使抽油机的启动变得更加平稳。
应用液力变矩器后,由于液力变矩器本身的能量损耗将降低抽油系统的效率,因此应用带有锁止离合器的液力变矩器解决此问题。
在抽油系统启动后,锁止离合器工作,将液力传动变为机械传动,从而提高抽油系统的传动效率。
3 系统运动规律的动力学仿真模型为便于建立地面抽油机运动规律与井下杆柱振动规律的仿真模型,做如下假设和简化:(1)忽略液力变矩器工作液体沿工作腔方向循环流动的惯性力,忽略工作液体的转动惯量;(2)忽略油管柱与液柱的振动,仅研究抽油杆柱的纵向振动。
一曲柄摇杆机构杆长计算目前,游梁式抽油机采用的是四杆机构原理。
国内外使用的游梁式抽油机四杆机构的循环主要有三种:对称循环、近视对称循环和非对称循环。
我们采用近视对称循环四杆机构,为了方便与计算,认为游梁旋转的上下极限转角相等。
由石油天然气行业标准查得游梁的最大转角055α=,因此游梁旋转上下极限位置与水平夹角分别为27.52α︒=。
游梁式抽油机采用的是四杆机构为曲柄摇杆机构,其原理简图如图一所示。
图一:执行机构的原理简图曲柄摇杆机构的两位置如下图二、图三所示,曲柄的半径为R,连杆的长度为L连,游梁回转中心与曲柄回转中心距离为l。
由设计说明书知游梁的前臂长度=6L前m, 游梁的后臂长度=3.162L后m,游梁支撑中心到底座距离=2.8H1m,曲柄转动轴中心到底座的直距离2=2H m,游梁支撑中心到曲柄转动轴中心的水平距离=4.1L m。
实用文档实用文档图二:游梁水平示意图图三:游梁后臂上仰最大角示意图由图示两位置状态知:222212() 4.1(2.82) 4.18l L H H m=+-=+-=实用文档1221120.8arctan()arctan()11.054.127.5211.0527.539 2.6314.18 3.162=1.0181.8245;0.8065.H H L L R m L R l L m L m R m οοοοοβαββββ-======+=+=+===-=-=-==连后连连二 驴头的结构设计及重量计算驴头用来将游梁前端的往复圆弧运动变为抽油杆的垂直直线往复运动,为了保证在一定冲程长度下,将圆弧运动变为悬点的直线运动,驴头的圆弧面长度应为:max =~S 弧(1.2 1.3)Smax S 为驴头悬点的最大冲程。
由设计说明书知:max S =6m ,取max 1.2S S =弧,则1.267.2S m =⨯=弧驴头的最大转角为55α︒=, S R α=⋅弧驴,因此7.2===7.504m 55 3.14180S R α⨯弧驴 驴头的材料选厚为100mm 耐磨板的45钢。
毕业设计常规游梁式抽油机设计引言:抽油机是石油开采中不可缺少的重要设备之一、游梁式抽油机作为抽油机的一种常见设计,已经在石油开采中得到广泛应用。
本文将对游梁式抽油机进行常规设计,从结构设计、工作原理、控制系统等方面进行详细阐述。
一、结构设计:游梁式抽油机的结构主要由主骨架、曲柄杆、游梁、连杆等组成。
主骨架是整个抽油机的主要支撑结构,承受着巨大的载荷。
曲柄杆通过曲轴与发动机相连接,通过往复运动驱动游梁实现抽油机的工作。
游梁由游梁杆和游梁头组成,游梁杆可以左右滑动,提供了抽油机的往复运动。
连杆连接着游梁和曲柄杆,使得游梁能够沿着曲柄杆方向运动。
二、工作原理:游梁式抽油机的工作原理基于连杆机构,将曲柄杆的旋转运动转变为游梁的往复运动。
曲柄杆与游梁通过连杆连接,当曲柄杆旋转时,连杆将转动力转移到游梁上。
由于游梁杆可以左右滑动,游梁在连杆驱动下完成了往复运动。
当游梁向上运动时,抽油杆与井下抽油泵相连,完成抽油工作。
当游梁向下运动时,抽油杆与井下抽油泵断开,准备进行下一次往复运动。
三、控制系统:常规游梁式抽油机的控制系统主要包括位置控制系统和液压系统。
位置控制系统通过传感器、控制器等实现对游梁位置的监测和控制,保证游梁的往复运动的准确性。
液压系统通过控制液压泵和液压缸等实现对游梁的驱动,控制游梁的上下运动。
在工作过程中,位置控制系统和液压系统紧密配合,以保证抽油机的正常工作。
四、优化设计:为了提高游梁式抽油机的效率和可靠性,可以进行优化设计。
首先,可以通过材料选择和结构设计来提高主骨架的强度和刚度,以承受更大的载荷。
其次,可以优化连杆的设计,减小摩擦损失,提高能量传递效率。
此外,还可以提高液压系统的控制精度和响应速度,以提高抽油机的工作效率。
结论:本文对游梁式抽油机进行了常规设计,并对其结构、工作原理和控制系统进行了详细阐述。
通过优化设计,可以进一步提高抽油机的效率和可靠性,促进石油开采工作的顺利进行。
这对于石油工业的发展具有重要意义,也为相关领域的研究提供了一定的参考。
游梁式抽油机设计
一、结构设计
其次,是驱动机构的设计。
驱动机构是游梁式抽油机的核心部件,通过动力传递和控制来驱动游梁运动。
驱动机构通常采用液压或机械传动形式,根据需要选择合适的驱动方式,并确保驱动机构的安全可靠。
最后,是泵头的设计。
泵头主要用于抽取地下的石油,所以需要选择合适的泵头型号,并考虑到泵头的工作效率和稳定性。
同时,还需要考虑到泵头与游梁之间的连接方式和安装位置,以确保泵头可以正常工作。
二、动力传递
动力传递主要是通过液压或机械传动的方式将动力传递给游梁。
在液压传动方面,需要考虑到液压泵、液压缸、油管等的选型和布置,以确保液压传动的稳定性和可靠性。
在机械传动方面,需要考虑到传动轴、联轴器、齿轮箱等的设计和安装,以确保机械传动的平稳性和高效性。
三、操作控制
游梁式抽油机的操作控制主要包括对驱动机构和泵头的控制。
驱动机构的控制可以通过液压阀、电气控制柜等实现,可以实现启停、方向控制和速度控制等功能。
泵头的控制可以通过液压阀和控制阀等实现,以保证泵头的工作效率和稳定性。
同时,还需考虑到游梁的位置检测和安全保护。
游梁的位置检测可以通过限位开关、传感器等实现,以确保游梁的正常工作范围。
安全保护方面可以采用过载保护装置、漏油报警装置等,以确保抽油机的安全运行。
总结起来,设计游梁式抽油机需要考虑到机器的结构、动力传递和操
作控制等方面。
在设计过程中,需要根据实际需求选择合适的材料和部件,并对各部件进行合理布置和安装。
