纳米零价铁的制备及应用研究进展
- 格式:docx
- 大小:37.83 KB
- 文档页数:3
纳米级零价铁的制备及其用于污水处理的机理研究纳米级零价铁的制备及其用于污水处理的机理研究近年来,随着城市化进程的加快和工业发展的提速,水环境污染日益严重。
传统的水处理方法如沉淀、过滤和氧化等存在着效率低下、操作复杂以及处理成本高等问题,迫切需要寻找一种高效、经济、环境友好的水处理技术。
纳米级零价铁(nanoscale zero-valent iron,NZVI)因具有较大比表面积、高反应活性和强氧化能力,在水处理领域中备受关注。
本文将介绍纳米级零价铁的制备方法以及其在污水处理中的应用,并探讨其机理研究。
首先,纳米级零价铁的制备方法主要有物理法、化学法和生物法等。
其中物理法包括电弧放电法、溅射法等,化学法包括还原法、共沉淀法等,生物法则利用微生物的还原机制。
这些方法能够制备出不同形状(如颗粒、纤维和薄膜)和粒径的纳米级零价铁,以适应不同类型污水的处理需求。
其次,纳米级零价铁在污水处理中的应用主要表现在去除重金属和有机污染物方面。
纳米级零价铁通过还原机制,去除重金属离子,如铜、铅、铬等,并能将其还原为较难溶解的金属沉淀,从而实现重金属的去除。
同时,纳米级零价铁通过氧化还原反应、吸附、解氧和直接还原等方式,能够有效去除有机污染物,如苯系物质、氯代烷烃和农药等。
相比传统方法,纳米级零价铁具有高效、快速、无二次污染等优点。
进一步研究表明,纳米级零价铁在污水处理中的机理主要包括表面吸附、溶解和催化反应等过程。
首先,纳米级零价铁的大比表面积提供了更多的活性位点,使得其具有较强的吸附能力,能够吸附水中的污染物。
其次,随着纳米级零价铁的溶解,铁离子与水中的污染物发生反应,形成不溶的沉淀而被去除。
此外,纳米级零价铁还能催化水中的化学反应,如还原和氧化等,进一步降解有机污染物。
需要注意的是,纳米级零价铁在实际应用中还存在一些挑战。
首先,纳米级零价铁在制备过程中需要控制粒度和分散度,以保证高活性和稳定性。
其次,纳米级零价铁的使用量和工程应用需要进一步优化,以提高处理效果并减少成本。
纳米零价铁的制备方法一、引言纳米零价铁(Nanoscale Zero-Valent Iron,NZVI)具有高比表面积、强还原性和良好的可操作性等特点,因此在环境修复、废水处理、土壤修复等领域得到广泛应用。
本文将介绍几种常见的纳米零价铁制备方法,并详细讨论各种方法的优缺点。
二、化学沉淀法制备纳米零价铁2.1 原理化学沉淀法是利用沉淀反应形成纳米零价铁颗粒。
一般来说,Fe(II)或Fe(III)盐溶液与还原剂反应,生成Fe(0)沉淀颗粒。
2.2 制备过程1.配制Fe(II)或Fe(III)溶液;2.加入适量的还原剂;3.搅拌均匀,反应进行一段时间;4.过滤固体产物,并进行洗涤和干燥。
2.3 优缺点优点: - 制备简单,成本较低; - 可以制备出纳米级别的零价铁颗粒;缺点: - 产物易聚集,容易形成大颗粒团块; - 需要反应时间较长才能获得理想的颗粒尺寸; - 还原剂对环境有潜在的污染风险。
三、溶胶凝胶法制备纳米零价铁3.1 原理溶胶凝胶法通过溶胶的凝胶化过程,生成纳米零价铁颗粒。
3.2 制备过程1.选取合适的铁源和还原剂;2.将铁源溶于适当的溶剂中,并加入催化剂;3.调节pH值,促使凝胶的形成;4.凝胶干燥后进行焙烧。
3.3 优缺点优点: - 制备过程可控性好,可以调节合适的颗粒尺寸和形貌; - 产物颗粒分散性好,不易聚集;缺点: - 制备过程复杂,需要较长时间; - 成本较高。
