《不等式与不等式组》单元测试题
- 格式:doc
- 大小:241.00 KB
- 文档页数:4
DCBA第九章《不等式与不等式组》单元测试班级_________姓名____________一.填空题(每空3分,第2题每空2分,共35分)1. x的21与5的差不小于3,用不等式可表示为__________.2.设x >y,则x+2___y+2, -3x___-3y, x-y___0, x+y___2y.3.当x_____时,式子3x-5的值大于5x+3的值.4.当x_____时,代数式x-3是非正数.5.不等式x≤23的正整数解为______,不等式-2≤x<1的整数解为__________.6.若不等式组⎩⎨⎧>≤<mxx21有解,则m的取值范围是________.7.若不等式2x<a的解集为x<2,则a=_______.8.某饮料瓶上有这样字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为___________.9.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分。
某学生有一道题未答,那么这个同学至少要答对_____道题,成绩才能在60分以上.二.选择题(每题3分,共24分)1.已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-42设.表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()3.不等式组⎪⎩⎪⎨⎧-≥+>-xxx2313211的解集在数轴上表示为( )4.若方程3m(x+1)+1=m(3-x)-5x 的解是负数,则m 的取值范围是( )A m>-1.25 B. m<-1.25 C.m>1.25 D.m<1.255.不等式31(x-m)>2-m 的解集为x>2,则m 的值为 ( ) A.4 B.2 C.1.5 D.0.56.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为 ( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时7.不等式7x-2(10-x)≥7(2x-5)非负整数解是( )A .0,1,2 B.0,1,2,3 C.0,1,2,3,4 D.0,1,2,3,4,58.某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米C.8千米 1)1(22<---x x D.15千米 三.解答题(共41分) 1.解不等式1)1(22<---x x ;2.解不等式组⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325,并求其整数解,并把解集表示在数轴上;3.已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x>y.4.娃哈哈矿泉水每瓶售价1.2元,现甲、乙两家商场给出优惠政策:甲商场全部九折,乙商场20瓶以上的部分8折.若你是消费者,选哪家商场比较合适?5.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案:一.1.21x-5≥3 2.> < > > 3.x<-4 4.x ≤3 5.0. -2,-1,0 6.1≤m<2 7.4 8.x ≤18 9.12二.1C 2A 3B 4A 5B 6D 7B 8C三.1.x>-2,图略2.解不等式①得:x>2.5解不等式②得:x ≤4, 所以不等式组的解集2.5<x ≤4,整数解为:4,33.解方程组得x=m+3,y=-m+5,因为x>y,所以m+3>-m-5,m>-4 所以当m>-4时,x>y4.20瓶以下,选甲商场20≤x<40瓶,选甲商场X=40瓶,两商场一样x>40瓶,选乙商场5.设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5解得29.5<x<32因为x 为整数,所以x=30或x=31当x=30时,(3x+59)=149当x=31时,(3x+59)=152答:有30只猴子,149只桃子或有31只猴子,152只桃子。
人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。
不等式与不等式组综合检测题一、选择题1、下列各式中不是一元一次不等式组的是( ) A.1,35y y ⎧<-⎪⎨⎪>-⎩ B.350,420x x ->⎧⎨+<⎩ C.10,20a b -<⎧⎨+>⎩ D.50,20,489x x x ->⎧⎪+<⎨⎪+<⎩2、不等式组52110x x -≥-⎧⎨->⎩的解集是( ) A .3≤x B .31≤<x C .3≥x D .1>x3、如图.不等式5234x x -≤-⎧⎨-<⎩的两个不等式的解集在数轴上表示正确的为( )4、把一个不等式组的解集表示在数轴上.如图所示.则该不等式组的解集为( ) A.102x <≤ B.12x ≤ C.102x <≤ D.0x >5、不等式12>-x 的解集是( ) A .13<>x x 或 B .33-<>x x 或 C .31<<x D .33<<-x6.某种商品的价格第一年上升了%10第二年下降了()()5%5>-m m 后,仍不低于原价.则m 的值应为( )A.、111555≤<m B 、111555≤≤m C 、111555<<m D 、111555<≤m 7、若三角形三条边长分别是8,21,3a -,则a 的取值范围是( )A .5->aB .25-<<-aC .25-≤≤-aD .52-<->a a 或8、如果不等式组8x x m <⎧⎨>⎩无解.那么m 的取值范围是( ) A 、8>m B 、8≥m C 、8<m D 、8≤m9、一种灭虫药粉30kg.含药率是15100.现在要用含药率较高的同种灭虫药粉50kg 和它混合.使混合后含药率大于30%而小于35%.则所用药粉的含药率x 的范围是( )A .15%<x<28%B .15%<x<35%C .39%<x<47%D .23%<x<50%1210、韩日“世界杯”期间.重庆球迷一行56人从旅馆乘出租车到球场为中国队加油.现有A、B两个出租车队.A队比B队少3辆车.