数学二次函数的专项培优练习题(含答案)附答案解析
- 格式:doc
- 大小:889.00 KB
- 文档页数:18
初三数学二次函数的专项培优练习题(含答案)含详细答案一、二次函数1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【解析】【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=, y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.2.抛物线y =ax 2+bx ﹣3(a≠0)与直线y =kx+c (k≠0)相交于A (﹣1,0)、B (2,﹣3)两点,且抛物线与y 轴交于点C .(1)求抛物线的解析式;(2)求出C 、D 两点的坐标(3)在第四象限抛物线上有一点P ,若△PCD 是以CD 为底边的等腰三角形,求出点P 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2)C (0,﹣3),D (0,﹣1);(3)P (2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标. (3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩ 解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11 kb=-⎧⎨=-⎩∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±2,∵x>0∴x=1+2.∴P(1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P 的横坐标.3.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE 2,PF2,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t2+42t,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.4.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣1,10)或P(﹣1,﹣10)或P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2);(4)63 8,315,24E⎛⎫-⎪⎝⎭.【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M 的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=C P时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)根据轴对称﹣最短路径问题解答;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,S四边形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在△BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.【详解】(1)∵抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (﹣3,0), ∴309330a b a b ++=⎧⎨-+=⎩, 解得:12a b =-⎧⎨=-⎩. ∴所求抛物线解析式为:y =﹣x 2﹣2x+3;(2)如答图1,∵抛物线解析式为:y =﹣x 2﹣2x+3,∴其对称轴为x =22-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3,∴C (0,3),M (﹣1,0)∴当CP =PM 时,(﹣1)2+(3﹣a )2=a 2,解得a =53, ∴P 点坐标为:P 1(﹣1,53); ∴当CM =PM 时,(﹣1)2+32=a 2,解得a =±10,∴P 点坐标为:P 2(﹣1,10)或P 3(﹣1,﹣10);∴当CM =CP 时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a )2,解得a =6, ∴P 点坐标为:P 4(﹣1,6).综上所述存在符合条件的点P ,其坐标为P (﹣1,10)或P (﹣1,﹣10)或P (﹣1,6)或P (﹣1,53); (3)存在,Q (﹣1,2),理由如下:如答图2,点C (0,3)关于对称轴x =﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q .设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得23 k tk t+=⎧⎨-+=⎩,解得11kt=-⎧⎨=⎩,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即:Q(﹣1,2);(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=12BF•EF+12(OC+EF)•OF=12(a+3)•(﹣a2﹣2a+3)+12(﹣a2﹣2a+6)•(﹣a)=﹣32a2﹣92a+92=﹣32(a+32)2+638,∴当a=﹣32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为(﹣32,154).【点睛】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.5.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).【解析】【分析】(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a21922x⎛⎫-+⎪⎝⎭,把点B的坐标代入求得a的值即可;②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92, ∴C (2,92),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,92﹣t ),∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处, ∴∠PDC=90°,DP=DC=t , ∴P (2+t ,92﹣t ), 把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得﹣12(2+t )2+2(2+t )+52=92﹣t , 整理得t 2﹣2t=0,解得t 1=0(舍去),t 2=2, ∴线段CD 的长为2;(3)P 点坐标为(4,92),D 点坐标为(2,52), ∵抛物线平移,使其顶点C (2,92)移到原点O 的位置, ∴抛物线向左平移2个单位,向下平移92个单位,而P 点(4,92)向左平移2个单位,向下平移92个单位得到点E , ∴E 点坐标为(2,﹣2), 设M (0,m ),当m >0时,12•(m+52+2)•2=8,解得m=72,此时M 点坐标为(0,72);当m <0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M 点坐标为(0,﹣72);综上所述,M 点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.9.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4或5412+或5412. 【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h 为2sin 45(4)2BP t ︒=-,于是21122)22)2222PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为22③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离22d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即22NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得1541m +=,2541m -=去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得15412m =(舍去),252m =. 【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B (﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-; ②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=, ∴点P 到BC 的高h为sin 45)BP t ︒=-,∴211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+ 当2t =时,△PBE的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-, ∴点A 到直线BC的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -, 易证△PQN为等腰直角三角形,即NQ PQ == ∴4PN =, Ⅰ.4NH HP +=, ∴265(5)4m m m -+---= 解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=, ∴()25654m m m ---+-=解得1m =,2m =∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴541m +=, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=, 解得15412m +=,25412m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴5412m -=, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或541+或541-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.10.已知抛物线C 1:y=ax 2﹣4ax ﹣5(a >0). (1)当a=1时,求抛物线与x 轴的交点坐标及对称轴;(2)①试说明无论a 为何值,抛物线C 1一定经过两个定点,并求出这两个定点的坐标; ②将抛物线C 1沿这两个定点所在直线翻折,得到抛物线C 2,直接写出C 2的表达式; (3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax 2+4ax ﹣5(3)a=或【解析】试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题试题解析:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为y=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换11.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD 是矩形的一条对角线,则线段AD 的中点坐标为( ,),Q (2,),m =,则P (1,8a ),∵四边形APDQ 为矩形,∴∠APD =90°,∴,∴,即,∵,∴,∴P 2(1,-4).综上所述,以点A 、D 、P 、Q 为顶点的四边形能成为矩形,点P 的坐标为(1,)或(1,-4).考点:二次函数综合题.12.如图,已知抛物线2(0)y ax bx a =+≠过点3,-3) 和3,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)21332y x x =-;(2)P 点坐标为(383,- 43);(3)Q 点坐标(30)或(315) 【解析】 【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P 坐标为2133,22x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】(1)把3A 3)-和点(33B 0)代入抛物线得:33327330a b a b ⎧+=-⎪⎨+=⎪⎩,解得:12a =,332b =-, 则抛物线解析式为213322y x x =-; (2)当P 在直线AD 上方时,设P 坐标为2133,2x x x ⎛⎫ ⎪ ⎪⎝⎭,则有3AD x =213332PD x x =+, 当OCA ADP ∆∆∽时,OC CA AD DP =2331333x x x =--+, 整理得:239318236x x x -+=-,即23113240x x -+=,解得:6x =,即3x =或x =此时P 4)3-;当OCA PDA ∆∆∽时,OC CA PD AD =22=,296x x -+=-2120x -+=,解得:x =x =此时P 6);当点()0,0P 时,也满足OCA PDA ∆∆∽; 当P 在直线AD 下方时,同理可得:P的坐标为10)3-,综上,P的坐标为,4)3-或6)或10)3-或()0,0;(3)在Rt AOC ∆中,3OC =,AC =根据勾股定理得:OA =Q 11··22OC AC OA h =, 32h ∴=,132AOC AOQ S S ∆∆==Q , AOQ ∴∆边OA 上的高为92, 过O 作OM OA ⊥,截取92OM =,过M 作//MN OA ,交y 轴于点N ,如图所示:在Rt OMN ∆中,29ON OM ==,即()0,9N , 过M 作MH x ⊥轴,在Rt OMH ∆中,1924MH OM ==,393OH ==,即93(M ,9)4, 设直线MN 解析式为9y kx =+,把M 坐标代入得:99394=+,即3k =39y x =+, 联立得:23913322y x y x x ⎧=-+⎪⎨=-⎪⎩,解得:330x y ⎧=⎪⎨=⎪⎩315x y ⎧=-⎪⎨=⎪⎩(33Q 0)或(23-,15),则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(330)或(23-15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.13.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短. 详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩,解得:2383a c ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x +-, ∵过点B 的直线y=kx+23, ∴代入(1,0),得:k=﹣23, ∴BD 解析式为y=﹣2233x +;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC=3CFP O,即523=103t,解得:t=49,∴t的值为49、151296、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N 作NH ⊥DD′于点H ,此时,DM+MN=D′N 最小. 则△EOF ∽△NHD′ 设点N 坐标为(a ,﹣21033a -), ∴OE NH =OF HD ',即52104()33a ---=1032a -, 解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1, 当x=﹣32时,y=﹣54, ∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 的值最小为22D H NH '+=2246+=213.点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.14.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2ba-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2ba-=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.15.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当2t =时,线段PQ 的中点坐标为________; (2)当CBQ ∆与PAQ ∆相似时,求t 的值;(3)当1t =时,抛物线2y x bx c =++经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示.问该抛物线上是否存在点D ,使12MQD MKQ ∠=∠,若存在,求出所有满足条件的D 点坐标;若不存在,说明理由. 【答案】(1)PQ 的中点坐标是(2.5,2);(2)9352t -=或3t 4=;(3)124(,)39D ,2240(,)39D -. 【解析】分析:(1)先根据时间t=2,和速度可得动点P 和Q 的路程OP 和AQ 的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ 与△PAQ 相似时,存在两种情况:①当△PAQ ∽△QBC 时,PA QB AQ BC =,②当△PAQ ∽△CBQ 时,PA BC AQ QB=,分别列方程可得t 的值;(3)根据t=1求抛物线的解析式,根据Q (3,2),M (0,2),可得MQ ∥x 轴,∴KM=KQ ,KE ⊥MQ ,画出符合条件的点D ,证明△KEQ ∽△QMH ,列比例式可得点D 的坐标,同理根据对称可得另一个点D .详解:(1)如图1,∵点A 的坐标为(3,0), ∴OA=3,当t=2时,OP=t=2,AQ=2t=4, ∴P (2,0),Q (3,4),。
