电感式传感器变换原理自感式传感器工作原理和基本特性
- 格式:ppt
- 大小:1.73 MB
- 文档页数:41
一、实验目的1. 了解传感器的基本原理和检测方法。
2. 掌握不同类型传感器的应用和特性。
3. 通过实验,验证传感器检测的准确性和可靠性。
4. 培养动手能力和分析问题的能力。
二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。
2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。
3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。
4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。
三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的应变值和电压值。
(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。
2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电感值和电压值。
(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。
3. 电容传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电容值和电压值。
(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。
4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
什么是电感式传感器?电感式传感器的工作原理介绍电感式传感器的工作原理电感式传感器的工作原理是电磁感应。
它是把被测量如位移等,转换为电感量变化的一种装置。
按照转换方式的不同,可分为自感式(包括可变磁阻式与涡流式)和互感式(差动变压器式)两种:1、变磁阻式传感器当一个线圈中电流i变化时,该电流产生的磁通Φ也随之变化,因而在线圈本身产生感应电势e,这种现象称之为自感。
产生的感应电势称为自感电势。
变磁阻式传感器的结构如图1所示。
它由线圈、铁芯和衔铁三部分组成。
铁芯和衔铁由导磁材料如硅钢片或坡莫合金制成,在铁芯和衔铁之间有气隙,气隙厚度为δ,传感器的运动部分与衔铁相连。
当衔铁移动时,气隙厚度δ发生改变,引起磁路中磁阻变化,从而导致电感线圈的电感值变化,因此只要能测出这种电感量的变化,就能确定衔铁位移量的大小和方向。
特点:变磁阻式传感器具有很高的灵敏度,这样对待测信号的放大倍数要求低。
但是受气隙δ宽度的影响,该类传感器的测量范围很小。
2、差动变压器式传感器互感型传感器的工作原理是利用电磁感应中的互感现象,将被测位移量转换成线圈互感的变化。
由于常采用两个次级线圈组成差动式,故又称差动变压器式传感器。
差动变压器式传感器输出的电压是交流量,如用交流电压表指示,则输出值只能反应铁芯位移的大小,而不能反应移动的极性;同时,交流电压输出存在一定的零点残余电压,使活动衔铁位于中间位置时,输出也不为零。
因此,差动变压器式传感器的后接电路应采用既能反应铁芯位移极性,又能补偿零点残余电压的差动直流输出电路。
把被测的非电量变化转换为线圈互感变化的传感器称为互感式传感器。
这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动形式连接,故称差动变压器式传感器。
差动变压器结构形式较多,有变隙式、变面积式和螺线管式等。
电感式传感器原理
电感式传感器是一种利用电感效应进行测量和检测的传感器。
其基本原理是根据电感的特性来实现信号的转换和传输。
电感式传感器的工作原理是通过改变线圈中的电感值来感应外部的物理量。
当外部物理量发生变化时,线圈中的电感值也会相应地发生变化。
通过测量线圈的电感值的变化,可以得知外部物理量的变化情况。
电感是指导线圈中产生的自感应电动势。
当线圈中的电流发生变化时,会产生与电流变化方向相反的电动势。
这种电动势会产生磁场并储存能量。
当外部物理量改变线圈中的磁场时,会影响线圈中的电感值。
测量电感值的常用方法是利用谐振电路。
当外部物理量引起电感值变化时,会影响谐振电路的谐振频率。
通过测量谐振频率的变化,可以得到外部物理量的变化信息。
电感式传感器广泛应用于各种测量和控制领域。
例如,在温度传感中,可以利用电感式传感器测量温度变化引起的电感值变化;在位移传感中,可以利用电感式传感器测量物体位置的改变;在压力传感中,可以利用电感式传感器测量压力变化引起的电感值变化等。
总之,电感式传感器是一种利用电感效应进行测量和检测的传感器,通过测量线圈的电感值的变化来获取外部物理量的变化
信息。
由于其简单、可靠和精度高的特点,电感式传感器被广泛应用于各种工程领域。
第三章电感式传感器及应用§3-1 自感式1.说明单线圈和差动变隙式传感器的主要组成、工作原理和基本特性。