同时,还需对驱动机构和泵头进行合理
选择和控制,以确保游梁式抽油机的正常运行。
常规型游梁抽油机传动装置设计打开文本图片集一、传动装置总体设计方案1.传动方案传动方案已给定,前置外传动为普通V带传动,减速器为展开式二级圆柱齿轮减速器。
2.该方案的优缺点由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V 带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。
展开式二级圆柱齿轮减速器由于齿轮相对轴承为不对称布置,因而沿齿向载荷分布不均,要求轴有较大刚度。
二、动力学参数计算1.电动机输出参数2.高速轴的参数3.中间轴的参数4.低速轴的参数5.工作机轴的参数各轴转速、功率和转矩列于下表三、减速器的密封與润滑1.减速器的密封为防止箱体内润滑剂外泄和外部杂质进入箱体内部影响箱体工作,在构成箱体的各零件间,如箱盖与箱座间、及外伸轴的输出、输入轴与轴承盖间,需设置不同形式的密封装置。
对于无相对运动的结合面,常用密封胶、耐油橡胶垫圈等;对于旋转零件如外伸轴的密封,则需根据其不同的运动速度和密封要求考虑不同的密封件和结构。
本设计中由于密封界面的相对速度较小,故采用接触式密封。
输入轴与轴承盖间V 3m/s,输出轴与轴承盖间也为V 3m/s,故均采用半粗羊毛毡封油圈。
2.齿轮的润滑通用的闭式齿轮传动,其润滑方式根据齿轮的圆周速度大小决定。
由于低速级大齿轮的圆周速度v≤12m/s,将大齿轮的轮齿浸入油池进行浸油润滑。
这样,齿轮在传动时,就把润滑油带到啮合的齿面上,同时也将油甩到箱壁上,借以散热齿轮浸入油中的深度通常不宜超过一个齿高,但一般亦不应小于10mm。
为了避免齿轮转动时将沉积在油池底部的污物搅起,造成齿面磨损,大齿轮齿顶距离油池地面距离不小于30mm,取齿顶距箱体内底面距离为30mm。
由于低速级大齿轮全齿高h=6.75mm≤10mm,取浸油深度为10mm。
则油的深度H为H=30+10=40mm根据齿轮圆周速度查表选用负荷工业齿轮油(GB 5903-2011),牌号为320润滑油,黏度推荐值为266cSt。
CYJY12-4.8-73HB型抽油机设计1 绪论1.1抽油机的应用油田开采原油的方法分为两类:一类是利用地层本身的能量来举升原油,称为自喷采油法,常见于新开发且储量大的一些油田;另一类是到了油田开发的中后期,地层本身能量不足以使原油产生自喷,必须人为地利用机械设备将原油举升到地面,称为人工举升采油法或机械采油法[1]。
上述采油方法中不利用抽油杆传递能量的抽油设备统称为无杆抽油设备,利用抽油杆上下往复进行驱动的抽油设备统称为有杆抽油设备。
利用抽油杆旋转运动驱动井下单螺旋泵装置,虽然也有抽油杆,但习惯上不列入有杆抽油设备[3]。
有杆泵采油技术是应用最早也最为广泛的一种人工举升机械采油方法。
有杆抽油系统主要有三部分组成:一是地面驱动设备即抽油机,它由电动机、减速器和四连杆机构(包括曲柄、连杆和游梁)等组成:二是井下的抽油泵(包括吸入阀、泵筒、柱塞和排出阀等),安装于油管的下端:三是抽油杆,它把地面驱动设备的运动和动力传给井下抽油泵。
抽油机是一种把原动机的连续圆周运动变成往复自线运动,通过抽油杆带动抽油泵进行抽油的机械设备。
游梁式抽油机是机械采油设备中问世最早的抽油机机种,1919年美国就开始批量生产这种抽油机。
目前我国大多数油田己相继进入了开发的中后期,油井逐渐丧失自喷能力,基本上己从自喷转入机采。
80年代初,我国拥有机采油井2万口,占总油井数的57.3%,机采原油产量占总产量的27 %, 2000年我国油气田共有抽油机采油井约8万口,占油田总井数的90%。
在这些机采油井中,采用抽油机有杆式抽油的占90%,采用电潜泵、水力活塞泵、射流泵、气举等其它无杆式抽油的只占10%。
近几年,随着稳油控水和节能的要求不断提高,各种型式的节能型抽油机和长冲程抽油机的数量不断增加。
由此可见,抽油机在各油田的生产中有着举足轻重的地位,并且随着油田的进一步开发,各种新型节能抽油机将会得到广泛地推广和应用。
1.2 国内外抽油机的发展概况1.2.1 国外抽油机的发展概况在国外,研究开发与应用抽油机已有100多年的历史[4]。
游梁式抽油机井抽油装置系统设计及应用第一篇:游梁式抽油机井抽油装置系统设计及应用课程设计课程游梁式抽油机井抽油装置系统设计及应用院系石油工程专业班级学生姓名学生学号指导教师****年**月**日游梁式抽油机井抽油装置系统设计及应用第1章前言1:1 设计的目的及意义油田开发是一项庞大而复杂的系统工程,必须编制油田开发总体建设方案—油田开发工作的指导性文件。
采油工程设计更是总体方案的重要组成部分和方案实施的核心,而游梁式抽油机的设计抽油装置系统设计更是采油课程设计的重中之重。
该课程为石油工程专业采油模块学生必修课,它是石油工程专业主干课《采油工程》的扩展和补充。
石油工程学生在学完专业基础课和专业课之后,为加深学生对采油工程深入了解,训练学生系统,全面和综合应用采油工程技术方法和设计能力,开设本课程。
目的是为了学生综合应用能力打下基础,培养学生毕业后能更快的适应和应用采油工程理论和技术方法解决采油工程问题。
有杆泵采油包括游梁式有杆泵采油和地面驱动螺杆泵采油两种方法。
其中游梁式有杆泵采油方法以结构简单、适应性强和寿命长等特点,成为目前最主要的采油方法。
抽油机是有杆泵抽油的主要地面设备,按是否有梁,可将其分为游梁式抽油机和无游梁式抽油机。
游梁式抽油机是通过游梁与曲柄连杆机构将曲柄的圆周运动转变为驴头的上、下摆动。
依据详探成果和必要的生产试验资料,在综合研究的基础上对具有工业价值的油田,按石油市场的需求,从油田的实际情况和生产规律出发,提高最终采收率。
近些年来,为了满足采油工艺对长冲程、低冲次抽油机的需要,国内近年来研制出多种新型游梁式与无游梁式长冲程、低冲次、节能抽油机。
游梁式抽油机的设计受到了抽油机设计工作者的重视,并取得了明显的经济效益,游梁式抽油机的最基本特点是结构简单,制造容易,维修方便,特别是它可以长期在油田全天运转,使用可靠。
因此尽管它存在驴头悬点运动的加速度大,平衡效果差,效率低,在长冲程时体积较大和笨重的特点,但依旧是目前应用最广泛的抽油机。