二次函数培优试题〔30道解答题〕注:全是2021年各地市中考题,不少是压轴题一.解答题〔共30小题〕1.设m是不小于﹣1的实数,使得关于x的方程x2+2〔m﹣2〕x+m2﹣3m+3=0有两个不相等的实数根x1,x2.〔1〕假设+=1,求的值;〔2〕求+﹣m2的最大值.2.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.〔1〕求y关于x的函数关系式;〔2〕当x为何值时,围成的养鸡场面积为60平方米?〔3〕能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.3.如图1,反比例函数y=〔x>0〕的图象经过点A〔2,1〕,射线AB与反比例函数图象交于另一点B〔1,a〕,射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.〔1〕求k的值;〔2〕求tan∠DAC的值及直线AC的解析式;〔3〕如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.4.如图,二次函数y=a〔x﹣h〕2+的图象经过原点O〔0,0〕,A〔2,0〕.〔1〕写出该函数图象的对称轴;〔2〕假设将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?5.假设两个二次函数图象的顶点、开口方向都相同,那么称这两个二次函数为“同簇二次函数〞.〔1〕请写出两个为“同簇二次函数〞的函数;〔2〕关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A〔1,1〕,假设y1+y2与y1为“同簇二次函数〞,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.6.如果二次函数的二次项系数为l,那么此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].〔1〕假设一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.〔2〕探究以下问题:①假设一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象②假设一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?7.抛物线C:y=﹣x2+bx+c经过A〔﹣3,0〕和B〔0,3〕两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.〔1〕求抛物线C的表达式;〔2〕求点M的坐标;〔3〕将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?8.如图,二次函数y=ax2+bx+c的图象过A〔2,0〕,B〔0,﹣1〕和C〔4,5〕三点.〔1〕求二次函数的解析式;〔2〕设二次函数的图象与x轴的另一个交点为D,求点D的坐标;〔3〕在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.9.如图,抛物线y=ax2+2x+c经过点A〔0,3〕,B〔﹣1,0〕,请解答以下问题:〔1〕求抛物线的解析式;〔2〕抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c〔a≠0〕的顶点坐标是〔﹣,〕.10.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A〔0,﹣2〕,B〔3,4〕.〔1〕求抛物线的表达式及对称轴;〔2〕设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的局部为图象G〔包含A,B两点〕.假设直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.11.如图,二次函数的图象与x轴交于A〔﹣3,0〕和B〔1,0〕两点,交y轴于点C〔0,3〕,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.〔1〕请直接写出D点的坐标.〔2〕求二次函数的解析式.〔3〕根据图象直接写出使一次函数值大于二次函数值的x的取值范围.12.关于x的方程x2﹣〔2k﹣3〕x+k2+1=0有两个不相等的实数根x1、x2.〔1〕求k的取值范围;〔2〕试说明x1<0,x2<0;〔3〕假设抛物线y=x2﹣〔2k﹣3〕x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.13.二次函数y=x2﹣4x+3.〔1〕用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;〔2〕求函数图象与x轴的交点A,B的坐标,及△ABC的面积.14.利用二次函数的图象估计一元二次方程x2﹣2x﹣1=0的近似根〔精确到0.1〕.15.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后〔包括1.5小时〕y与x可近似地用反比例函数y=〔k>0〕刻画〔如下图〕.〔1〕根据上述数学模型计算:①喝酒后几时血液中的酒精含量到达最大值?最大值为多少?②当x=5时,y=45,求k的值.〔2〕按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.16.九〔1〕班数学兴趣小组经过市场调查,整理出某种商品在第x〔1≤x≤90〕天的售价与销量的相关信息如下表:时间x〔天〕1≤x<50 50≤x≤90售价〔元/件〕x+40 90每天销量〔件〕200﹣2x该商品的进价为每件30元,设销售该商品的每天利润为y元.〔1〕求出y与x的函数关系式;〔2〕问销售该商品第几天时,当天销售利润最大,最大利润是多少?〔3〕该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.17.某小商场以每件20元的价格购进一种服装,先试销一周,试销期间每天的销量〔件〕与每件的销售价x〔元/件〕如下表:x〔元/件〕38 36 34 32 30 28 26t〔件〕 4 8 12 16 20 24 28假定试销中每天的销售量t〔件〕与销售价x〔元/件〕之间满足一次函数.〔1〕试求t与x之间的函数关系式;〔2〕在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?〔注:每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价〕18.“丹棱冻粑〞是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;假设每箱产品涨价1元,日销售量将减少2箱.〔1〕现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?〔2〕假设该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?19.某商场在1月至12月份经销某种品牌的服装,由于受到时令的影响,该种服装的销售情况如下:销售价格y1〔元/件〕与销售月份x〔月〕的关系大致满足如图的函数,销售本钱y2〔元/件〕与销售月份x〔月〕满足y2=,月销售量y3〔件〕与销售月份x〔月〕满足y3=﹣10x+20.〔1〕根据图象求出销售价格y1〔元/件〕与销售月份x〔月〕之间的函数关系式;〔6≤x≤12且x为整数〕〔2〕求出该服装月销售利润W〔元〕与月份x〔月〕之间的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?〔6≤x≤12且x为整数〕20.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.〔1〕求出每天所得的销售利润w〔元〕与每件涨价x〔元〕之间的函数关系式;〔2〕求销售单价为多少元时,该商品每天的销售利润最大;〔3〕商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比拟哪种方案的最大利润更高,并说明理由.21.在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2〔单位:件/时〕,y1、y2与工作时间x〔小时〕之间大致满足如下图的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一局部.〔1〕根据图象答复:•调试过程中,生产乙的效率高于甲的效率的时间x〔小时〕的取值范围是_________; 说明线段AB的实际意义是_________.〔2〕求出调试过程中,当6≤x≤8〔3〕时,生产甲种产品的效率y1〔件/时〕与工作时间x〔小时〕之间的函数关系式.〔3〕调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z〔件〕与生产甲所用时间m〔小时〕之间的函数关系式.22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温比照实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,〔1〕分别求y A、y B关于x的函数关系式;〔2〕当A组材料的温度降至120℃时,B组材料的温度是多少?〔3〕在0<x<40的什么时刻,两组材料温差最大?23.某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x〔元/人〕〔x>20〕,日接待游客的人数为y〔人〕.〔1〕求y与x〔x>20〕的函数关系式;〔2〕景点每日的接待本钱为z〔元〕,z与y满足函数关系式:z=100+10y.求z与x的函数关系式;〔3〕在〔2〕的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?〔利润=门票收入﹣接待本钱〕24.某企业设计了一款工艺品,每件的本钱是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于本钱.〔1〕求出每天的销售利润y〔元〕与销售单价x〔元〕之间的函数关系式;〔2〕求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?〔3〕如果该企业要使每天的销售利润不低于4000元,且每天的总本钱不超过7000元,那么销售单价应控制在什么范围内?〔每天的总本钱=每件的本钱×每天的销售量〕25.某工厂生产的某种产品按质量分为10个档次,第1档次〔最低档次〕的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.〔1〕假设生产第x档次的产品一天的总利润为y元〔其中x为正整数,且1≤x≤10〕,求出y关于x的函数关系式;〔2〕假设生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.26.某商家方案从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1〔元/台〕与采购数量x1〔台〕满足y1=﹣20x1+1500〔0<x1≤20,x1为整数〕;冰箱的采购单价y2〔元/台〕与采购数量x2〔台〕满足y2=﹣10x2+1300〔0<x2≤20,x2为整数〕.〔1〕经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?〔2〕该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在〔1〕的条件下,问采购空调多少台时总利润最大?并求最大利润.27.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀〞栏目组决定借给该店30000元资金,并约定利用经营的利润归还债务〔所有债务均不计利息〕.该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y〔件〕与销售价x〔元/件〕之间的关系可用图中的一条折线〔实线〕来表示.该店应支付职工的工资为每人每天82元,每天还应支付其它费用为106元〔不包含债务〕.〔1〕求日销售量y〔件〕与销售价x〔元/件〕之间的函数关系式;〔2〕假设该店暂不考虑归还债务,当某天的销售价为48元/件时,当天正好收支平衡〔收人=支出〕,求该店职工的人数;〔3〕假设该店只有2名职工,那么该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?28.在2021年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x〔x≥60〕元,销售量为y套.〔1〕求出y与x的函数关系式.〔2〕当销售单价为多少元时,月销售额为14000元;〔3〕当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c〔a≠0〕的顶点坐标是].29.某经销商销售一种产品,这种产品的本钱价为10元/千克,销售价不低于本钱价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y〔千克〕与销售价x〔元/千克〕之间的函数关系如下图:〔1〕求y与x之间的函数关系式,并写出自变量x的取值范围;〔2〕求每天的销售利润W〔元〕与销售价x〔元/千克〕之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?〔3〕该经销商想要每天获得150元的销售利润,销售价应定为多少?30.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装本钱为1万元/吨,根据市场调查,它的平均销售价格y〔单位:万元/吨〕与销售数量x〔x≥2〕之间的函数关系如图;B类杨梅深加工总费用s〔单位:万元〕与加工数量t〔单位:吨〕之间的函数关系是s=12+3t,平均销售价格为9万元/吨.〔1〕直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;〔2〕第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元〔毛利润=销售总收入﹣经营总本钱〕.①求w关于x的函数关系式;②假设该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?〔3〕第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.参考答案与试题解析一.解答题〔共30小题〕1.设m是不小于﹣1的实数,使得关于x的方程x2+2〔m﹣2〕x+m2﹣3m+3=0有两个不相等的实数根x1,x2.〔1〕假设+=1,求的值;〔2〕求+﹣m2的最大值.