四、电化学制备纳米零价铁4.1 原理电化学法利用电解的原理,在电极表面生成纳米零价铁颗粒。
4.2 制备过程1.准备合适的电极材料,如铁丝、铁片等;2.准备合适的电解质溶液,如氯化铁溶液;3.将电极浸入电解质溶液中,进行电解反应;4.控制电流密度和反应时间,获得纳米零价铁颗粒。
4.3 优缺点优点: - 制备过程简单,操作便捷; - 可以获得高纯度的纳米零价铁颗粒;缺点: - 需要特定的电极材料和电解质,成本较高; - 电解反应中需要消耗大量的能量。
2023年6月杨竞莹等:改性纳米零价铁材料制备的研究进展中,CMC 改性的nZVI 相较于淀粉改性的nZVI 具有更强的稳定性、更大的反应速率和活性;并且CMC 价格低廉、易获取、无毒害,可深入研究其与铁颗粒之间的作用机理,为工业化生产提供保障。
但表面包覆的方法很难在循环中保持可重复使用性和可分离性,仍需基于生产成本、功能及环境兼容性研发性能更加优异的新材料。
2 负载型nZVI负载型改性通过将nZVI 分散到具有孔隙结构的支撑载体上,为nZVI 提供更多的活性位点。
本身具有吸附性能的载体材料也可加速污染物跟nZVI 的反应,从而促进污染物的降解。
负载材料一般包括碳基材料、黏土矿物、膜材料等。
2.1 碳基材料负载型nZVI活性炭、生物炭、有序介孔碳、氧化石墨烯等碳基材料具有丰富的基团和较大的比表面积,常用作nZVI 的支撑材料[31],且厌氧系统中添加Fe-C 颗粒可减少酸性物质的积累,提高产甲烷菌的活性。
生物炭(BC )不仅为nZVI 的负载或微生物的黏附提供潜在的位点(图6),还可促进直接种间电子转移(DIET ),加速产甲烷菌对乙酸盐的转化,也可通过氢营养型产甲烷菌的作用促进甲烷的生成[32]。
Lim 等[33]发现添加松木屑生物炭负载的nZVI 可以缓解高负荷食物垃圾厌氧消化过程中挥发性脂肪酸和氨的抑制作用,甲烷产量比对照组提高105.55%。
石墨烯(GNS )是sp 2杂化的二维碳,具有比表面积大、机械强度高等特点,是一种很有前途的新型二维载体,可用于支撑金属纳米颗粒,有效抑制金属纳米颗粒的聚集[34]。
陈砚田等[35]利用还原氧化石墨烯负载零价铁可将废水中三硝基甲苯(TNT )处理到检出限0.1mg/L 以下,且处理后的杂化材料活性可通过煅烧恢复。
碳基材料作为nZVI 的载体不仅可以提高nZVI 的比表面积,减少其团聚,还可以加快电子传递效率(表5)。
但在合成Fe-C复合材料的过程中,铁图6 稻壳衍生生物炭负载nZVI 的SEM 图像[38]及负载改性效果图图5 胞外聚合物改性nZVI 的TEM 图像及元素扫描图像[29]··2979化工进展, 2023, 42(6)芯被大量腐蚀,其合成方法还有待提高。
纳米级零价铁的制备及其用于污水处理的机理研究纳米级零价铁的制备及其用于污水处理的机理研究摘要:纳米级零价铁是一种具有很高活性的材料,广泛应用于环境领域中的污水处理。
本文通过综述文献,探讨纳米级零价铁的制备方法,包括物理法制备和化学法制备,并对其用于污水处理的机理进行研究。
引言近年来,人们对环境污染和水资源保护的关注日益增加。
水污染对人类健康和生态系统造成的危害越来越大,因此寻找高效、低成本的水污染治理技术显得尤为重要。
纳米级零价铁因其独特的物化性质和较高的活性而成为一种广受关注的水处理剂。
本文将着重讨论纳米级零价铁的制备方法以及其用于污水处理的机理。
一、纳米级零价铁的制备方法目前,纳米级零价铁的制备方法主要有物理法制备和化学法制备两种。
1. 物理法制备物理法制备纳米级零价铁主要利用物理力学原理,包括溶剂热法、溶剂热还原法、气相法等。
其中,溶剂热法是一种较为常见的制备方法。