东北石油大学工程训练研究报告2013年6月18日目录东北石油大学工程训练任务书 (I)第1章概述 (1)1.1抽油机的原理 (1)1.2抽油机的分类和特点 (1)1.3抽油机的改型发展 (2)第2章常规游梁式抽油机传动方案设计 (3)2.1系统的组成和工作原理 (3)2.2系统的机构(运动)简图 (4)第3章曲柄摇杆机构设计 (5)3.1设计参数分析与确定 (5)3.2按K设计曲柄摇杆机构 (6)3.3曲柄摇杆机构优化设计分析 (10)3.4结论和机构运动简图 (13)第4章常规游梁式抽油机传动系统运动和动力参数分析计算 (14)4.1传动比分配和电动机选择 (14)4.2各轴转速计算: (16)4.3各轴扭矩计算: (16)4.4各轴输出功率 (16)第5章齿轮减速器设计计算 (17)5.1高速级齿轮传动设计计算 (17)5.2低速级齿轮传动设计计算 (19)第6章带传动设计计算 (21)6.1带链传动的方案比较 (21)6.2带传动设计计算 (21)第7章减速器轴设计计算 (24)7.1高速轴设计计算 (24)7.2中间轴设计计算 (26)7.3低速轴设计计算 (29)7.4轴的设计步骤 (32)第8章轴承寿命计算 (35)8.1高速轴支撑轴承选型计算 (35)8.2中间轴支撑轴承选型计算 (35)8.3低速轴支撑轴承选型计算 (36)第9章设计结论汇总 (38)9.1已知条件 (38)9.2结论 (38)感想 (40)参考文献 (40)东北石油大学工程训练成绩评价表 (41)东北石油大学工程训练任务书课程机械设计基础题目常规游梁式抽油机传动系统设计专业装备11-2班姓名邱平学号 110403140207 主要内容、基本要求、主要参考资料等一、设计的目的1、综合利用所学的知识,培养解决生产实际问题的能力。
2、掌握一般的机械传动系统设计方法和步骤。
3、掌握基本机构一般的设计方法和步骤。
4、熟悉和运用设计标准、规范及相关资料。
摘要常规型抽油机,是机械采油设备中问世最早,应用最广泛,结构最简单的设备。
抽油机是石油工业中的一项重要组成部分,在抽油机驱动下,带动其他设备运转,实现油井的机械式开采。
主要分为游梁式和无梁式两大类。
游梁式抽油机主要由发动机、三角带、曲柄、连杆、横梁、游梁、驴头、悬绳器、支架、撬座、制动系统及平衡重组成。
随着时代的发展,对环保节能要求的不断提高,在理论与实践相结合的基础之上,目前国内外抽油机的总的发展趋势是向着超大载荷,长冲程,低冲次,精确平衡,自动化,智能化,节能化,高适应性,无游梁长冲程方向发展。
本设计主要根据抽油机的四杆机构(曲柄——连杆——横梁——游梁)的工作原理。
本文介绍了常规抽油机工作原理与节能原理,以及设计过程中对抽油机运动学和动力学分析与计算,阐述了这种设备的运动规律。
游梁式抽油机驴头的悬点载荷标志抽油机的工作能力的重要参数之一,而看它是否节能,其技术指标是抽油机的电动机实耗功率的大小及减速器的工作状态。
本设计全面概述了常规性抽油机的发展概况,抽油机的优化设计及其节能原理。
另外,设计者对抽油机得几何参数,运动参数,动力学参数进行了全面的分析计算。
此外,本设计不仅采用了计算机编程来计算抽油机的运动和动力学参数,而且采用了Auto CAD绘图软件,并附有中英文对照资料。
关键词:常规型抽油机;悬点载荷;结构;设计计算AbstractConwentional beam-pumping unit to take out the oil machine,publishing in the machine oil extraction equapments at the earliest stage,applied extensive,the most simple equipments in structure.Pumping unit is an important component in the petroleum industry, driving by the pumping units,and the other equipments are running in order to achieve the mechanized exploitation of the oil well. It is mainly classified beam and non- beam two categories. Beam style pumping unit mainly consists of the engine, triangle belt, crank, connecting rod, beam, beam, donkey head, hanging a rope device, cradles, pry block, brake system and balance weight. With the development of the ages, the requirements of energy-saving and the consciousness of environmental protection enhancement, on the basis of the combining of the theory and practice, the current domestic and international pumping unit’s overall development trend is toward super-load, long stroke, low stroke times, precise balance, automatic, intelligent, energy- saving, high adaptability and non-beam long stroke direction. This design was mainly according to the principle of four-pole framework (crank -- connecting