考点:根与系数的关系;根的判别式;二次函数的最值.专题:代数综合题.分析:〔1〕首先根据根的判别式求出m的取值范围,利用根与系数的关系,求出符合条件的m的值;〔2〕把利用根与系数的关系得到的关系式代入代数式,细心化简,结合m的取值范围求出代数式的最大值.解答:解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=4〔m﹣2〕2﹣4〔m2﹣3m+3〕=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m<1.〔1〕∵x1+x2=﹣2〔m﹣2〕,x1x2=m2﹣3m+3,∴+===1解得:m1=,m2=〔不合题意,舍去〕∴=﹣2.〔2〕+﹣m2=﹣m2=﹣2〔m﹣1〕﹣m2=﹣〔m+1〕2+3.当m=﹣1时,最大值为3.点评:此题考查根与系数的关系,一元二次方程的根的判别式△=b2﹣4ac来求出m的取值范围;解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.2.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.〔1〕求y关于x的函数关系式;〔2〕当x为何值时,围成的养鸡场面积为60平方米?〔3〕能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.考点:一元二次方程的应用;根据实际问题列二次函数关系式.专题:几何图形问题.分析:〔1〕根据矩形的面积公式进行列式;〔2〕、〔3〕把y的值代入〔1〕中的函数关系,求得相应的x值即可.解答:解:〔1〕设围成的矩形一边长为x米,那么矩形的邻边长为:32÷2﹣x.依题意得y=x〔32÷2﹣x〕=﹣x2+16x.答:y关于x的函数关系式是y=﹣x2+16x;〔2〕由〔1〕知,y=﹣x2+16x.当y=60时,﹣x2+16x=60,即〔x﹣6〕〔x﹣10〕=0.解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米;〔3〕不能围成面积为70平方米的养鸡场.理由如下:由〔1〕知,y=﹣x2+16x.当y=70时,﹣x2+16x=70,即x2﹣16x+70=0因为△=〔﹣16〕2﹣4×1×70=﹣24<0,所以该方程无解.即:不能围成面积为70平方米的养鸡场.点评:此题考查了一元二次方程的应用.解题的关键是熟悉矩形的周长与面积的求法,以及一元二次方程的根的判别式.3.如图1,反比例函数y=〔x>0〕的图象经过点A〔2,1〕,射线AB与反比例函数图象交于另一点B〔1,a〕,射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.〔1〕求k的值;〔2〕求tan∠DAC的值及直线AC的解析式;〔3〕如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.考点:反比例函数综合题;一次函数的性质;二次函数的最值.专题:代数几何综合题.分析:〔1〕根据反比例函数图象上点的坐标特征易得k=2;〔2〕作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为〔1,2〕,那么AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,那么OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为〔0,﹣1〕,于是可根据待定系数法求出直线AC的解析式为y=x﹣1;〔3〕利用M点在反比例函数图象上,可设M点坐标为〔t,〕〔0<t<1〕,由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为〔t,t﹣1〕,那么MN=﹣t+1,根据三角形面积公式得到S△OMN=•t•〔﹣t+1〕,再进行配方得到S=﹣〔t﹣〕2+〔0<t<1〕,最后根据二次函数的最值问题求解.解答:解:〔1〕把A〔2,1〕代入y=得k=2×1=2;〔2〕作BH⊥AD于H,如图1,把B〔1,a〕代入反比例函数解析式y=得a=2,∴B点坐标为〔1,2〕,∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为〔0,﹣1〕,设直线AC的解析式为y=kx+b,把A〔2,1〕、C〔0,﹣1〕代入得,解,∴直线AC的解析式为y=x﹣1;〔3〕设M点坐标为〔t,〕〔0<t<1〕,∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为〔t,t﹣1〕,∴MN=﹣〔t﹣1〕=﹣t+1,∴S△OMN=•t•〔﹣t+1〕=﹣t2+t+=﹣〔t﹣〕2+〔0<t<1〕,∵a=﹣<0,∴当t=时,S有最大值,最大值为.点评:此题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求一次函数解析式;理解坐标与图形的性质;会利用二次函数的性质解决最值问题.4.如图,二次函数y=a〔x﹣h〕2+的图象经过原点O〔0,0〕,A〔2,0〕.〔1〕写出该函数图象的对称轴;〔2〕假设将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:二次函数的性质;坐标与图形变化-旋转.分析:〔1〕由于抛物线过点O〔0,0〕,A〔2,0〕,根据抛物线的对称性得到抛物线的对称轴为直线x=1;〔2〕作A′B⊥x轴与B,先根据旋转的性质得OA′=OA=2,∠A′OA=60°,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,那么A′点的坐标为〔1,〕,根据抛物线的顶点式可判断点A′为抛物线y=﹣〔x﹣1〕2+的顶点.解答:解:〔1〕∵二次函数y=a〔x﹣h〕2+的图象经过原点O〔0,0〕,A〔2,0〕.解得:h=1,a=﹣,∴抛物线的对称轴为直线x=1;〔2〕点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=60°,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为〔1,〕,∴点A′为抛物线y=﹣〔x﹣1〕2+的顶点.点评:此题考查了二次函数的性质:二次函数y=ax2+bx+c〔a≠0〕的顶点坐标为〔﹣,〕,对称轴直线x=﹣,二次函数y=ax2+bx+c〔a≠0〕的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c〔a≠0〕的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c〔a≠0〕的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.5.假设两个二次函数图象的顶点、开口方向都相同,那么称这两个二次函数为“同簇二次函数〞.〔1〕请写出两个为“同簇二次函数〞的函数;〔2〕关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A〔1,1〕,假设y1+y2与y1为“同簇二次函数〞,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:代数综合题;新定义.分析:〔1〕只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数〞的函数表达式即可.〔2〕由y1的图象经过点A〔1,1〕可以求出m的值,然后根据y1+y2与y1为“同簇二次函数〞就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:〔1〕设顶点为〔h,k〕的二次函数的关系式为y=a〔x﹣h〕2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2〔x﹣3〕2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3〔x﹣3〕2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2〔x﹣3〕2+4与y=3〔x﹣3〕2+4顶点相同,开口都向上,∴两个函数y=2〔x﹣3〕2+4与y=3〔x﹣3〕2+4是“同簇二次函数〞.∴符合要求的两个“同簇二次函数〞可以为:y=2〔x﹣3〕2+4与y=3〔x﹣3〕2+4.〔2〕∵y1的图象经过点A〔1,1〕,∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2〔x﹣1〕2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=〔a+2〕x2+〔b﹣4〕x+8∵y1+y2与y1为“同簇二次函数〞,∴y1+y2=〔a+2〕〔x﹣1〕2+1=〔a+2〕x2﹣2〔a+2〕x+〔a+2〕+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5〔x﹣1〕2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5〔0﹣1〕2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5〔3﹣1〕2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:此题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质〔开口方向、增减性〕,考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.6.如果二次函数的二次项系数为l,那么此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].〔1〕假设一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.〔2〕探究以下问题:①假设一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②假设一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?考点:二次函数图象与几何变换;二次函数的性质.专题:新定义.分析:〔1〕根据题意得出函数解析式,进而得出顶点坐标即可;〔2〕①首先得出函数解析式,进而利用函数平移规律得出答案;②分别求出两函数解析式,进而得出平移规律.解答:解:〔1〕由题意可得出:y=x2﹣2x+1=〔x﹣1〕2,∴此函数图象的顶点坐标为:〔1,0〕;〔2〕①由题意可得出:y=x2+4x﹣1=〔x+2〕2﹣5,∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=〔x++2﹣1〕2﹣5+1=〔x+1〕2﹣4=x2+2x﹣3,∴图象对应的函数的特征数为:[2,﹣3];②∵一个函数的特征数为[2,3],∴函数解析式为:y=x2+2x+3=〔x+1〕2+2,∵一个函数的特征数为[3,4],∴函数解析式为:y=x2+3x+4=〔x+〕2+,∴原函数的图象向左平移个单位,再向下平移个单位得到.点评:此题主要考查了二次函数的平移以及配方法求函数解析式,利用特征数得出函数解析式是解题关键.7.抛物线C:y=﹣x2+bx+c经过A〔﹣3,0〕和B〔0,3〕两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.〔1〕求抛物线C的表达式;〔2〕求点M的坐标;〔3〕将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.专题:分类讨论.分析:〔1〕直接把A〔﹣3,0〕和B〔0,3〕两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;〔2〕根据〔1〕中抛物线的解析式可得出其顶点坐标;〔3〕根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.解答:解:〔1〕∵抛物线y=﹣x2+bx+c经过A〔﹣3,0〕和B〔0,3〕两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;〔2〕∵由〔1〕知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M〔﹣1,4〕.〔3〕由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i〕当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii〕当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.点评:此题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第〔3〕问需要分类讨论,防止漏解.8.如图,二次函数y=ax2+bx+c的图象过A〔2,0〕,B〔0,﹣1〕和C〔4,5〕三点.〔1〕求二次函数的解析式;〔2〕设二次函数的图象与x轴的另一个交点为D,求点D的坐标;〔3〕在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.考点:待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式〔组〕.专题:代数综合题.分析:〔1〕根据二次函数y=ax2+bx+c的图象过A〔2,0〕,B〔0,﹣1〕和C〔4,5〕三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;〔2〕令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;〔3〕画出图象,再根据图象直接得出答案.解答:解:〔1〕∵二次函数y=ax2+bx+c的图象过A〔2,0〕,B〔0,﹣1〕和C〔4,5〕三点,。
一、二次函数真题与模拟题分类汇编(难题易错题)1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题2.如图,在平面直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求以C 、E 、F 为顶点三角形与△COD 相似时点P 的坐标.【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【解析】【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案.【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OB OA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3; (2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2b a=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3). ∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .3.如图①,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ.①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题.详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3.(2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72, ∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94). 设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得: 17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==, ∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x2+2x+3-(-x+54)=-x2+3x+74,∴S△DPQ=12DE•(x Q-x P)=-2x2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.4.