2.为什么螺线管式电感传感器比变隙式电感传该器有更大的测位移范围?3.根据单线圈和差动螺线管式电感传该器的基本特性,说明它们的性能指标有何异同。
4.电感式传该器测量电路的主要任务是什么?变压式电桥和带相敏整流的交流电桥,谁能更好的完成这一任务?为什么?5.说明电动测微仪和电感式压力传该器的基本组成和工作原理。
作业题1. 利用原理,将非电量的变化转换成线圈(或)变化的装置,叫电感式传该器。
该传该器可分为和两大类。
(电磁感应;电感;互感;自感式;互感式)2. 自感式有式和式。
以上每种形式又可再分为式与式两种结构。
(闭路变隙;开路螺线管;单线圈;差动)3. 闭磁路变隙式电感传该器主要有、和等部分组成。
而单线圈螺线管式电感传该器则由、和等部分组成。
(铁磁性壳体;线圈;活动铁心)4. 由单线圈变隙式电感传该器的基本特性可知,其与、相矛盾。
为解决这一矛盾,通常采用或电感传该器。
(测量范围;灵敏度;线性度;差动变隙式;螺线管式)5.写下面的比较表:比较项目闭磁路变隙式电感传该器开磁路螺线管式电感传该器灵敏度高低测量范围较小较大测量误差3%左右±5%左右制造装配困难方便,批量生产互换性强应用逐渐减小越来越多6. 在工程技术中,电感式传该器经常用来测量、、、、、、、及等非电量。
(位移;尺寸;振动;力;压力;转矩;应力;流量;比重)7. 电动测微仪是用于测量变化的仪器,其主要优点为、、以及等等。
(微小位移;重复性好;精度高;灵敏度高;输出信号便于处理)8. 电动测微仪的测量电路有电桥、电桥和电桥等,而应用最多的为的交流电桥。
(紧耦合电感;变压器式交流;带相敏整流;带相敏整流)9.当电动测微仪采用变压器式交流电桥时,不论衔铁向哪个方向移动,电桥输出电压总是。
因此,不论采用,还是都无法判别该输出电压的,即无法判别衔铁。
传感器基本工作原理
传感器是利用物质的特性或状态变化来获取信息的器件或装置,是一种能够感受规定的被测量,并且能够将感受到的被测量转换成可用信号输出的装置。
传感器是现代电子技术、自动控制技术、信息处理技术、测量技术和计算机技术等多种技术交叉渗透的产物,它在工业生产、交通运输、国防建设和人民生活等方面都有广泛的应用。
传感器种类繁多,按其工作原理可分为:电阻式传感器、电感式传感器和光敏电阻型传感器。
其工作原理如下:
(1)电阻式传感器
电阻式传感器是利用弹性元件(如各种弹性梁、弹簧等)与被测物体产生位移,使其所在平面与弹性元件轴线间产生一定角度(如0°~90°)的位移,使弹性元件发生变形,在其两端产生
电压。
这种位移与电压之间的关系称为电阻原理,简称电阻定律。
这种原理制成的传感器主要有如下几种:
(1)应变式
应变式传感器是根据晶体材料在外力作用下发生变形,而引起晶体材料内部结构发生变化而使其性能发生变化这一原理制成的。
—— 1 —1 —。
电感式传感器的基本原理概述电感式传感器是一种利用电感效应来测量物理量的传感器。
其基本原理是通过测量被测量物理量对传感器线圈电感值的影响来实现。
电感效应电感是指导体中由于电流变化而产生的自感作用,它体现了导体对于改变电流的抵抗。
当导体中通有交变电流时,导体周围会形成一个磁场,这个磁场与导体内部的电流是相互关联的。
磁场的变化会引起导体中的感应电动势,从而阻碍电流的改变。
传感器线圈电感式传感器中的核心是一个线圈,通常由细导线缠绕而成。
线圈的长度、截面积和匝数会影响线圈的电感值。
当线圈中通有电流时,产生的磁场会通过周围的空间传播。
物理量的测量电感式传感器通过测量被测量物理量对传感器线圈电感值的影响来实现物理量的测量。
不同的物理量会对线圈的电感值产生不同的影响。
通常情况下,传感器线圈会与被测量物理量有一定的关系,例如变压器中的一绕线圈,电流的改变会引起其二次绕组中的感应电动势、变阻器的电阻值受温度的影响,导致线圈的电感值改变。
原理示意图工作过程以下是电感式传感器的基本工作过程:1.传感器线圈通常作为感应元件,与被测量物理量相连接。
2.传感器线圈中通有交变电流。
3.被测量物理量对线圈的电感值产生影响。
4.传感器测量电路可以测量线圈中的感应电动势或其他与电感值相关的参数(例如阻抗)。
5.根据感测到的电信号,通过相关的算法或电路,将其转换为与被测量物理量有关的数据。
6.数据可以以电压、电流或其他形式输出到显示器、记录器或控制系统。
应用领域电感式传感器广泛应用于各个领域,例如:•位移测量:通过测量线圈中的感应电动势来确定位移的改变。
•压力测量:通过测量线圈中的感应电阻或感应电动势来测量压力的变化。
•温度测量:通过测量线圈的阻抗来测量温度的变化。
•流量测量:通过测量线圈中的感应电动势来测量流体的流量。
优缺点电感式传感器具有以下优点:•高灵敏度:感应电动势的变化可以非常灵敏地响应被测量物理量的改变。
•宽测量范围:可以适用于不同范围的被测量物理量。
电感式传感器工作原理电感式传感器的工作原理基于电感元件的特性。
电感元件是由线圈和磁芯组成的,当通过线圈的电流变化时,会产生一个磁场。
磁场的强度与电流的变化速率成正比。
当外部物理量作用于电感元件时,磁场的强度也会发生变化。