rod -- beam -- beam) of pumping unit’s.In this article ,working routine and power-saving technology of the conventional beam-pumping unit will be introduced, and during the designing procedure, the analysis of kinetic and dynamic to the pumping units express law of motion of this kind of equipment .The air load of beam style pumping unit is one of the important parameters, which is the first sign of the work capacity, and see it whether energy-saving, the technical indicators are the size of the electromotor consumption power and the work state of the pletely this design said the difference al mutually a development general situation that took out the oil machine excellent to turn the design and it economized on energy the principle .Moreover,designed to taking ou the oil machine get several parameter,sport parameter ,the dynamics parameter carried on the analytical calculation completely.In addition, not only computer programming to calculate the movement and dynamics parameters is used in the design, but also the application of the Auto CAD software, simultaneously with Chinese-English information.Key words: Conventional Pumping Unit,;Horsehead load,;Structural Characteristic,;Design Calculation目录第一章绪论 (1)1.1游梁式抽油机技术发展 (1)1.1.1我国抽油机的现状 (1)1.2常规性游梁式抽油机的工作原理及节能原理 (2)1.2.1工作原理 (2)1.2.2节能机理 (2)1.3节能型抽油机技术发展方向 (4)1.3.1智能控制是采油设备发展的方向 (4)1.3.2基础材料的研究应用即将造就一个立式抽油机时代 (5)1.3.3采油设备向通用化和个性化发展 (5)1.3.4采油设备向艺术性发展 (5)1.4游梁式抽油机优化设计数学模型的研究 (5)第二章计算部分 (7)2.1设计原始数据 (7)2.2结构组成 (7)2.3主要参数 (8)2.4建立动力模型示功图 (8)2.5运动学计算 (9)2.5.1常规游梁式抽油机几何关系计算式 (9)2.5.2光杆(悬点)加速度计算式 (10)2.5.3悬点载荷计算式 (10)2.5.4扭矩因数和光杆位置因数计算式 (10)2.5.5减速器净扭矩计算式 (10)2.5.6抽油机扭矩因数几几何计算 (11)2.6设计原始参数 (11)2.6.1参数 (11)2.6.2抽油机几何结构尺寸 (11)2.7运动学的运算 (12)第三章主要部件的设计计算 (14)3.1电动机的选择计算 (14)3.2计算传动比及减速器的选择 (14)3.2.1抽油机的总传动比 (14)3.2.2选减速器 (15)3.2.3带的传动比 (15)3.3传动装置的运动和动力参数的计算 (15)3.4带传动的设计 (16)第四章抽油机的各结构的强度校核 (19)4.1连杆的应力分析与强度校核 (19)4.2曲柄连接设计强度校核 (20)4.3游梁的应力分析及强度校核 (22)4.4游梁支承的强度校核 (25)4.5滚动轴承的选择和寿命计算 (28)结论 (30)参考文献 (31)致谢 (32)附录一中文译文 (i)附录二外文资料原文 (v)常规游梁式抽油机设计第一章绪论1.1游梁式抽油机技术发展抽油机产生和使用由来已久,迄今已有百年的历史。
游梁式抽油机二次刹车装置的结构分析与改进设计王群章闫文斌刘盛益王飞宋华远王宇睿(中国石化集团公司河南油田分公司河南南阳474780)摘 要:目前,游梁式抽油机已成为国内油田生产的主要设备,如何优化设计游梁式抽油机刹车装置,已成为设备研发的重要方向。
本文在对游梁式抽油机刹车装置工作原理及失效原因进行分析的基础上,根据设备实际运行情况,设计出了二次刹车装置,并阐述了二次刹车装置的工作原理。
同时,通过分析与计算二次刹车装置的主要零部件的受力情况,验证了本次优化设计的安全性与可靠性。