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x轴一个动点,若∠MNC=90°,请求出m的取值范围.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣2,23)55 4m-≤≤【解析】【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣32)2﹣54,然后根据n的取值得到最小值.【详解】解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),∴103b cc--+=⎧⎨=⎩,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则330bk b''=⎧⎨+=⎩,解得:k=-1,b’=3故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD =PC 时,则∠CPD =∠CDP ,∵PD ∥y 轴,∴∠CPD =∠OCB =45°,∴∠CDP =45°,∴∠PCD =90°,∴直线CD 的解析式为y =x +3,解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩∴D (1,4),此时P (1,2);当CD =PD 时,则∠DCP =∠CPD =45°,∴∠CDP =90°,∴CD ∥x 轴,∴D 点的纵坐标为3,代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3,解得x =0或x =2,此时P (2,1);当PC =PD 时,∵PC t , ∴=﹣t 2+3t ,解得t =0或t =3,此时P (3);综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (2m ,32), ∵∠MNC =90°, ∴NQ =12CM , ∴4NQ 2=CM 2, ∵NQ 2=(1﹣2m )2+(n ﹣32)2, ∴4[(1﹣2m )2+(n ﹣32)2]=m 2+9, 整理得,m =(n ﹣32)2﹣54, ∵0≤n ≤4,当n =32时,m 最小值=﹣54,n =4时,m =5, 综上,m 的取值范围为:﹣54≤m ≤5.【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.5.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x = 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.6.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x +a ﹣3,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B .(1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (0,﹣3),B (4,﹣3);(2)﹣3<a ≤0;【解析】【分析】(1)由题意直接可求A ,根据平移点的特点求B ;(2)图形M 与线段AB 恰有两个公共点,y =a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点;【详解】解:(1)A (0,﹣3),B (4,﹣3);(2)当函数经过点A 时,a =0,∵图形M 与线段AB 恰有两个公共点,∴y =a 要在AB 线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.7.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=94;②P(2,﹣3)或(22﹣2).【解析】【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A,B,C代入函数解析式,得9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=2,n 2﹣2n ﹣3=-3,P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=3+2(不符合题意,舍),n 3=3-2,n 2﹣2n ﹣3=2-42,P (3-2,2-42);综上所述:P (2,﹣3)或(3-2,2﹣42).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.8.如图,直线y=﹣x+分别与x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB=90°,抛物线y=ax 2+bx+经过A ,B 两点. (1)求A 、B 两点的坐标;(2)求抛物线的解析式;(3)点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H ,作MD ∥y 轴交BC 于点D ,求△DMH 周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x 2+x+(3)【解析】 试题分析:(1)由直线解析式可求得B 、C 坐标,在Rt △BOC 中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想9.(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x 轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1);(2)12;(3)t=或t=或t=14.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考点:二次函数综合题.10.如图,抛物线y =ax 2+bx 经过△OAB 的三个顶点,其中点A (1,3),点B (3,﹣3),O 为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P (4,m ),Q (t ,n )为该抛物线上的两点,且n <m ,求t 的取值范围; (3)若C 为线段AB 上的一个动点,当点A ,点B 到直线OC 的距离之和最大时,求∠BOC 的大小及点C 的坐标.【答案】(1)22353y x x =;(2)t >4;(3)∠BOC =60°,C (323 【解析】 分析:(1)将已知点坐标代入y=ax 2+bx ,求出a 、b 的值即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A ,点B 到直线OC 的距离之和小于等于AB ;同时用点A (13点B (33详解:(1)把点A (13B (33y=ax 2+bx 得3=393a b a b ⎧+⎪⎨-=+⎪⎩ ,解得2353a b ⎧=⎪⎪⎨⎪=⎪⎩∴y=﹣2235333x x (2)由(1)抛物线开口向下,对称轴为直线x=54, 当x >54时,y 随x 的增大而减小, ∴当t >4时,n <m . (3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD ,BC≥BE ,∴AD+BE≤AC+BE=AB ,∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大.∵A (13B (33∴∠AOF=60°,∠BOF=30°,∴∠AOB=90°,∴∠ABO=30°.当OC ⊥AB 时,∠BOC=60°,点C 坐标为(323 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.。
2020-2021九年级数学二次函数的专项培优练习题(含答案)及答案一、二次函数1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x 轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x 轴的交点为M 、N (M 在N 的左侧),由(2)知:M (﹣3,0),N (1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.3.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
2023年春九年级数学中考复习《二次函数综合压轴题》培优提升专题训练(附答案)1.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.2.如图,在平面直角坐标系中,矩形ABCD的顶点B,C,D的坐标分别(1,0),(3,0),(3,4),以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D匀速运动,过点P作PE⊥x轴,交对角线AC于点N.设点P运动的时间为t(秒).(1)求抛物线的解析式;(2)若PN分△ACD的面积为1:2的两部分,求t的值;(3)若动点P从A出发的同时,点Q从C出发,以每秒1个单位的速度沿线段CD向点D匀速运动,点H为线段PE上一点.若以C,Q,N,H为顶点的四边形为菱形,求t的值.3.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,已知抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,对称轴为直线l,顶点为D.(1)求抛物线的解析式及点D坐标;(2)在直线l上是否存在一点M,使点M到点B的距离与到点C的距离之和最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线,AD,AC于点E,F,G.①判断线段FP与FG的数量关系,并说明理由②连接EA,ED,CD,当m为何值时,四边形AEDC的面积最大?最大值为多少?5.如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.6.如图,已知,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=﹣1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?8.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上一动点,过点P作x轴的垂线l,交BC于点H.当点P 运动到何处时满足PC=CH?求出此时点P的坐标;(3)若m≤x≤m+1时,二次函数y=ax2+bx+3的最大值为m,求m的值.9.综合与探究如图,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(2,0),点C在y轴上,其坐标为(0,﹣3),抛物线经过点A,B,C.P为第三象限内抛物线上一动点.(1)求该抛物线的解析式.(2)连接AC,过点P作PD⊥AC,PE∥y轴交AC于点E,当△PDE的周长最大时,求P点的坐标和△PDE周长的最大值.(3)若点M为x轴上一动点,点F为平面直角坐标系内一点.当点M,B,C,F构成菱形时,请直接写出点F的坐标.10.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,CA=4,将∠ABC对折,使点C 的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.(1)求过A,B,O三点的抛物线解析式;(2)若在线段AB上有一动点P,过点P作x轴的垂线,交抛物线于M,连接MB,MA,求△MAB的面积的最大值;(3)若点E在抛物线上,点F在对称轴上,且以O,A,E,F为顶点的四边形为平行四边形,求点E的坐标.11.如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P 的坐标;如果不存在,请说明理由.12.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC,若存在,请求出点M的坐标;若不存在,请说明理由.13.已知:抛物线y=ax2﹣3(a﹣1)x+2a﹣6(a>0).(1)求证:抛物线与x轴有两个交点.(2)设抛物线与x轴的两个交点的横坐标分别为x1,x2(其中x1>x2).若t是关于a的函数、且t=ax2﹣x1,求这个函数的表达式;(3)若a=1,将抛物线向上平移一个单位后与x轴交于点A、B.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP=1.M是线段AC上一动点,求2MB+MC的最小值.14.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.15.如图,已知直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+3经过B、C两点并与x轴的另一个交点为A,且OC=3OA.(1)求抛物线的解析式;(2)点R为直线BC上方对称轴右侧抛物线上一点,当△RBC的面积为时,求R点的坐标;(3)在(2)的条件下,连接CR,作RH⊥x轴于H,连接CH、AC,点P为线段CR上一点,点Q为线段CH上一点,满足QH=CP,过点P作PE∥AC交x轴于点E,连接EQ,当∠PEQ=45°时,求CP的长.16.综合与探究如图,在平面直角坐标系中,直线y=x﹣4分别与x轴,y轴交于点A和点C,抛物线y =ax2﹣3x+c经过A,C两点,并且与x轴交于另一点B.点D为第四象限抛物线上一动点(不与点A,C重合),过点D作DF⊥x轴,垂足为F,交直线AC于点E,连接BE.设点D的横坐标为m.(1)求抛物线的解析式;(2)当∠ECD=∠EDC时,求出此时m的值;(3)点D在运动的过程中,△EBF的周长是否存在最小值?若存在,求出此时m的值;若不存在,请说明理由.17.如图,抛物线y=ax2+bx+3经过点A(1,0),B(4,0).(1)求抛物线的表达式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形P AOC的周长最小?若存在,求出四边形P AOC的周长最小值;若不存在,请说明理由;(3)如图②,点Q是OB上的一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.18.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(﹣3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠P A′O=90◦.求点C的坐标.19.如图,在直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.20.如图,抛物线y=ax2+6x﹣5交x轴于A,B两点,交y轴于C点,点B的坐标为(5,0),直线y=x﹣5经过点B,C.(1)求抛物线的函数表达式;(2)点P是直线BC上方抛物线上的一动点,求△BCP面积S的最大值并求出此时点P 的坐标;(3)过点A的直线交直线BC于点M,连接AC当直线AM与直线BC的一个夹角等于∠ACB的3倍时,请直接写出点M的坐标.21.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式,并直接写出当x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.23.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),顶点为C.(1)求这条抛物线的表达式和顶点C的坐标;(2)点A关于抛物线对称轴的对应点为点D,联结OD、BD,求∠ODB的正切值;(3)将抛物线y=x2+bx+c向上平移t(t>0)个单位,使顶点C落在点E处,点B落在点F处,如果BE=BF,求t的值.24.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.25.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.26.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.27.