该方法通过在高温下,在有机溶剂中将适量的金属铁与还原剂反应,生成纳米级零价铁。
物理法制备的纳米级零价铁具有较高的比表面积和反应活性。
2. 化学法制备化学法制备纳米级零价铁包括还原法、酵素法、共沉淀法等多种方法。
其中,还原法是应用较为广泛的制备方法。
该方法采用还原剂将铁盐溶液中的金属铁还原成纳米级零价铁,得到具有较高活性的纳米材料。
二、纳米级零价铁在污水处理中的应用纳米级零价铁在污水处理中的应用主要涉及废水中重金属离子的去除和有机污染物的降解。
1. 重金属离子去除纳米级零价铁对废水中重金属离子的去除主要通过吸附和还原反应实现。
纳米级零价铁的高比表面积和丰富的可还原位点使其具有很强的吸附能力,可以有效去除废水中的重金属离子。
同时,纳米级零价铁与重金属离子发生还原反应,将溶解态的重金属离子还原为难溶态的金属沉淀,从而实现浊度的升高和重金属的去除。
2. 有机污染物降解纳米级零价铁对有机污染物的降解主要通过催化还原反应实现。
纳米级零价铁具有很高的还原能力,可将有机污染物还原为无害的物质。
纳米零价铁在污水处理中的应用及研究进展刘晓龙 张宏(西北民族大学 化工学院,甘 肃 兰州 730030)摘要:近年来纳米零价铁(nZVI)作为新型的去污材料,其比表面积大、还原性强、表面活性高、原料丰富易得,是目前研究的热点。
本文主要介绍了纳米零价铁的制备方法,同时针对纳米零价铁在实际应用中存在的易团聚和氧化等问题,总结了改进纳米零价铁活性的一系列的修饰方法,如表面改性、固体负载、纳米双金属等,以达到分散nZVI 的目的,使其能够均匀稳定的存在于水处理体系。
关键词:纳米零价铁;改性;污水纳米零价铁(nZVI)是指粒径处于纳米级别,并且小于100nm 的零价铁颗粒,主要通过含铁化合物还原所得到,其原料丰富、价格低廉,已逐渐取代传统意义上的修复材料,成为目前广泛研究的环境纳米材料之一。
另外,由于铁的电极电位E 0(Fe 2+/Fe)=-0.41V,具有很强的还原性,能够非常有效的还原污水中存在的无机物、有机物、重金属离子、染料和农药等污染物。
1997年,Wang 和Zhang [1]率先采用化学液相还原法合成了粒径大概在60nm 左右的nZVI,并将其用于有机氯化物的降解,成功开创了nZVI 在环境工程领域的先例。
此后,越来越多的国内外学者证实了nZVI 在环境领域确实有着极高的应用价值。
但是,由于nZVI 本身比较容易被氧化,会在其表面形成一层钝化层使得反应效率降低,另外,nZVI 由于自身具有磁性,容易发生团聚,导致表面活性降低。
因此,对于nZVI 的改性(如表面修饰和与其他处理技术相结合)已经成为今后广大学者研究的热点之一。
1 nZVI的制备目前,最常见的纳米零价铁的制备方法主要是化学液相还原法。
该方法是在液相环境下通过强还原剂硼氢化物(如NaBH 4、KBH 4等)将Fe 2+、Fe 3+还原成零价铁,从而制得nZVI 颗粒[2]。
该方法操作简单,反应条件温和,制得的纳米零价铁颗粒粒径大概在60~80nm 之间,且纯度较高,但是容易在水洗的过程中被氧化。
纳米零价铁(NZVI)制备技术一、拟开发关键技术简介纳米零价铁具有优良的表面吸附和化学反应活性,可通过还原、沉淀、吸附和絮凝等作用处理含铬废水和其他有毒重金属废水。
另外,基于纳米零价铁的高级Fenton氧化反应对于络合态重金属,特别是化学镍,具有很好的破络预处理功能,不仅可以大大提高反应效率,而且降低了药剂成本,减少了污泥产生量及其后续的处理处置费用。
但是,由于纳米零价铁的活性较高,其表面易氧化,使反应性降低,并且纳米零价铁颗粒会快速团聚为微粒尺度甚至更大的颗粒,导致反应活性和流动性降低。