关键词:游梁式抽油机二次刹车装置结构分析改进设计中图分类号:T E933.1文献标识码:A文章编号:1674-098X(2022)10(b)-0047-04Structural Analysis and Improved Design of Secondary BrakingDevice of Beam Pumping UnitWANG Qunzhang YAN Wenbin LIU Shengyi WANG Fei SONG Huayuan WANG Yurui( Henan Oilfield Branch of Sinopec Group, Nanyang, Henan Province, 474780 China ) Abstract: At present, beam pumping unit has become the main equipment in domestic oilfield production. How to optimize and design the beam pumping unit braking device has become an important direction of equipment re‐search and development. In this paper, based on the analysis of the working principle and failure cause of the braking device of beam pumping unit, according to the actual operation of the equipment, it designs the secondary braking device and expounds the working principle of the secondary braking device. At the same time, the safety and reli‐ability of this optimization design are verified by analyzing and calculating the stress of the main parts of the second‐ary braking device.Key Words: Beam pumping unit; Secondary braking device; Structural analysis; Improved design现如今,油田生产主要依靠抽油机进行采油,在众多类型的抽油机中,游梁式抽油机的应用最为广泛[1]。
目录任务书第1章概述1.1抽油机类型、特点、应用等陈述1.2抽油机存在的问题1.3抽油机的发展方向第2章常规游梁式抽油机传动方案计2.1简述系统的组成工作原理等2.2 绘制系统的机构(运动)简图第3章曲柄摇杆机构设计3.1 设计参数分析与确定·(的有示意图)3.2 按K设计曲柄摇杆机构3.3 曲柄摇杆机构优化设计分析3.3.1满足有曲柄条件?3.3.2满足传动角条件?(结合图分析)3.3.3满足a最小吗?3.4结论和机构运动简图第4章常规游梁式抽油机传动系统运动和动力参数分析计算4.1 传动比分配和电动机选择4.2 各轴转速计算4.3各轴功率计算4.4各轴扭矩计算第5章齿轮减速器设计计算5.1 高速级齿轮传动设计计算运动和动力参数的确定计算过程5.2 低速级齿轮传动设计计算运动和动力参数的确定计算过程5.3结论及运动简图第6章带传动设计计算6.1 带链传动的方案比较6.2 带传动设计计算运动和动力参数的确定计算过程(参见例题)6.3结论及运动简图第7章轴系部件设计计算7.1 各轴初算轴径7.2 轴的结构设计内容包括:选择轴承、轴承配置、轴上零件定位、固定等。
最后要有设计结果:图7.3滚动轴承寿命验算7.4轴的强度和刚度验算第8章连接件的选择和计算8.1 齿轮连接平键的选择与计算3根轴8.2 带轮连接平键的选择与计算大小带轮8.3螺纹连接件的选择轴承座孔旁、箱盖与箱座、地脚等第9章设计结论汇总已知条件:结论:曲柄摇杆机构各杆长、齿轮减速器参数(输入输出扭矩、传动比、齿轮齿数、中心距)、带传动参数(带根数、大小带轮直径、传动比)总结参考书目东北石油大学工程训练任务书课程机械设计基础题目常规游梁式抽油机传动系统设计专业装备01 姓名学号主要内容、基本要求、主要参考资料等一、设计的目的1、综合利用所学的知识,培养解决生产实际问题的能力。
2、掌握一般的机械传动系统设计方法和步骤。
3、掌握基本机构一般的设计方法和步骤。
经典文档下载后可编辑复制综合课程设计说明书课程名称:机械设计综合课程设计课程代码:6003939题目:常规型游梁抽油机传动装置设计学生姓名:吴强学号:3320130191119年级/专业/班:203级机设1班学院(直属系) :机械工程与自动化学院指导教师:晏静江目录任务书第1章常规游梁式抽油机传动方案设计 (6)1.1抽油机系统的组成 (6)1.2抽油机工作原理 (6)第2章曲柄摇杆机构设计 (7)2.1 设计参数分析与确定• (7)2.2 按K设计曲柄摇杆机构 (7)2.3结论和机构运动简图 (9)第3章常规游梁式抽油机传动系统运动和动力参数分析计算 (9)3.1 传动比分配和电动机选择 (9)3.2 各轴转速计算 (12)3.3各轴功率计算 (13)3.4各轴扭矩计算 (14)第4章齿轮减速器设计计算 (15)4.1 高速级齿轮传动设计计算 (15)4.2 低速级齿轮传动设计计算 (19)第5章带传动设计计算 (22)5.1 带链传动的方案比较 (22)5.2 带传动设计计算 (23)第6章轴系部件设计计算 (26)6.1 各轴初算轴径 (26)6.2 轴的结构设计 (26)6.3滚动轴承寿命验算 (30)6.4轴的强度验算 (30)第7章连接件的选择和计算 (35)7.1 齿轮连接平键的选择与计算 (35)7.2 带轮连接平键的选择与计算 (36)7.3螺纹连接件的选择 (36)第8章设计结论汇总 (37)总结 (39)参考书目 (40)机械综合课程设计任务书学院名称:机械学院专业:机械设计制造及其自动化年级:2012级机设6班学生姓名: 蒋亚洲学号: 312012********* 指导教师: 杜强一、设计题目:常规型游梁抽油机传动装置设计二、抽油机工作原理抽油机由电动机驱动,经减速传动系统和执行系统(将转动变换为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。