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求顶点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系式,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.28.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案1.(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.2.解:(1)∵四边形ABCD为矩形,且B(1,0),C(3,0),D(3,4),∴A(1,4),设抛物线的解析式为y=a(x﹣1)2+4,将C(3,0)代入y=a(x﹣1)2+4,得0=4a+4,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)∵PE⊥x轴,DC⊥x轴,∴PE∥DC,∴△APN∽△ADC,∵PN分△ACD的面积为1:2的两部分,∴=或,当=时,==,∵AD=2,∴AP=,∴t的值为×2=;当=时,==,∵AD=2,∴AP=,∴t的值为×2=,综上所述,t的值为或;(3)如图2﹣1,当CN为菱形的对角线时,点P,N的横坐标均为,设直线AC的解析式为y=kx+b,将A(1,4),C(3,0)代入y=kx+b,得,解得,∴直线AC的表达式为y=﹣2x+6,将点N的横坐标代入y=﹣2x+6,得,即EN=4﹣t,由菱形CQNH可得,CQ=NH=t=CH,可得EH=(4﹣t)﹣t=4﹣2t,∵,∴,在Rt△CHE中,∵CE2+EH2=CH2,∴,解得,t1=,t2=4(舍);如图2﹣2,当CN为菱形的边时,由菱形CQHN可得,CQ=CN=t,在Rt△CNE中,∵NE2+CE2=CN2,∴(4﹣t)2+(2﹣t)2=t2,解得,t1=20﹣8,t2=20+8(舍);综上所述,t的值为或.3.解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,∴当m=3时,S△ACD有最大值,当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.4.解:(1)由抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;由y=﹣x2﹣2x+3=﹣(x+1)2+4,得,点D坐标为(﹣1,4);(2)在直线l上存在一点M,到点B的距离与到点C的距离之和最小,根据抛物线对称性MA=MB,∴MB+MC=MA+MC,∴使MB+MC的值最小的点M应为直线AC与对称轴l:x=﹣1的交点,当x=0时,y=3,∴C(0,3),设直线AC解析式为直线y=kx+b,把A(﹣3,0)、C(0,3)分别代入y=kx+b,得,,解得,,∴直线AC解析式为y=x+3,把x=﹣1代入y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)①PF=2FG,理由如下,设直线AD解析式为y=k'x+b',把A(﹣3,0)、D(﹣1,4)分别代入直线y=k'x+b',得,,解得,∴直线AD解析式为y=2x+6,则点F的坐标为(m,2m+6),同理G的坐标为(m,m+3),则FG=(2m+6)﹣(m+3)=m+3,FP=2m+6=2(m+3),∴FP=2FG;②根据题意得点E的坐标为(m,﹣m2﹣2m+3),设直线l与x轴交于点N,EF=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3=﹣(m+2)2+1∴S△AED=S△AEF+S△EFD==,∴当m为﹣2时,S△AED的最大值为1,如图,过点D作DH∥x轴,交y轴于点H,在△DHC中,∠DHC=180°﹣∠AOB=90°,,在Rt△AOC中,,在Rt△ADN中,,∵,∴DC2+AC2=AD2,∴∠ACD=90°,∴,∴,∴当m为﹣2时,四边形AEDC的面积最大,最大值为4.5.解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,∴S△AOB=OC•(y A﹣y B)=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,∵△POB为等腰三角形,∴①PO2=OB2时,+y2=8,解得,y=±,∴P1(﹣,﹣),P2(﹣,);②PB2=OB2时,+(y+2)2=8,解得,y=﹣2±,∴P3(﹣,﹣2﹣),P4(﹣,﹣2+);③PB2=OP2时,+(y+2)2=+y2,解得,y=﹣,∴P5(﹣,﹣);综上所述,点P的坐标为P1(﹣,﹣),P2(﹣,),P3(﹣,﹣2﹣),P4(﹣,﹣2+),P5(﹣,﹣);(3)设M(x,y),∵A(1,4),B(﹣2,﹣2),O(0,0),∴MO2=x2+y2,MA2=(x﹣1)2+(y﹣4)2,MB2=(x+2)2+(y+2)2,又∵MO=MA=MB,∴,解得,,∴M(﹣,),作B关于y轴的对称点B'(2,﹣2),连接B'M交y轴于Q,则此时MQ+BQ的值最小,理由是两点之间,线段最短,又∵MB的长度为定值,∴此时△BQM的周长最小,C△BQM=MB+MQ+BQ=MB+MB'==,∴M的坐标为(﹣,),△BQM周长的最小值为.6.解:(1)将点A(﹣1,0),B(4,0)代入y=x2+bx+c,得,,解得,,∴抛物线的解析式为y=x2﹣3x﹣4;(2)当k=﹣1时,直线AC的解析式为y=﹣x﹣1,设P(x,x2﹣3x﹣4),则E(x,﹣x﹣1),D(x,0),则PE=|x2﹣3x﹣4﹣(﹣x﹣1)|=|x2﹣2x﹣3|,DE=|x+1|,∵PE=2ED,∴|x2﹣2x﹣3|=2|x+1|,当x2﹣2x﹣3=2(x+1)时,解得,x1=﹣1(舍去),x2=5,∴P(5,6);当x2﹣2x﹣3=﹣2(x+1)时,解得,x1=﹣1(舍去),x2=1,∴P(1,﹣6);综上所述,点P的坐标为(5,6)或(1,﹣6);(3)存在,理由如下;∵∠AED=∠PEC,∴要使△ADE与△PCE相似,必有∠EPC=∠ADE=90°或∠ECP=∠ADE=90°,①当∠EPC=∠ADE=90°时,如图1,CP∥x轴,∵P(1,﹣6),根据对称性可得C(2,﹣6),将C(2,﹣6),代入直线AC解析式中,得2k+k=﹣6,解得,k=﹣2;②当∠ECP=∠ADE=90°时,如图2,过C点作CF⊥PD于点F,则有∠FCP=∠PEC=∠AED,则△PCF∽△AED,∴=,在直线y=kx+k上,当x=1时,y=2k,∴E(1,2k),∴DE=﹣2k,由,得或,∴C(k+4,k2+5k),∴F(1,k2+5k),∴CF=k+3,FP=k2+5k+6,∴=,解得,k1=k2=﹣1,k3=﹣3(此时C与P重合,舍去),综上,当k=﹣2或﹣1时,△ADE与△PCE相似.7.(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0),B(3,0)两点,∴,∴,∴抛物线解析式为;(2)如图1,过点A作AH∥y轴交BC于H,交BE于G,由(1),C(0,﹣2),将B(3,0),C(0,﹣2)代入y=kx+b,得,,解得,,∴直线BC的解析式为,∵H(1,y)在直线BC上,∴,∴,将点B(3,0),E(0,﹣1)代入y=kx+b,得,,解得,,∴直线BE的解析式为y=x﹣1,∴G(1,﹣),∴GH=,∵直线BE:y=x﹣1与抛物线y=﹣x2+x﹣2相交于F,B,∴F(,﹣),∴S△FHB=GH×(x B﹣x F)=××(3﹣)=;(3)如图2,由(1)y=﹣x2+x﹣2=﹣(x﹣2)2+,∴顶点D(2,),∵动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,∴设M(2,m),m>,∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m1=,m2=﹣(舍),∴M(2,),∴MD=﹣,∴,∴当时,∠OMB=90°.8.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得,,∴抛物线的解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得,k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得,x1=0(舍去),x2=1,∴P(1,4);(3)在y=﹣x2+2x+3中,对称轴为x=1,若m+1≤1,即m≤0时,当x=m+1时,函数有最大值m,∴﹣(m+1)2+2(m+1)+3=m,解得,m1=(舍去),m2=;若m<1<m+1,即0<m<1时,当x=1时,函数有最大值为m=4(舍);若m>1,当x=m时,函数有最大值为m,∴﹣m2+2m+3=m,解得,m1=(舍去),m2=,综上所述,m的值为或.9.解:(1)∵抛物线经过点A,B,它们的坐标分别为(﹣4,0)、(2,0),∴设其解析式为y=a(x+4)(x﹣2),将点C(0,﹣3)代入y=a(x+4)(x﹣2),解得,,∴抛物线的解析式为;(2)∵OA=4,OC=3,∠AOC=90°,∴AC==5,∵PD⊥AC,∠PDE=∠AOC=90°,又∵PE∥y轴,∴∠PED=∠ACO,∴△PDE∽△AOC,∴PD:AO=DE:OC=PE:AC,即PD:4=DE:3=PE:5,∴,∴△PDE的周长=,则要使△PDE周长最大,PE取最大值即可,设直线AC的解析式为y=kx﹣3,将点A(﹣4,0)代入y=kx﹣3,得,k=﹣,∴直线AC的解析式为,设点,则,∴当a=﹣2时,取得最PE大值,最大值为,则,∴P(﹣2,﹣3),△PDE周长的最大值为;(3)如右图,①当BM为对角线时,显然,点F在y轴上,根据对称性得到点F的坐标为(0,3);②当BM为边时,∵,则有以下几种情况:(I)BC为边时,BM=BC=,点M在x轴负半轴上时,点M是点B向左平移个单位长度得到的,∴M(2﹣,0),∴点C(0,﹣3)向左平移个单位长度得到点F;点M在x轴正半轴上时,点M是点B向平右移个单位长度得到的,∴M(2+,0),∴点C(0,﹣3)向右平移个单位长度得到点F;(II)BC为对角线时,设OM=x,在直角三角形OMC中,由勾股定理可得OM2+OC2=MC2,即x2+32=(x+2)2,解得,x=,∴菱形的边长为2+=,∴CF=,∴F(,﹣3),综上所述,点F的坐标为(0,3)或或或.10.解:(1)在Rt△ABC中,AB===5,由翻折知,△BCO≌△BHO,∴BH=BC=3,∴AH=AB﹣BH=2,∵∠HAO=∠CAB,∠OHA=∠BCA=90°,∴△AHO∽△ACB,∴=,即=,∴AO=,∴A(,0),B(﹣,3),∵抛物线经过原点O,∴可设抛物线的解析式为y=ax2+bx,将点A(,0),B(﹣,3)代入,得,解得,,∴过A,B,O三点的抛物线解析式为y=x2﹣x;(2)设直线AB的解析式为y=kx+b,将点A(,0),B(﹣,3)代入,得,解得∴直线AB的解析式为y=﹣x+,∴可设P(x,﹣x+),则M(x,x2﹣x),∴PM=﹣x+﹣(x2﹣x)=﹣x2+x+,∴S△MAB=PM(x A﹣x B)=(﹣x2+x+)×4=﹣x2+x+=﹣(x﹣)2+4,∴当x=时,△MAB的面积取最大值4;(3)在y=x2﹣x中,对称轴为x=,①如图3﹣1,当OA为平行四边形的一边时,OA平行且等于EF,∵OA=,∴EF=,∵x F=,∴x E=±=或﹣,当x E=或﹣,时y E=,∴点E的坐标为(,)或(﹣,);②如图3﹣2,当OA为平行四边形的对角线时,OA与EF互相平分,则点E在抛物线顶点处,∵当x=时,y=﹣,∴点E的坐标为(,﹣),综上所述,点E的坐标为(,)或(﹣,)或(,﹣).11.解:(1)∵AE∥x轴,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴点C(4,2),设二次函数解析式为y=ax2+bx+2,∵C(4,2)和D(3,0)在该函数图象上,∴,得,∴该抛物线的解析式为y=x2﹣x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x 轴于点M,交线段BC于点N.根据对称与最短路径原理,此时,四边形AMNE周长最小.易知A1(0,﹣2),E1(6,2).设直线A1E1的解析式为y=kx+b,,得,∴直线A1E1的解析式为.当y=0时,x=3,∴点M的坐标为(3,0).∴由勾股定理得AM=,ME1=,∴四边形EAMN周长的最小值为AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:过点F作EH的平行线,交抛物线于点P.易得直线OE的解析式为y=x,∵抛物线的解析式为y=x2﹣x+2=,∴抛物线的顶点F的坐标为(2,﹣),设直线FP的解析式为y=x+b,将点F代入,得,∴直线FP的解析式为.,解得或,∴点P的坐标为(,),FP=×(﹣2)=,,解得,或,∵点H是直线y=x与抛物线左侧的交点,∴点H的坐标为(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴点P不符合要求,∴不存在点P,使得四边形EHFP为平行四边形.12.解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),∴,得,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)点A关于对称轴的对称点是点B,连接CB与对称轴的交点为P,此时点P即为所求,设过点B(3,0),点C(0,3)的直线解析式为y=kx+m,,得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点P的坐标为(1,2),∵点A(﹣1,0),点C(0,3),点B(3,0),∴AC=,BC=3,∴△P AC的周长是:AC+CP+P A=AC+CB=,即点P的坐标为(1,2),△P AC的周长是;(3)存在点M(不与C点重合),使得S△P AM=S△P AC,∵S△P AM=S△P AC,∴当以P A为底边时,只要两个三角形等高即可,即点M和点C到P A的距离相等,当点M在点C的上方时,则CM∥P A时,点M和点C到P A的距离相等,设过点A(﹣1,0),点P(1,2)的直线l1解析式为:y=kx+m,,得,∴直线AP的解析式为y=x+1,∴直线CM的解析式为y=x+3,由得,,,∴点M的坐标为(1,4);当点M在点C的下方时,则点M所在的直线l2与AP平行,且直线l2与直线AP之间的距离与直线l1与直线AP 之间的距离相等,∴直线l2的的解析式为y=x﹣1,由得,,,∴M的坐标为(,)或(,);由上可得,点M的坐标为(1,4),(,)或(,).13.(1)证明:△=b2﹣4ac=[﹣3(a﹣1)]2﹣4a(2a﹣6)=a2+6a+9=(a+3)2,∵a>0,∴(a+3)2>0,∴抛物线与x轴有两个交点;(2)解:令y=0,则ax2﹣3(a﹣1)x+2a﹣6=0,∴或,∵a>0,∴且x1>x2,∴x1=2,,∴,∴t=a﹣5;(3)解:当a=1时,则y=x2﹣4,向上平移一个单位得y=x2﹣3,令y=0,则x2﹣3=0,得,∴,,∵OP=1,∴直线,联立:,解得,,,即,,∴AO=,在Rt△AOP中,AP==2,过C作CN⊥y轴,过M作MG⊥CN于G,过C作CH⊥x轴于H,∵CN∥x轴,∴∠GCM=∠P AO,又∵∠AOP=∠CGM=90°,∴△AOP∽△CGM,∴==,∴,∵B到CN最小距离为CH,∴MB+GM的最小值为CH的长度,∴2MB+MC的最小值为.14.解:(1)令x=0,得y=x﹣2=﹣2,则B(0,﹣2),令y=0,得0=x﹣2,解得x=4,则A(4,0),把A(4,0),B(0,﹣2)代入y=x2+bx+c(a≠0)中,得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;(2)∵PM∥y轴,∴∠ADC=90°,∵∠ACD=∠BCP,∴以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,存在两种情况:①当∠CBP=90°时,如图1,过P作PN⊥y轴于N,设P(x,x2﹣x﹣2),则C(x,x﹣2),∵∠ABO+∠PBN=∠ABO+∠OAB=90°,∴∠PBN=∠OAB,∵∠AOB=∠BNP=90°,∴△AOB∽△BNP,∴,即=,解得:x1=0(舍),x2=,∴P(,﹣5);②当∠CPB=90°时,如图2,则B和P是对称点,当y=﹣2时,x2﹣x﹣2=﹣2,∴x1=0(舍),x2=,∴P(,﹣2);综上,点P的坐标是(,﹣5)或(,﹣2);(3)∵OA=4,OB=2,∠AOB=90°,∴∠BOA≠45°,∴∠BQP≠2∠BOA,∴分两种情况:①当∠PBQ=2∠OAB时,如图3,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,∴OE=AE,∴∠OAB=∠AOE,∴∠OEB=2∠OAB=∠PBQ,∵OB∥PG,∴∠OBE=∠PHB,∴△BOE∽△HPB,∴,由勾股定理得:AB==2,∴BE=,∵GH∥OB,∴,即,∴BH=x,设P(x,x2﹣x﹣2),则H(x,x﹣2),∴PH=x﹣2﹣(x2﹣x﹣2)=﹣x2+4x,∴,解得:x1=0,x2=3,∴点P的横坐标是3;②当∠BPQ=2∠OAB时,如图4,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,过O作OF⊥AB于F,连接AP,则∠BPQ=∠OEF,设点P(t,t2﹣t﹣2),则H(t,t﹣2),∴PH=t﹣2﹣(t2﹣t﹣2)=﹣t2+4t,∵OB=2,OA=4,∴AB=2,∴OE=BE=AE=,OF===,∴EF===,S△ABP==,∴2PQ=4(﹣t2+4t),PQ=,∵∠OFE=∠PQB=90°,∴△PBQ∽△EOF,∴,即,∴BQ=,∵BQ2+PQ2=PB2,∴=,化简得,44t2﹣388t+803=0,即:(2t﹣11)(22t﹣73)=0,解得:t1=5.5(舍),t2=;综上,存在点P,使得△PBQ中有某个角的度数等于∠OAB度数的2倍时,其P点的横坐标为3或.15.