因此,通过不同的修饰方法制备高效、廉价、性能稳定的纳米零价铁,解决纳米零价铁易失活易团聚的问题是开发基于纳米零价铁高效破络预处理技术的关键。
二、终极目标1、纳米零价铁的制备方法简单、成本低、性能高效稳定。
2、纳米零价铁制备出来后不易失活。
不易团聚。
三、文献资料1、《活性炭纳米零价铁复合吸附剂的制备及对砷的去除应用》:为了大批量低成本地制备纳米零价铁,采用电化学还原法在粒状活性炭表面电沉积纳米零价铁。
通过电沉积法,在活性炭上直接电沉积纳米零价铁40分钟,可制备铁含量为5.3%的活性炭/纳米零价铁复合吸附剂,电流效率达79%。
纳米零价铁具有粒径小,比表面积大,反应活性高,能有效去除多种重金属和难降解有机污染物,在环境工程领域有着巨大的应用潜力。
纳米零价铁主要是用NaBH4还原铁离子的溶液,原位还原生成纳米零价铁胶体颗粒。
该方法虽然较简便,但成本很高,反应过程产生大量氢气副产物,产物储存运输不便,仅适用于实验室少量制备这些问题限制了纳米零价铁的大规模工程应用另外,纳米零价铁在使用过程中,可能进入环境水体,和吸附的污染物一起进入生物体内,产生生物毒性,威胁生态环境安全。
本文尝试运用电沉积方法在活性炭颗粒表面沉积纳米零价铁,以降低纳米零价铁的制备成本,同时将纳米零价铁负载在活性炭颗粒表面,方便其工程应用,同时,利用铁碳腐蚀原电池提高纳米零价铁去除污染物的性能。
纳米零价铁去除水中重金属离子的研究进展纳米零价铁去除水中重金属离子的研究进展摘要:水污染是影响人类健康和生态环境的重要问题之一。
重金属离子是常见的水污染物之一,其具有毒性和蓄积性,对人体和生态系统造成潜在危害。
纳米零价铁(nZVI)因其卓越的还原性能和高效的去除能力,成为一种重要的去除重金属离子的材料。
本文综述了纳米零价铁在去除水中重金属离子方面的研究进展,包括合成方法、去除机理、影响因素以及应用前景。
1. 引言水是维持生命和支持人类社会发展的基本资源,但随着工业化和城市化的快速发展,水污染问题日益严重。
重金属离子是水污染中的重要成分,常见的包括铅、铬、镉、汞等。
这些重金属离子在水体中经过生物积累,会对人体健康和生态系统造成潜在危害,因此寻找一种高效可行的去除方法变得迫切。
2. 纳米零价铁的合成方法纳米零价铁是一种由纳米级铁粒子组成的材料,其具有很高的比表面积和活性。
目前,常见的合成方法包括还原法、凝胶法、气相法等。
还原法将铁盐与还原剂反应生成纳米零价铁,可通过调控反应条件(温度、pH值等)和添加助剂来控制纳米零价铁的尺寸和形貌。
3. 纳米零价铁的去除机理纳米零价铁能够与重金属离子发生还原反应,将其转化为可沉淀的金属颗粒或生成难溶的金属化合物,从而实现重金属离子的去除。
此外,纳米零价铁还具有表面吸附能力,可以通过静电作用或络合反应吸附重金属离子。
4. 影响因素纳米零价铁去除重金属离子的效果受多种因素影响,如纳米零价铁的粒径、溶液pH值、溶液温度、重金属离子浓度等。
这些因素的改变会影响重金属离子与纳米零价铁的接触面积、还原速率和吸附能力,从而影响去除效果。
5. 应用前景纳米零价铁作为一种高效的去除重金属离子的材料,具有广阔的应用前景。
目前,纳米零价铁已被广泛应用于地下水、饮用水和废水处理领域。
未来,随着合成方法和性能的不断改进,纳米零价铁在水污染治理中的应用前景将更加广阔。
6. 结论纳米零价铁是一种有效去除水中重金属离子的材料,具有良好的应用前景。
以文献计量法分析我国纳米零价铁材料研究进展纳米零价铁材料是一种具有广泛应用前景的功能性材料,近年来在环境污染治理和土壤修复等领域引起了广泛关注和研究。