通过测量这种磁场的变化,可以确定外部物理量的大小。
当电流通过线圈时,会产生一个磁场。
这个磁场的强度与电流的变化速率成正比。
当外部物理量作用于电感式传感器时,会导致线圈中的电流发生变化,进而改变磁场的强度。
这个变化可以通过测量线圈中的电流来获得。
为了测量线圈中的电流,可以利用电感元件的自感现象。
自感是指通过线圈的电流会产生自感电动势。
自感电动势的大小与线圈中的电流变化率成正比。
因此,可以通过测量自感电动势来获得线圈中的电流信息。
测量自感电动势的方法有多种。
其中一种常用的方法是利用霍尔传感器。
霍尔传感器是一种基于霍尔效应的传感器,通过测量磁场的变化来获得线圈中的电流信息。
当线圈中的电流发生变化时,会导致磁场的强度也发生变化。
霍尔传感器可以测量这种磁场的变化,并将其转换为电压信号。
通过测量这个电压信号的大小,可以确定线圈中的电流大小。
除了利用自感现象来测量线圈中的电流,还可以通过测量线圈的阻抗来获得电流信息。
线圈的阻抗与电流的大小和频率有关。
当线圈中的电流发生变化时,会导致线圈的阻抗也发生变化。
通过测量线圈的阻抗变化,可以确定线圈中的电流大小。
总之,电感式传感器通过测量线圈中的电流变化来获得外部物理量的信息。
这种传感器具有灵敏度高、响应速度快、精度高等优点,被广泛应用于工业控制、自动化、仪器仪表等领域。
自感式电感传感器的工作原理自感式电感传感器是一种常见的传感元件,具有广泛的应用领域。
它主要通过电感的变化来感知环境的物理量或电气信号,并将信号转化为可供其他电路或系统使用的电信号。
本文将介绍自感式电感传感器的工作原理及其应用。
自感式电感传感器由线圈和铁芯组成。
线圈上有一定的匝数,当电流通过时,会产生磁场。
这个磁场的强弱与线圈的电流成正比。
当外部物理量或电气信号改变时,线圈的电流或电压也会改变,从而影响磁场的强度。
这种改变可以通过测量磁场的变化来感知外部物理量或电气信号。
具体来说,当自感式电感传感器与外界物理量或电气信号有耦合时,会引起线圈中的电感变化。
这种变化可以通过测量线圈中电流的变化来获取。
例如,当自感式电感传感器被放置在一个变化的磁场中时,线圈中的电感将随磁场变化而变化,进而导致线圈中的电流变化。
通过测量线圈中电流的大小或变化,可以得到与磁场强度相关的信息。
自感式电感传感器还可以应用于电气信号的检测。
当自感式电感传感器与电气信号耦合时,线圈中的电感也会发生变化。
通过测量线圈中的电感变化,可以得到与电气信号强度相关的信息。
这种应用广泛应用于电源管理、电子系统监控和无线通信等领域。
自感式电感传感器的工作原理基于电磁感应定律和电感变化的原理。
根据电磁感应定律,当线圈中有变化的外磁场时,会在线圈中产生感应电动势。
这个感应电动势的大小与磁场的变化速率成正比。
因此,通过测量线圈中的感应电动势或电流的变化,可以间接地获取外部物理量或电气信号的信息。
在实际应用中,自感式电感传感器可以采用不同的工作方式。
例如,可以通过改变线圈的参数如匝数、线径等来调节传感器的灵敏度。
还可以利用激励信号和检测信号实现传感器的工作。
激励信号可以是交流信号或脉冲信号,用于激发线圈中的电流。
检测信号则用于测量线圈中的电流或感应电动势的变化。
总之,自感式电感传感器是一种基于电感变化原理的传感器。
它通过感知线圈中的电流或感应电动势的变化来获取外部物理量或电气信号的信息。
四种压力传感器的基本工作原理及特点一:电阻应变式传感器1 1电阻应变式传感器定义被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。
1.2 电阻应变式传感器的工作原理电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。
箔式应变片是以厚度为0.002——0.008mm的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm。
丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。
测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。
如下图所示。
B为栅宽,L为基长。
材料的电阻变化率由下式决定:R Ad d d(1)R A式中;R—材料电阻由材料力学知识得;[(12)(12)]dRR C K (2)K —金属电阻应变片的敏感度系数式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得RLK K R L (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。
1.3电阻应变式传感器的分类及特点测低压用的膜片式压力传感器常用的电阻应变式压力传感器包括测中压用的膜片——应变筒式压力传感器测高压用的应变筒式压力传感器1.3.1膜片——应变筒式压力传感器的特点该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。