游梁式抽油机设计课程设计说明书学生课程设计(论文)题目:游梁式抽油机第一部分(电动机选择带传动设计减速器设计)学生姓名:学号:所在院(系):专业:班级:指导教师:职称:2021年X月X日目录一.电机选择……………………………………………………………61.1选择电机……………………………………………………………61.2计算并分配传动比…………………………………………………61.3传动装置的运动和动力参数计算…………………………………6二.带传动设计…………………………………………………………8三.齿轮设计……………………………………………………………103.1高速级齿轮设计…………………………………………………103.2低速级齿轮设计…………………………………………………14四.轴的设计……………………………………………………………194.1I轴的设计计算…………………………………………………194.2II轴的设计计算…………………………………………………204.3III轴的设计计算…………………………………………………23五.轴承寿命计算………………………………………………………265.1I轴轴承寿命计算…………………………………………………265.2II轴轴承寿命计算…………………………………………………275.3III轴轴承寿命计算…………………………………………………28六.键的校核……………………………………………………………30七.润滑及密封类型选择………………………………………………31八.减速器附件设计……………………………………………………32九.主要尺寸及数据……………………………………………………33十.参考文献……………………………………………………………34XX学院本科学生课程设计任务书题目15抽油机机械设计1、课程设计的目的本课程设计为学生提供了一个既动手又动脑,自学,查资料,独立实践的机会。
一、 课程设计的目的另配有设计图纸cad.proe.Qq275673028本课程设计为学生提供了一个既动手又动脑,自学,查资料,独立实践的机会。
将本学期课本上的理论知识和实际有机的结合起来,锻炼学生实际分析问题和解决问题的能力,提高学生综合运用所学知识的能力,装配图、零件图的设计绘图能力。
二、电动机的选择(图号14)电动机的功率为45KW.冲次为9n/min,故与配重项链的曲柄的转速n=9n/min,传动比的合理范围。
V 带传动比范围2~4,二级斜齿轮减速器传动比范围8~60,故总传动比范围i=16~240。
电动机的转速可选范围n'=(16~240)*12=(192~2880)n/min,综合考虑电动机的各个因素,可选定转速为590n/min 的Y315S-10型电动机,功率为45KW 。
三、传动装置的总传动比和传动比分配1、总的传动比由选定的电动机转速和冲次可求得总传动比i=590÷9=65.552、传动比的分配初选V带传动比i=3.3则减速器传动比i=65.55÷3.3=19.865二级减速器高速级传动比i=4.5则低速级传动比i=19.865/4.5=4.41三、传动装置运动与运动参数的计算1、各轴转速:1n =3.3590=178.8n/min 2n =45.48.178=39.73n/min 941.473.393==n n/min 2、各轴扭矩和输入功率的计算==11ηP P =⨯94.04542.3kw=1T 95501n P =9550=⨯8.1783.42 2.26KN ∙m ==212ηP P 99.098.03.42⨯⨯=41.04kw==229550n p T 9550=⨯73.3904.419.86M KN ⋅ ==323ηP P 41.0499.098.0⨯⨯=39.82kw==3339550n P T 9550=⨯982.3942.25M KN ⋅四、带传动的设计与计算(图号为13)带传动的设计内容包括带的型号,确定基准长度、根数、中心距、带的材料,基准直径以及机构尺寸、初压力和压轴力、张紧装置等。
图1 常规游梁式抽油机基本机构图1—刹车装置、2—电动机、3—减速器皮带轮、4—减速器、5—动力输入轴、6—中间轴、7—输出轴、8—曲柄、9—曲柄销、10—支架、11—曲柄平衡块、12—连杆、13—横梁轴、14—横梁、15—游梁平衡块、16—游梁、17—支架轴、18—驴头、19—悬绳器、20—底座简介游梁式抽油机,也称梁式抽油机、游梁式曲柄平衡抽油机,指含有游梁,通过连杆机构换向,曲柄重块平衡的抽油机,俗称磕头机。
从采油方式上为有杆类采油设备(从采油方式上可分为两类,即有杆类采油设备和无杆类采油设备)。
游梁式抽油机主要由游梁—连杆—曲柄机构、减速箱、动力设备和辅助装备等四大部分组成。
工作时,电动机的传动经变速箱、曲柄连杆机构变成炉头的上下运动,驴头经光杆、抽油杆抽油杆带动井下深井泵的柱塞作上下运动,从而不断地把井中的原油抽出井筒。
主要特点游梁式抽油机具有性能可靠、结构简单、操作维修方便等特点。
技术参数符合中华人民共和国行业标准SY/T 5044《游梁式抽油机》和美国石油协会API标准,技术成熟。
主要特点:1、整机结构合理、工作平稳、噪音小、操作维护方便;2、游梁选用箱式或工字钢结构,强度高、刚性好、承载能力大;3、减速器采用人字型渐开线或双圆弧齿形齿轮,加工精度高、承载能力强,使用寿命长;4、驴头可采用上翻、上挂或侧转三种形式之一;5、刹车采用外抱式结构,配有保险装置,操作灵活、制动迅速、安全可靠;6、底座采用地脚螺栓连接或压杠连接两种方式之一。
系统运动方案的设计根据抽油杆的往复直线运动特征、冲程大小,冲程次数、抽油载荷、安装件等要求以及抽油机的工作原理,可知道游梁式抽油机的系统运动方案有三部分组成:1.原动机即电动机;2.传动系统,采用V带传动的二级齿轮减速器;3.执行机构,一种变形的四连杆机构,其整机结构特点像一架天平,一端是抽油载荷,另一端是平衡配重载荷。
因而提出其机构系统运动方案如下图:机构运动图。
常规游梁式抽油机设计毕业设计游梁式抽油机是一种常用的抽油设备,其主要用于油田开采中将地下原油抽出地面。
在这个毕业设计中,我们将设计一个具有高效能、可靠性和经济性的游梁式抽油机。
1.设计原理游梁式抽油机是一种间接式抽油装置,其运动原理是利用一个游梁的摆动来驱动杠杆系统,进而带动抽油杆进行上下运动。
游梁的摆动是通过一个驱动杆与曲柄机构相连实现的。
驱动杆通过与活塞杆相连,将往复直线运动转化为往复转动运动,进而带动游梁的摆动。