解:(1)在直线y=﹣x+3中,当x=0时,y=3;当y=0时,x=4,∴C(0,3),B(4,0),∴OC=3,∵OC=3OA,∴OA=1,∴A(﹣1,0),把A(﹣1,0),B(4,0)代入y=ax2+bx+3,得,,解得,a=﹣,b=,∴抛物线的解析式为y=﹣x2+x+3;(2)如图1,连接RO,RC,RB,设R(t,﹣t2+t+3),则S△RBC=S△OCR+S△OBR﹣S△OBC=×3t+×4(﹣t2+t+3)﹣×3×4=﹣t2+6t,∵S△RBC=,∴﹣t2+6t=,解得,t1=1,t2=3,∵点R为直线BC上方对称轴右侧,∴R(3,3);(3)如图2﹣1,在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB 于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥QE,∴∠MAH=∠QEF,∵∠QFE=MHA=90°,∴△QEF∽△MAH,∴=,∴EF=2QF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=2m,∴EH=3m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴3m=4﹣m,∴m=1,∴CP=1;如图2﹣2,在RH上截取RM=OA,连接CM、AM,AM交PE于G,交QE于N,作QF ⊥OB于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°,∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB,∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴=,∴QF=2EF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴4﹣m=m,∴m=,∴CP=,综上所述,CP的长度为1或.16.解:(1)在y=x﹣4中,当x=0时,y=﹣4;当y=0时,x=4.∴A(4,0),C(0,﹣4)把A(4,0),C(0,﹣4)代入y=ax2﹣3x+c中,得,解得,∴抛物线的解析式是y=x2﹣3x﹣4.(2)如图1,过点E作EH⊥y轴,垂足为H.∵OA=OC=4,∴∠OAC=∠ACO=45°,∴∠HEC=∠HCE=45°.∵点D(m,m2﹣3m﹣4),E(m,m﹣4),∴EH=HC=m,ED=(m﹣4)﹣(m2﹣3m﹣4)=﹣m2+4m.∴,∴当∠ECD=∠EDC时,EC=ED.∴,解得m=0(舍去)或;(3)存在.∴点D为第四象限抛物线上一动点(不与点A,C重合),∴0<m<4,在抛物线y=x2﹣3x﹣4中,当y=0时,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,∴点B坐标为(﹣1,0).∵∠F AE=∠FEA=45°,∴EF=AF.设△BFE的周长为n,则n=BF+FE+BE=BF+AF+BE=AB+BE,∵AB的值不变,∴当BE最小,即BE⊥AC时,△BFE的周长最小.∵当BE⊥AC时,∠EBA=∠BAE=45°,∴BE=AE,∴BF=AF=2.5.∴m=4﹣2.5=1.5时,△BEF的周长最小.17.解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)、B(4,0),∴,解得,∴该抛物线的解析式:y=x+3;(2)∵抛物线y=ax2+bx+3经过点A(1,0),B(4,0),∴A、B关于对称轴对称,。
人教版九年级数学上册第二十二章《二次函数》培优训练题(含答案)一.选择题1.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.2.抛物线y=x2的图象向左平移3个单位,所得抛物线的解析式为()A.y=x2﹣3 B.y=(x﹣3)2C.y=x2+3 D.y=(x+3)23.对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点4.已知二次函数y=ax2﹣4ax+4,当x分别取x1、x2两个不同的值时,函数值相等,则当x取x1+x2时,y的值为()A.6 B.5 C.4 D.35.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m6.某商场降价销售一批名牌衬衫,已知所获利利y(元)与降价金额x(元)之间满足函数关系式y=﹣2x2+60x+800,则获利最多为()A.15元B.400元C.800元D.1250元7.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b8.已知二次函数y=mx2﹣3mx﹣4m(m≠0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C 且∠ACB=90°,则m的值为()A.±2 B.±4 C.±D.±9.抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论是()A.③④B.②④C.②③D.①④二.填空题 10.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为 . 11.若抛物线y =a (x ﹣h )2+k 经过(﹣1,0)和(5,0)两点,则关于x 的一元二次方程a (x +h ﹣2)2+k =0的解为 .12.抛物线经过原点O ,还经过A (2,m ),B (4,m ),若△AOB 的面积为4,则抛物线的解析式为 . 13.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 达到警戒水位时,水面CD 的宽是10m .如果水位以0.25m /h 的速度上涨,那么达到警戒水位后,再过 h 水位达到桥拱最高点O .14.如图,抛物线解析式为y =x 2,点A 1的坐标为(1,1),连接OA 1;过A 1作A 1B 1⊥OA 1,分别交y 轴、抛物线于点P 1、B 1;过B 1作B 1A 2⊥A 1B 1分别交y 轴、抛物线于点P 2、A 2;过A 2作A 2B 2⊥B 1A 2,分别交y 轴、抛物线于点P 3、B 2…;则点P n 的坐标是 .三.解答题16.已知抛物线G :y =mx 2﹣2mx ﹣3有最低点P .(1)求二次函数y =mx 2﹣2mx ﹣3的最小值(用含m 的式子表示);(2)若点P 关于坐标系原点O 的对称点仍然在抛物线上,求此时m 的值;(3)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围.17.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降2元,则每月可多销售10条,设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于4175元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?18.在平面直角坐标系中,抛物线y =mx 2﹣4mx +n (m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且S △ABC :S △BCE =3:4.(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上,①求直线CE 的解析式;②求抛物线的解析式.19.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为ts.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.20.某班“数学兴趣小组”对函数y=﹣x2+3|x|+4的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…﹣6 0 4 6 6 4 6 6 4 0 m…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)直线y=kx+b经过(,),若关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,则b的取值范围为.参考答案一.选择题1.解:由一次函数解析式为:y=kx+2可知,图象应该与y轴交在正半轴上,故A、B、C错误;D符合题意;故选:D.2.解:∵抛物线y=x2的图象向左平移3个单位,∴平移后的抛物线的顶点坐标为(﹣3,0),∴所得抛物线的解析式为y=(x+3)2.故选:D.3.解:A、顶点坐标是(2,1),说法正确;B、对称轴是直线x=2,故原题说法错误;C、开口向上,故原题说法错误;D、与x轴没有交点,故原题说法错误;故选:A.4.解:∵y=ax2﹣4ax+4=a(x﹣2)2﹣4a+4,当x分别取x1、x2两个不同的值时,函数值相等,∴x1+x2=4,∴当x取x1+x2时,y=a(4﹣2)2﹣4a+4=4,故选:C.5.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.6.解:对于抛物线y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵a=﹣2<0,∴x=15时,y有最大值,最大值为1250,故选:D.7.解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=﹣(x﹣a)(x﹣b)+1的图象与x轴交于点(m,0)、(n,0),∴将y=﹣(x﹣a)(x﹣b)+1的图象往下平移一个单位可得二次函数y=﹣(x﹣a)(x﹣b)的图象,二次函数y=﹣(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.8.解:设y=0,则=mx2﹣3mx﹣4m=0,解得:m=4或m=﹣1,∵点A在点B的左侧,∴OA=1,OB=4,设x=0,则y=﹣4m,∴OC=|﹣4m|,∵∠ACO+∠OCB=90°,∠CAO+∠ACO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,∴OC2=OA•OB,即16m2=4,解得:m=±,故选:C.9.解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,而抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a﹣b+c<0,所以②错误;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∵x=﹣1时,y=2,即a﹣b+c=2,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),即x=﹣1时,y有最大值2,∴抛物线与直线y=2只有一个公共点,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:A.二.填空题(共5小题)10.解:∵抛物线的顶点坐标为(2,9),∴抛物线的对称轴为直线x=2,∵抛物线在x轴截得的线段长为6,∴抛物线与x轴的交点为(﹣1,0),(5,0),设此抛物线的解析式为:y=a(x﹣2)2+9,代入(5,0)得,9a+9=0,解得a=﹣1,∴抛物线的表达式为y=﹣(x﹣2)2+9,故答案为y=﹣(x﹣2)2+9.11.解:将抛物线y=a(x﹣h)2+k关于y轴对称得新抛物线为y′=a(x+h)2+k,∵抛物线y=a(x﹣h)2+k经过(﹣1,0)和(5,0)两点,∴抛物线为y′=a(x+h)2+k与x轴的交点为(﹣5,0)和(1,0),将新抛物线y′=a(x+h)2+k向右平移2个单位得抛物线y″=a(x+h﹣2)2+k,其与x轴的两个交点为(﹣3,0)和(3,0),∴方程a(x+h﹣2)2+k=0的解为x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.12.解:∵抛物线经过A(2,m),B(4,m),∴对称轴是:x=3,AB=2,∵△AOB的面积为4,∴AB•|m|=4,m=±4,当m=4时,则A(2,4),B(4,4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,4)代入得:,解得:,∴抛物线的解析式为:y=﹣(x﹣3)2+,即y=﹣x2+3x;当m=﹣4时,则A(2,﹣4),B(4,﹣4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,﹣4)代入得:,解得:,∴抛物线的解析式为:y=(x﹣3)2﹣=x2﹣3x;综上所述,抛物线的解析式为:y=﹣x2+3x或y=x2﹣3x,故答案为y=﹣x2+3x或y=x2﹣3x.13.解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),由题意:,解得,∴y=﹣x2,当x=5时,y=﹣1,故t==4(h),答:再过4小时水位达到桥拱最高点O.故答案为:4.14.解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴P n(0,n2+n),故答案为(0,n2+n).三.解答题(共6小题)15.证明:(1)∵点E为CD中点,∴CE=DE.∵EF=BE,∴四边形DBCF是平行四边形.(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC.∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°.在Rt△FCG中,CF=6,∴,.∵DF=BC=4,∴DG=1.在Rt△DCG中,CD==216.解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3;(2)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,∴抛物线的顶点P为(1,﹣m﹣3),∴点P关于坐标系原点O的对称点(﹣1,m+3),∵对称点仍然在抛物线上,∴m+3=m+2m﹣3,解得m=3;(3)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1).17.解:(1)由题意可得:y=100+×10=100+5(80﹣x)=﹣5x+500,∴y与x的函数关系式为:y=﹣5x+500;(2)由题意得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500,∵a=﹣5<0,∴当x=70时,w有最大利润,最大利润是4500元;∴应降价80﹣70=10(元).∴当销售单价降低10元时,每月获得的利润最大,最大利润是4500元;(3)由题意得:﹣5(x﹣70)2+4500=4175+200,解得:x1=65,x2=75,∵抛物线开口向下,对称轴为直线x=70,∴当65≤x≤75时,符合该网店要求,而为了让顾客得到最大实惠,故x=65.∴当销售单价定为65元时,既符合网店要求,又能让顾客得到最大实惠.18.解:(1)如图,过点C作CF⊥AB于F,∵抛物线y=mx2﹣4mx+n(m>0),∴对称轴为直线x=2,∴AF=BF,点F(2,0),即OF=2,∵S△ABC :S△BCE=3:4,∴S△ABC =3S△ABE,∴3××AB×OE=AB×CF,∴CF=3OE,∵CF⊥AB,OE⊥AB,∴CF∥OE,∴,∴AF=3OA,∵OF=OA+AF=2,∴OA=,AF=,∴点A坐标为(,0),∵AB=2AF=3,∴OB=,∴点B坐标为(,0);(2)①∵抛物线y=mx2﹣4mx+n(m>0)过点A(,0),∴0=m﹣2m+n,∴n=m,∴y=mx2﹣4mx+n=m(x﹣2)2﹣m,∴点C(2,﹣m),如图2,过点C作CF⊥OB于F,CH⊥y轴于H,又∵∠FOH=90°,∴四边形OFCH是矩形,∴CF=OH=m,∵将△BCO绕点C逆时针旋转一定角度后,点B与点A重合,点O恰好落在y轴上,∴OC=O'C,OB=O'A=,又∵CH⊥OO',∴OO'=2OH=m,∵OA2+O'O2=O'A2,∴+m2=,∴m=,∴点C坐标为(2,﹣),设直线CE的解析式为y=kx+b,∴,解得:∴直线CE的解析式为y=﹣x+;②∵m=,∴y=x2﹣x+.19.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.20.解:(1)把x=5代入函数y=﹣x2+3|x|+4中,得y=﹣25+15+4=﹣6,∴m=﹣6,故答案为:﹣6;(2)连线得,(3)由函数图象可知①该函数的图象关于y轴对称:②该函数的图象有最高点:(答案不唯一)(4)∵直线y=kx+b经过(,),∴,∴k=∵关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,∴x2﹣3x﹣4+kx+b=0和方程x2+3x﹣4+kx+b=0各有两个不相等的实数根,即方程x2﹣(3﹣)x﹣4+b=和0x2+(3+)x﹣4+b=0各有两个不相等的实数根,∴,解得b≠,且b>或b<,∴b的取值范围为b>或b<.故答案为:b>或b<.。