若全部安排乘A队的车.每辆坐5人.车不够.每辆坐6人.有的车未满;若全部安排B队的车.每辆车4人.车不够.每辆坐5人.•有的车未满.则A队有出租车()A.11辆B.10辆C.9辆D.8辆二、填空题11、不等式组123xx-≤⎧⎨-<⎩的解集是___.12、不等式组310,27xx+>⎧⎨<⎩的整数解的个数是___.13、不等式组32482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解是__________.14、若x=23+a.y=32+a.且x>2>y.则a的取值范围是________.15、如果2m、m、1-m这三个实数在数轴上所对应的点从左到右依次排列.那么m的取值范围是 .16、某旅游团有48人到某宾馆住宿.若全安排住宾馆的底层.每间住4人.房间不够;每间住5人.有一个房间没有住满5人.则该宾馆底层有客房间.17、已知关于x的不等式组2123x ax b-<⎧⎨->⎩的解集是11<<-x,那么()()21-+ba的值等于______.18、把一篮苹果分组几个学生.若每人分4个.则剩下3个;若每人分6个.则最后一个学生最多得3个.求学生人数和苹果数?设有x个学生.依题意可列不等式组为.19、若不等式组1,21x mx m<+⎧⎨>-⎩无解.则m的取值范围是______.20、若关于x的不等式组211,3xxx k-⎧>-⎪⎨⎪-<⎩的解集为2<x,则k的取值范围是_______.三、解答题21.解不等式组.并把解集在数轴上表示出来.(1)3(1)(3)8,2111.32x xx x-+--<⎧⎪+-⎨-≤⎪⎩(2)4100,54,11213.xx xx x-<⎧⎪+>⎨⎪-≥+⎩(3)-7≤2(13)7x+≤9. (4)3(1)2(9),3 3.5 1.414.0.50.7x xx x->+⎧⎪-+⎨-≤-⎪⎩22、如果方程组325x y ax y-=+⎧⎨+=⎩的解x、y满足0,0<>yx,求a的取值范围.23、4个男生和6个女生到图书馆参加装订杂志的义务劳动.管理员要求每人必须独立装订.而且每个男生的装订数是每个女生的2倍.在装订过程中发现.女生们装订的总数肯定超过30本.男、女生们装订的总数肯定不到98本.问:男、女生平均每人装订多少本?24、.小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉.10.2千克鸡蛋.计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种符合题意的加工方案?请你帮助设计出来;(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元.那么按哪一个方案加工.小亮妈妈可获得最大利润?最大利润是多少?25、.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?。
七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。
人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
不等式与不等式组单元测试题(新苏版初一下)【一】填空题(每题3分,共30分)1、不等式组12x x <⎧⎨>-⎩旳解集是2、用代数式表示,比x 旳5倍小1旳数不小于x 旳21与4旳差。
3、34125x +-<≤旳非正整数解为 4、一罐饮料净重约300克上注有“蛋白质含量≥0.6%”其中蛋白质旳含量至少为克。
5、-1≤3X ≤12旳自然数解有个.6、小明用100元钱去购买笔记本和钢笔共30件。
每本笔记本2元,每支钢笔5元那么小明最多买支钢笔。
、7、假如3x -m ≤0旳正整数解是1、2、3那么m 旳取值范围是;8、假设不等式mx -2<3x +4旳解集是x >3m 6-,那么m 为、 9、不等式组旳解集是n <x <m ,那么m 、n 旳大小关系是、10、某次数学测验中有16道选择题,评分方法:答对一道得6分,答错一道扣2分,不答得0分。
某学生有一道题未答,那么那个同学至少要答对﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏道题,成绩才能在60分以上。
【二】选择题〔每题3分,共30分〕11、a<b,那么以下不等式中不正确旳选项是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-412、以下表达不正确旳选项是()A 、假设x<0,那么x 2>xB 、假如a<-1,那么a>-aC 、假设43-<-a a ,那么a>0D 、假如b>a>0,那么ba 11-<- 13、假如两个不等式旳解集相同,那么这两个不等式叫做同解不等式。
以下两个不等式是同解不等式旳是〕A 、484<-x 与12->xB 、93≤x 与3≥xC 、x x 672<-与x 47≤-D 、0321<+-x 与231->x 14、一元一次不等式组⎩⎨⎧>-<-xx x 332312旳解集是〔〕A 、-2<x <3B 、-3<x <2C 、x <-3D 、x <215、代数式1-m 旳值大于-1,又不大于3,那么m 旳取值范围是().13.31.22.22A m B m C m D m -<≤-≤<-≤<-<≤ 16、假设1-=a a,那么a 只能是〔〕A 、a ≤-1B 、a <0C 、a ≥-1D 、a ≤0x <m x >n17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩旳解集是().1.0.01.21A x B x C x D x >-><<-<<18、假如关于x 、y 旳方程组322x y x y a +=⎧⎨-=-⎩旳解是负数,那么a 旳取值范围是() A.-4<a<5B.a>5C.a<-4D.无解 19、假设关于x 旳不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩旳解集是x>2a,那么a 旳取值范围是() A.a>4B.a>2C.a=2D.a ≥220、假设方程组2123x y m x y +=+⎧⎨+=⎩中,假设未知数x 、y 满足x+y>0,那么m 旳取值范围是() .4.4.4.4A m B m C m D m >-≥-<-≤-21、解以下不等式(或不等式组),并在数轴上表示解集。