游梁在摆动过程中,驱动抽油杆上下运动,从而将地下原油抽上地面。
2.设计要求为了满足抽油机的高效能、可靠性和经济性的要求,我们需要考虑以下几个方面的设计:2.1驱动系统设计驱动系统是游梁式抽油机的关键部分,其设计应该具有高效的转动能力和稳定的运动性能。
我们将采用齿轮传动和链条轮传动相结合的方式来实现驱动系统。
2.2游梁设计游梁的设计需要考虑其材料的选择、结构的强度和稳定性。
我们将采用高强度钢材作为游梁的材料,并进行合理的结构设计,确保游梁在工作过程中稳定可靠。
2.3安全性设计抽油机涉及到高速运动和大扭矩的传递,安全性设计非常重要。
我们将在抽油机设计中考虑安全装置,包括过载保护装置、紧急停机按钮等,以确保操作员和设备的安全。
2.4经济性设计经济性设计要求在保证设备性能的前提下,尽量减少材料和能源的使用,降低成本。
我们将进行合理的设计和材料选择,以提高设备的经济性和可持续发展。
3.设计流程在设计过程中,我们将按照以下步骤进行:3.1了解设计要求和技术规范首先,我们需要详细了解抽油机的设计要求和技术规范。
包括工作条件、工作环境、工作负载等。
3.2确定设计方案根据设计要求和技术规范,我们将确定一个合适的设计方案。
包括驱动系统的选择、游梁的结构设计、安全装置的设计等。
3.3绘制设计图纸在确定设计方案后,我们将绘制详细的设计图纸。
包括工艺流程图、装配图、零件图等。
同时,我们还需要进行力学分析和计算,以确保设计方案的合理性和稳定性。
兰州航空工业职工大学毕业设计(论文)题目:游梁式抽油机二级传动装置专业:班级:学生姓名:指导老师:年月日摘要通过对减速器的简单了解,开始学习设计齿轮减速器,尝试设计增强感性认知和对社会的适应能力,及进一步巩固已学过的理论知识,提高综合运用所学知识发现问题、解决问题,以求把理论和实践结合一起。
学习如何进行机械设计,了解机械传动装置的原理及参数搭配。
学习运用多种工具,比如CAD等,直观的呈现在平面图上。
通过对圆柱齿轮减速器的设计,对齿轮减速器有个简单的了解与认知。
齿轮减速器是机械传动装置中不可缺少的一部分。
机械传动装置在不断的使用过程中,会不同程度的磨损,因此要经常对机械予以维护和保养,延长其使用寿命,高效化的运行,提高生产的效率。
【关键词】:机械传动装置、齿轮减速器、设计原理与参数配置目录第一节设计任务------------------------------------(3)第二节方案设计分析--------------------------------(3)第三节轴承的选择及寿命计算------------------------(17)第四节设计结果------------------------------------(22)第五节心得体会------------------------------------(23)第六节附录----------------------------------------(25)引言1.1 减速器的主要型式及其特性减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。
减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机械中应用很广。
减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。
电动机联轴器高速轴中间轴低速轴减速器系统框图以下对几种减速器进行对比:1)圆柱齿轮减速器当传动比在8以下时,可采用单级圆柱齿轮减速器。
大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。
单级减速器的传动比如果过大,则其外廓尺寸将很大。
二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。
展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。
为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。
这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。
为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。
同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。
但这种减速器的轴向尺寸较大。
圆柱齿轮减速器在所有减速器中应用最广。
它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。
传动功率很大的减速器最好采用双驱动式或中心驱动式。
这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸。
设计双驱动式或中心驱动式齿轮传动时,应设法采取自动平衡装置使各对齿轮副的载荷能得到均匀分配,例如采用滑动轴承和弹性支承。
圆柱齿轮减速器有渐开线齿形和圆弧齿形两大类。
除齿形不同外,减速器结构基本相同。
传动功率和传动比相同时,圆弧齿轮减速器在长度方向的尺寸要比渐开线齿轮减速器约30%。
2)圆锥齿轮减速器它用于输入轴和输出轴位置布置成相交的场合。
二级和二级以上的圆锥齿轮减速器常由圆锥齿轮传动和圆柱齿轮传动组成,所以有时又称圆锥—圆柱齿轮减速器。
因为圆锥齿轮常常是悬臂装在轴端的,为了使它受力小些,常将圆锥面崧,作为,高速极:山手面锥齿轮的精加工比较困难,允许圆周速度又较低,因此圆锥齿轮减速器的应用不如圆柱齿轮减速器广。
3)蜗杆减速器主要用于传动比较大(j>10)的场合。
通常说蜗杆传动结构紧凑、轮廓尺寸小,这只是对传减速器的传动比较大的蜗杆减速器才是正确的,当传动比并不很大时,此优点并不显著。
由于效率较低,蜗杆减速器不宜用在大功率传动的场合。
蜗杆减速器主要有蜗杆在上和蜗杆在下两种不同形式。
蜗杆圆周速度小于4m/s时最好采用蜗杆在下式,这时,在啮合处能得到良好的润滑和冷却条件。