九年级数学二次函数的专项培优 易错 难题练习题含答案解析一、二次函数1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =.【解析】 【分析】(1)先利用对称轴公式x=2a12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值. 【详解】 解:(1)∵2ax 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=. ∵2y ax ax 3=-+人最大值为4, ∴抛物线过点()1,4. 得a 2a 34-+=, 解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -. 易得直线CD 的方程为y x 3=+. 把()P t,0代入,得t 3=-. ∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-.∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=.当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点.所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=.()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图,在平面直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求以C 、E 、F 为顶点三角形与△COD 相似时点P 的坐标. 【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案. 【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OBOA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3;(2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2ba=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3).∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .3.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【解析】 【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论. (2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题. 【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40, 60﹣40=20元,答:这一星期中每件童装降价20元; (2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000 =﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800=﹣110(x﹣210)2+15210当x=210时,w有最大值.此时,x+200=410,就是说,当每个房间的定价为每天410元时,w有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.5.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=252m m--,S的最大值是25 8,此时动点M的坐标是(52,74);(3)点M在整个运动过程中用时最少是823秒.【解析】【分析】(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.【详解】(1)将x=0代入y=﹣3x+3,得y=3,∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3, ∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A ′H +A ′C ≥HC 3=,∴t ≥3,即点M 秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.6.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.7.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.8.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩== 解得1814a b ⎧⎪⎪⎨⎪-⎪⎩== ∴抛物线解析式为:y=18x 2−14x−1 ∴抛物线对称轴为直线x=-141228ba -=-⨯=1 (2)存在使四边形ACPO 的周长最小,只需PC+PO 最小∴取点C (0,-1)关于直线x=1的对称点C′(2,-1),连C′O 与直线x=1的交点即为P 点.设过点C′、O 直线解析式为:y=kx ∴k=-12∴y=-1 2 x则P点坐标为(1,-12)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC ∴ED=2a∴点D坐标为(0,-52a−1)∵N为DM中点∴点M坐标为(2a,32a−1)把M代入y=18x2−14x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.9.如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6. (1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.【答案】(1)-3;(2)坐标(-1,1);(3)Q ()4,1-. 【解析】 【分析】(1)利用抛物线解析式得到A 、B 、C 三点坐标,然后利用三角形面积公式列出方程解出a ;(2)利用第一问得到A 、B 、C 三点坐标,求出AC 解析式,找到AC 垂直平分线的解析式,与AB 垂直平分线解析式联立,解出x 、y 即为圆心坐标;(3)过点P 做PD ⊥x 轴,PD =d ,发现△ABP 与△QBP 的面积相等,得到A 、D 两点到PB 得距离相等,可得AQ PB ∥,求出PB 解析式,与二次函数解析式联立得到P 点坐标,又易证ABQ QPA ∆∆≌,得到BQ =AP 26Q 点坐标,点与点的距离列出方程,解出Q 点坐标即可 【详解】(1)解:由题意得()()1y x x a =--- 由图知:0a <所以A (,0a ),()10B ,,()0,C a - ()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()10B ,,()0,3C ∴直线AC 得解析式为:3y x =+AC 中点坐标为33,22⎛⎫-⎪⎝⎭ ∴AC 的垂直平分线为:y x =-又∵AB 的垂直平分线为:1x =- ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(-1,1). (3)解:过点P 做PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅=2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B ∴1y x =- ∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠ 易得:ABQ QPA ∆∆≌ ∴BQ =AP 26设Q (m ,-1)(0m <) ∴()221126m -+=4m =-∴Q ()4,1-.【点睛】本题考查二次函数综合性问题,涉及到一次函数、三角形外接圆圆心、全等三角形等知识点,第一问关键在于用a表示出A、B、C三点坐标;第二问关键在于找到AC垂直平分线的解析式,与AB垂直平分线解析式;第三问关键在于能够求出PB的解析式10.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.11.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.12.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=12x-2,则Q(m,-12m2+32m+2)、M(m,12m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ=,即214 132222mm m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2, 解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2;(2)由题意知点D 坐标为(0,-2), 设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,--12m 2+32m+2)、M (m ,12m-2),则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4,∵F (0,12)、D (0,-2),∴DF=52, ∵QM ∥DF ,∴当-12m 2+m+4=52时,四边形DMQF 是平行四边形, 解得:m=-1(舍)或m=3,即m=3时,四边形DMQF 是平行四边形; (3)如图所示:∵QM ∥DF ,∴∠ODB=∠QMB ,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB ∽△MBQ , 则21=42DO MB OB BQ ==, ∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ ,∴△MBQ ∽△BPQ , ∴BM BP BQ PQ =,即214 132222m m m -=-++, 解得:m 1=3、m 2=4,当m=4时,点P 、Q 、M 均与点B 重合,不能构成三角形,舍去,∴m=3,点Q 的坐标为(3,2);②当∠BQM=90°时,此时点Q 与点A 重合,△BOD ∽△BQM′,此时m=-1,点Q 的坐标为(-1,0);综上,点Q 的坐标为(3,2)或(-1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.13.综合与探究如图,抛物线y=211433x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q ,过点P 作PE ∥AC 交x 轴于点E ,交BC 于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.【答案】(1)C(0,﹣4);(2)Q点坐标为(522,522﹣4)或(1,﹣3);(3)当m=2时,QF有最大值.【解析】【分析】(1)解方程13x2−13x-4=0得A(-3,0),B(4,0),计算自变量为0时的二次函数值得C点坐标;(2)利用勾股定理计算出AC=5,利用待定系数法可求得直线BC的解析式为y=x-4,则可设Q(m,m-4)(0<m<4),讨论:当CQ=CA时,则m2+(m-4+4)2=52,当AQ=AC时,(m+3)2+(m-4)2=52;当QA=QC时,(m+3)2+(m-4)2=52,然后分别解方程求出m即可得到对应的Q点坐标;(3)过点F作FG⊥PQ于点G,如图,由△OBC为等腰直角三角形.可判断△FQG为等腰直角三角形,则FG=QG=22FQ,再证明△FGP~△AOC得到34FG PG,则22FQ,所以72FQ,于是得到32,设P(m,13m2-13m-4)(0<m<4),则Q(m,m-4),利用PQ=-13m2+43m得到FQ=327(-13m2+43m),然后利用二次函数的性质解决问题.【详解】(1)当y=0,13x2−13x-4=0,解得x1=-3,x2=4,∴A(-3,0),B(4,0),当x=0,y=13x2−13x-4=-4,∴C (0,-4);(2)AC=2234=5+, 易得直线BC 的解析式为y=x-4,设Q (m ,m-4)(0<m <4),当CQ=CA 时,m 2+(m-4+4)2=52,解得m 1=52,m 2=-52(舍去),此时Q 点坐标为(522,522-4); 当AQ=AC 时,(m+3)2+(m-4)2=52,解得m 1=1,m 2=0(舍去),此时Q 点坐标为(1,-3);当QA=QC 时,(m+3)2+(m-4)2=52,解得m=252(舍去), 综上所述,满足条件的Q 点坐标为(522,522-4)或(1,-3); (3)解:过点F 作FG ⊥PQ 于点G ,如图,则FG ∥x 轴.由B (4,0),C (0,-4)得△OBC 为等腰直角三角形∴∠OBC=∠QFG=45∴△FQG 为等腰直角三角形,∴FG=QG=22FQ , ∵PE ∥AC ,PG ∥CO ,∴∠FPG=∠ACO ,∵∠FGP=∠AOC=90°,∴△FGP ~△AOC .∴FG PG OA CO =,即34FG PG =, ∴PG=43FG=43•22FQ=223FQ , ∴PQ=PG+GQ=23FQ+22FQ=26FQ ,∴FQ=32PQ , 设P (m ,13m 2-13m-4)(0<m <4),则Q (m ,m-4), ∴PQ=m-4-(13m 2-13m-4)=-13m 2+43m , ∴FQ=32(-13m 2+43m )=-2(m-2)2+42 ∵-27<0, ∴QF 有最大值.∴当m=2时,QF 有最大值.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.14.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.(1)证明四边形ABCD 是菱形,并求点D 的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)详见解析(2)22y x 4x 85=-+ (3)详见解析【解析】【分析】(1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标:设P 22x,x 4x 85⎛⎫-+ ⎪⎝⎭, 当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32=+,二者联立可得P 1(529,48); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85=-+联立可得P 2(﹣5,38). 【详解】(1)证明:∵A (﹣6,0),B (4,0),C (0,8),∴AB=6+4=10,AC 10==.∴AB=AC .由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形.∴CD ∥AB .∵C (0,8),∴点D 的坐标是(10,8). (2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10a x 52a-=-=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b , ∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩. ∴直线BC 的解析式为y=﹣2x+8.∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2.∴M (5,,-2).又∵抛物线y=ax 2﹣10ax+c 经过点C 和M ,∴25a50a c2c8-+=-⎧⎨=⎩,解得2a5c8⎧=⎪⎨⎪=⎩.∴抛物线的函数表达式为22y x4x85=-+.(3)存在.点P的坐标为P1(529,48),P2(﹣5,38)15.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x+-,BD解析式为y=﹣2233x+;(2)t的值为4915129±、233.(3)N点坐标为(﹣2,﹣2),M点坐标为(﹣32,﹣54),213【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,。