第九章 不等式与不等式组测试题一、选择题:(每小题3分,共30分)1.如果不等式ax <b 的解集是x <ab,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 2.若0<a <1,则下列四个不等式中正确的是( ) A .a <1<1a B .a <1a <1 C .1a <a <1 D .1<1a<a 3.若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是( )A.3m ≥ B.3m = C.3m < D.3m ≤4. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )。
A 、0 B 、-3 C 、-2 D 、-15.不等式组x 1042x 0>-⎧⎨-≥⎩①②的解集在数轴上表示为( )6.以下所给的数值中,为不等式-2x + 3<0的解的是( ). A .-2 B .-1 C . D .2 7.若b a <,则下列各式中不一定成立的是( )A .11-<-b aB .33ba <C . b a ->-D . bc ac < 8. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )B9.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有( )人。
A 40B 41C 42D 4310.如果关于x 的不等式组{x 13m x m <+>-无解,那么m 的取值范围是( )A m >1B m ≥1C m <1D m ≤1二、填空题 :(每小题3分,共24分)11. 2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a12. 不等式2(x -3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_______________。
人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。
《不等式与不等式组》单元测试题
班级 座号 姓名 一、填空题(每题3分,共30分)
1、不等式组12x x <⎧⎨>-⎩
的解集是 2、将下列数轴上的x 的范围用不等式表示出来
3、34125
x +-<≤的非正整数解为 4、a>b,则-2a -2b.
5、3X ≤12的自然数解有 个.
6、不等式12
x >-3的解集是 。
7、用代数式表示,比x 的5倍大1的数不小于x 的2
1与4的差 。
8、若(m-3)x<3-m 解集为x>-1,则m .
9、三角形三边长分别为4,a ,7,则a 的取值范围是
10、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。
在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
二、选择题(每小题2分,共20分)
11、在数轴上表示不等式x ≥-2的解集,正确的是( )
A B C D
12、下列叙述不正确的是( )A 、若x<0,则x 2>x
B 、如果a<-1,则a>-a
C 、若43-<-a a ,则a>0
D 、如果b>a>0,则b
a 11-<- 13、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从.大到小...
的顺序排列为( ) A 、 ○□△ B 、 ○△□
C 、 □○△
D 、 △□○
14、天平右盘中的每个砝码的质量都是1g ,则物体A
的质量m(g)的取值范围,在数轴上可表示为( )
15、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( )
.13.3
1.2
2.22A m B m C m D m -<≤-≤<-≤<-
<≤
16、不等式
45111
x -<的正整数解为( ) A.1个 B.3个 C.4个 D.5个 17、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩
的解集是( )
.1.0.01.21A x B x C x D x >-><<-<<
18、如果关于x 、y 的方程组322
x y x y a +=⎧⎨-=-⎩的解是负数,则a 的取值范围是
( )
A.-4<a<5
B.a>5
C.a<-4
D.无解
19、若关于x 的不等式组()202114x a x x ->⎧⎪⎨+>-⎪⎩
的解集是x>2a,则a 的取值范围是( )
A. a>4
B. a>2
C. a=2
D.a≥2
20、若方程组2123x y m x y +=+⎧⎨+=⎩
中,若未知数x 、y 满足x+y>0,则m 的取值范围是( )
.4.4.4.4A m B m C m D m >-≥-<-≤-
三、解答题(第1题20分,第2、3各5分,第4、5题各10分,共50分)
1、解下列不等式(或不等式组),并在数轴上表示解集。
(1)2x -3<6x +13; (2)2(5x -9)≤x+3(4-2x ).
B
A C D
(3) ⎩⎨⎧>-+->-01243273x x x (4)()43321311522x x x x -<+⎧⎪⎨->-⎪⎩
2、在下列解题过程中有错,请在出错之处打个叉,并给予纠正。
x x 416)1(3+>+--
解: x x 4163+>+--
6314-+>--x x
25->-x
5
2<x
3、某城市一种出租汽车起步价是10元行驶路程在5km 以内都需10元车费),达到或超过5km 后,每增加1km ,1.2元(不足1km ,加价1.2元;不足1km 部分按1km 计)。
现在某人乘这种出租车从甲地到乙地,支付17.2元,则从甲地到乙地路程大约是多少?
4、若不等式组
的解集为-1<x<1,求(a+1)(b-1)的值。
5、为了保护环境,某企业决定购买10台污水处理设备。
现有A、B两种型号的
(1)请你设计该企业有几种购买方案;
(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.。