但蜗杆圆周速度大于4m/s时,为避免搅油太甚、发热过多,最好采用蜗杆在上式。
4)齿轮-蜗杆减速器它有齿轮传动在高速级和蜗杆传动在高速级两种布置形式。
前者结构较紧凑,后者效率较高。
通过比较,我们选定圆柱齿轮减速器。
1.2 减速器结构近年来,减速器的结构有些新的变化。
为了和沿用已久、国内目前还在普遍使用的减速器有所区别,这里分列了两节,并称之为传统型减速器结构和新型减速器结构。
1)传统型减速器结构绝大多数减速器的箱体是用中等强度的铸铁铸成,重型减速器用高强度铸铁或铸钢。
少量生产时也可以用焊接箱体。
铸造或焊接箱体都应进行时效或退火处理。
大量生产小型减速器时有可能采用板材冲压箱体。
减速器箱体的外形目前比较倾向于形状简单和表面平整。
箱体应具有足够的刚度,以免受载后变形过大而影响传动质量。
箱体通常由箱座和箱盖两部分所组成,其剖分面则通过传动的轴线。
为了卸盖容易,在剖分面处的一个凸缘上攻有螺纹孔,以便拧进螺钉时能将盖顶起来。
联接箱座和箱盖的螺栓应合理布置,并注意留出扳手空间。
在轴承附近的螺栓宜稍大些并尽量靠近轴承。
为保证箱座和箱盖位置的准确性,在剖分面的凸缘上应设有2—3个圆锥定位销。
在箱盖上备有为观察传动啮合情况用的视孔、为排出箱内热空气用的通气孔和为提取箱盖用的起重吊钩。
在箱座上则常设有为提取整个减速器用的起重吊钩和为观察或测量油面高度用的油面指示器或测油孔。
关于箱体的壁厚、肋厚、凸缘厚、螺栓尺寸等均可根据经验公式计算,见有关图册。
关于视孔、通气孔和通气器、起重吊钩、油面指示Oe等均可从有关的设计手册和图册中查出。
在减速器中广泛采用滚动轴承。
只有在载荷很大、工作条件繁重和转速很高的减速器才采用滑动轴承。
2)新型减速器结构下面列举两种联体式减速器的新型结构,图中未将电动机部分画出。
1)齿轮—蜗杆二级减速器;2)圆柱齿轮—圆锥齿轮—圆柱齿轮三级减速器。
这些减速器都具有以下结构特点:——在箱体上不沿齿轮或蜗轮轴线开设剖分面。
为了便于传动零件的安装,在适当部位有较大的开孔。
——在输入轴和输出轴端不采用传统的法兰式端盖,而改用机械密封圈;在盲孔端则装有冲压薄壁端盖。
——输出轴的尺寸加大了,键槽的开法和传统的规定不同,甚至跨越了轴肩,有利于充分发挥轮毂的作用。
和传统的减速器相比,新型减速器结构上的改进,既可简化结构,减少零件数目,同时又改善了制造工艺性。
但设计时要注意装配的工艺性,要提高某些装配零件的制造精度。
1.3减速器润滑圆周速度u≤12m/s一15m/s的齿轮减速器广泛采用油池润滑,自然冷却。
为了减少齿轮运动的阻力和油的温升,浸入油中的齿轮深度以1—2个齿高为宜。
速度高的还应该浅些,建议在0.7倍齿高左右,但至少为10mm。
速度低的(0.5m/s一0.8m/s)也允许浸入深些,可达到1/6的齿轮半径;更低速时,甚至可到1/3的齿轮半径。
润滑圆锥齿轮传动时,齿轮浸入油中的深度应达到轮齿的整个宽度。
对于油面有波动的减速器(如船用减速器),浸入宜深些。
在多级减速器中应尽量使各级传动浸入油中深度近予相等。
如果发生低速级齿轮浸油太深的情况,则为了降低其探度可以采取下列措施:将高速级齿轮采用惰轮蘸油润滑;或将减速器箱盖和箱座的剖分面做成倾斜的,从而使高速级和低速级传动的浸油深度大致相等。
减速器油池的容积平均可按1kW约需0.35L一0.7L润滑油计算(大值用于粘度较高的油),同时应保持齿轮顶圆距离箱底不低于30mm一50mm左右,以免太浅时激起沉降在箱底的油泥。
减速器的工作平衡温度超过90℃时,需采用循环油润滑,或其他冷却措施,如油池润滑加风扇,油池内装冷却盘管等。
循环润滑的油量一般不少于0.5L/kW。
圆周速度u>12m/s 的齿轮减速器不宜采用油池润滑,因为:1)由齿轮带上的油会被离心力甩出去而送不到啮合处;2)由于搅油会使减速器的温升增加;3)会搅起箱底油泥,从而加速齿轮和轴承的磨损;4)加速润滑油的氧化和降低润滑性能等等。
这时,最好采用喷油润滑。
润滑油从自备油泵或中心供油站送来,借助管子上的喷嘴将油喷人轮齿啮合区。
速度高时,对着啮出区喷油有利于迅速带出热量,降低啮合区温度,提高抗点蚀能力。
速度u≤20心s的齿轮传动常在油管上开一排直径为4mm的喷油孔,速度更高时财应开多排喷油孔。
喷油孔的位置还应注意沿齿轮宽度均匀分布。
喷油润滑也常用于速度并不很高而工作条件相当繁重的重型减速器中和需要用大量润滑油进行冷却的减速器中。
喷油润滑需要专门的管路装置、油的过滤和冷却装置以及油量调节装置等,所以费用较贵。
此外,还应注意,箱座上的排油孔宜开大些,以便热油迅速排出。
蜗杆圆周速度在10m/s以下的蜗杆减速器可以采用油池润滑。
当蜗杆在下时,油面高度应低于蜗杆螺纹的根部,并且不应超过蜗杆轴上滚动轴承的最低滚珠(柱)的中心,以免增加功率损失。
但如满足了后一条件而蜗杆未能浸入油中时,则可在蜗杆轴上装一甩油环,将油甩到蜗轮上以进行润滑。
当蜗杆在上时,则蜗轮浸入油中的深度也以超过齿高不多为限。
蜗杆圆周速度在10m/s以上的减速器应采用喷油润滑。
喷油方向应顺着蜗杆转入啮合区的方向,但有时为了加速热的散失,油也可从蜗杆两侧送人啮合区。
齿轮减速器和蜗轮减速器的润滑油粘度可分别参考表选取。
若工作温度低于0℃,则使用时需先将油加热到0℃以上。
蜗杆上置的,粘度应适当增大。
第一节设计任务抽油机是将原油从井下举升到地面的主要采油设备之一,常用的有杆抽油设备有三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。
抽油机由电动机驱动,经减速传动系统和执行系统(将转动变转为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。
图1-1抽油机是长期野外作业,24小时连续运行,要求运行平稳、效率高、使用寿命长。
抽油杆的上下往复运动,每分钟10次。
本装置的使用寿命为15年。
(工作机械扭矩为T=18000Nm,工作机转速n=10 r/min)要求:① 根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图。