一、二次函数 真题与模拟题分类汇编(难题易错题)1.(6分)(2015•牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长.注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长.试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE==.∵点F 是AE 中点,点H 是抛物线的对称轴与x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×=.∴线段FH 的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =.【解析】 【分析】(1)先利用对称轴公式x=2a12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值. 【详解】 解:(1)∵2ax 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=. ∵2y ax ax 3=-+人最大值为4, ∴抛物线过点()1,4. 得a 2a 34-+=, 解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -. 易得直线CD 的方程为y x 3=+. 把()P t,0代入,得t 3=-. ∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-.∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=.当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点.所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=.()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。
(2)点B的坐标为:(4,4)。
(3)存在;理由见解析;【解析】【分析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
【详解】解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,令x 2﹣3x=0,解得:x=0或3。
∴AO=3。
∵△AOB 的面积等于6,∴12AO•BD=6。
∴BD=4。
∵点B 在函数y=x 2﹣3x 的图象上,∴4=x 2﹣3x ,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4, ∴x 轴下方不存在B 点。
∴点B 的坐标为:(4,4)。
(3)存在。
∵点B 的坐标为:(4,4),∴∠BOD=45°,22BO 4442=+=。
若∠POB=90°,则∠POD=45°。
设P 点坐标为(x ,x 2﹣3x )。
∴2x x 3x =-。
若2x x 3x =-,解得x="4" 或x=0(舍去)。
此时不存在点P (与点B 重合)。
若()2x x 3x =--,解得x="2" 或x=0(舍去)。
当x=2时,x 2﹣3x=﹣2。
∴点P 的坐标为(2,﹣2)。
∴22OP 2222=+=。
∵∠POB=90°,∴△POB 的面积为:12PO•BO=12×42×22=8。
2.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.3.(2017南宁,第26题,10分)如图,已知抛物线29y ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(33 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的3,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =3x =33∴点A 30),B (330),∴抛物线的对称轴为x 3(2)∵OA 3OC =3,∴tan ∠CAO 3∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO 3=1,∴点D 的坐标为(0,1). 设点P 3a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 30). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 3,﹣4). 综上所述,点P 3034).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m +=,解得:m 3∴直线AC 的解析式为33y x =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =13k-+=31k k -.将33y x =+与y =kx +1联立解得:x =23k -,∴点M 的横坐标为23k -.过点M 作MG ⊥x 轴,垂足为G .则AG =233k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG =233k +-=2323k k --,∴11AM AN +=323231k k k -+-- =33232k k --=3(31)2(31)k k -- =3. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.4.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5 【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得: 4b+c-16=0,b+c-1="3" , 解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4). (2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ). 三角形POF 的面积为:1/2×4×|n|= 2|n|, 三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20, 所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0) 又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0) 故所求m 、n 的值分别为 5,-5.5.如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线对称轴DE 交x 轴于点E ,连接BD . (1)求经过A ,B ,C 三点的抛物线的函数表达式; (2)点P 是线段BD 上一点,当PE =PC 时,求点P 的坐标.【答案】(1)y =﹣x 2+2x +3;(2)点P 的坐标为(2,2). 【解析】 【分析】(1)利用待定系数法求出过A ,B ,C 三点的抛物线的函数表达式;(2)连接PC 、PE ,利用公式求出顶点D 的坐标,利用待定系数法求出直线BD 的解析式,设出点P 的坐标为(x ,﹣2x +6),利用勾股定理表示出PC 2和PE 2,根据题意列出方程,解方程求出x 的值,计算求出点P 的坐标. 【详解】解:(1)∵抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点, ∴10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴所求的抛物线的函数表达式为y =﹣x 2+2x +3; (2)如图,连接PC ,PE . 抛物线的对称轴为x =222(1)b a -=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则430 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2).【点睛】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.6.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.7.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y 4=的距离,若存在,求出定点F 的坐标;若不存在,请说明理由. 【答案】⑴2y x 2x 3=-++;⑵当12a =,S □MANB =2S △ABM =274,此时115M ,24⎛⎫ ⎪⎝⎭;⑶存在. 当15F 1,4⎛⎫⎪⎝⎭时,无论x 取任何实数,均有PG PF =. 理由见解析.【解析】 【分析】(1)利用待定系数法,将A ,B 的坐标代入y=ax 2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH ⊥x 轴于H ,交直线AB 于K ,求出直线AB 的解析式,设点M (a ,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20 443 a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,0 23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225(21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.8.(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x 轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1);(2)12;(3)t=或t=或t=14.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考点:二次函数综合题.9.已知抛物线21322y x x =--的图象如图所示: (1)将该抛物线向上平移2个单位,分别交x 轴于A 、B 两点,交y 轴于点C ,则平移后的解析式为 .(2)判断△ABC 的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P ,使得以A 、C 、P 为顶点的三角形是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =--+;(2)△ABC 是直角三角形;(3)存在,302,⎛⎫- ⎪⎝⎭、311222⎛-+ ⎝⎭,、311222⎛-- ⎝⎭,. 【解析】 【分析】(1)根据函数图象的平移规律,可得新的函数解析式;(2)根据自变量与函数值的对应关系,可得A ,B ,C 的坐标,根据勾股定理及逆定理,可得答案;(3)根据等腰三角形的定义,分三种情况,可得关于n 的方程,根据解方程,可得答案. 【详解】(1)将该抛物线向上平移2个单位,得:y 12=-x 232-x +2. 故答案为y 12=-x 232-x +2; (2)当y =0时,12-x 232-x +2=0,解得:x 1=﹣4,x 2=1,即B (﹣4,0),A (1,0). 当x =0时,y =2,即C (0,2).AB =1﹣(﹣4)=5,AB 2=25,AC 2=(1﹣0)2+(0﹣2)2=5,BC 2=(﹣4﹣0)2+(0﹣2)2=20.∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)y12=-x232-x+2的对称轴是x32=-,设P(32-,n),AP2=(132+)2+n2254=+n2,CP294=+(2﹣n)2,AC2=12+22=5.分三种情况讨论:①当AP=AC时,AP2=AC2,254+n2=5,方程无解;②当AP=CP时,AP2=CP2,254+n294=+(2﹣n)2,解得:n=0,即P1(32-,0);③当AC=CP时,AC2=CP2,94+(2﹣n)2=5,解得:n1=211+,n2=211-,P2(32-,2112+),P3(32-,2112-).综上所述:在抛物线对称轴上存在一点P,使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(32-,0),(32-,211+),(32-,211-).【点睛】本题考查了二次函数综合题.解(1)的关键是二次函数图象的平移,解(2)的关键是利用勾股定理及逆定理;解(3)的关键是利用等腰三角形的定义得出关于n的方程,要分类讨论,以防遗漏.10.如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为.(1)求抛物线的函数表达式及其顶点的坐标;(2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大;(3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图① 图②【答案】(1)抛物线的表达式为y=-x2-2x+3,顶点C坐标为(-1,4);(2)L=-4m2-12m=-4(m+)2+9;当m=-时,最大值L=9;(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).【解析】试题分析:(1)由直线经过A、B两点可求得这两点的坐标,然后代入二次函数解析式即可求出b、c的值,从而得到解析式,进而得到顶点的坐标;(2)由题意可表示出D、E的坐标,从而得到DE的长,由已知条件可得DE=EF,从而可表示出矩形DEFG的周长L,利用二次函数的性质可求得最大值;(3)分别以点A、点B为圆心,以AB长为半径画圆,圆与对称轴的交点即为所求的点.试题解析:(1)直线y=x+3与x轴相交于A(-3,0 ),与y轴相交于B(0,3)抛物线y=-x2+bx+c经过A(-3,0 ),B(0,3),所以,,∴,所以抛物线的表达式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,所以,顶点坐标为C(-1,4).(2)因为D在直线y=x+3上,∴D(m,m+3).因为E在抛物线上,∴E(m,-m2-2m+3).DE=-m2-2m+3-(m+3)=-m2-3m.由题意可知,AO=BO,∴∠DAP=∠ADP=∠EDF=∠EFD=45°,∴DE=EF.L=4DE=-4m2-12m.L=-4m2-12m=-4(m+)2+9.∵a=-4<0,∴二次函数有最大值当m=-时,最大值L=9.(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).考点:1、待定系数法;2、正方形的判定;3、二次函数的性质的应用;4、等腰三角形.。