本文通过文献计量法对我国纳米零价铁材料的研究进展进行分析。
我们通过检索相关学术文献,发现我国纳米零价铁材料的研究从2000年开始逐渐增加,并在2010年后迅速增长。
研究热点主要集中在纳米零价铁的制备方法、表征技术和应用研究等方面。
常见的制备方法包括还原法、溶剂热法、微乳液法等,表征技术主要包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)和X射线衍射(XRD)等。
应用研究主要涉及到污染物降解、土壤重金属修复和废水处理等领域。
从我国纳米零价铁材料的研究机构来看,中国科学院、清华大学、浙江大学等高校和科研机构是该领域的主要研究机构。
通过合作发表的论文数量和引用次数可以看出,这些机构在纳米零价铁材料研究中具有较高的影响力。
一些环境科学与工程、化学工程和材料科学与工程等专业领域的学者也对该领域的研究做出了重要贡献。
在研究主题方面,纳米零价铁材料的制备方法和性能研究是目前的研究热点。
采用新型的制备方法(如溶剂热法和微乳液法)制备具有特定形貌和结构的纳米零价铁颗粒,能够提高其去除污染物的效率。
纳米零价铁材料与多组分体系中的相互作用研究也备受关注。
研究纳米零价铁与纳米炭、纳米二氧化硅等材料的复合体系,可以提高材料的稳定性和性能。
通过文献计量法的分析,我们发现我国纳米零价铁材料的研究进展较为活跃,广泛开展在环境污染治理和土壤修复等领域,但仍存在一些问题和挑战。
纳米零价铁材料的长期稳定性和环境风险评估等问题需要进一步研究。
纳米零价铁材料的大规模生产和应用也面临着技术和经济上的挑战。
今后需要加强跨学科合作,进一步挖掘纳米零价铁材料的潜力,并解决实际应用中的问题,推动该领域的快速发展。
纳米零价铁的应用研究进展摘要:纳米零价铁结合了零价铁还原性强和纳米材料比表面积大的特点,可以通过不同机制降解各类环境污染物。
本文介绍了纳米零价铁在今后的研究重点和方向进行分析和展望。
关键词:纳米零价铁;重金属;污染物去除纳米零价铁可通过还原氧化、吸附沉淀等反应降解各类污染物,包括无机污染物(重金属、无机阴离子等)和有机污染物(卤代有机化合物、有机染料等),广泛应用于水处理和土壤修复方面。
1去除有毒重金属重金属主要包括汞、铬、铅、砷等难以被生物降解但却具有显著毒性的金属元素。
它们在水环境中的具有高度溶解性,有毒重金属可被活生物体吸收,一旦进入食物链,最终会进入人体并在器官中累积,如果摄入的有毒重金属超过允许的浓度,则可能导致严重的健康失调。
因此,有必要在将金属污染的废水排放到环境中之前对其进行处理。
Du等[1]引入人工腐殖酸(AHA)与nZVI协同作用,Pb2+与AHA-nZVI样品之间发生还原、络合和共沉淀反应,去除率高达99.2%。
当Hg2+,Cu2+,Cr3+等金属的E0远高于Fe的时,则还原作用为主导。
Akram等[2用生物炭基铁纳米复合材料(nZVI-BC)来去除水样中的砷,其去除机理主要包括表面特定的静电作用、氢键作用和氧化还原反应,其中氧化还原反应使剧毒As(III)转化为As(0)和As(V),As(III)和As(V)的最佳去除率分别为99.1%和96.1%。
2去除有机卤代物有机卤代物是水体环境中广泛存在的污染物之一,具有较强毒性和致癌性,并难以被生物所降解,等够长时间、长距离的迁移,在动植物身体和环境介质中均能检出,对环境危害较大。
与重金属不同的是,有机污染物可以改变官能团结构,使危害较大的污染物转换为危害较小的污染物。
氯代有机物在去除时,Ou等[3]发现加入短链有机酸(SCOAs)可以在酸性条件下促进nZVI降解五氯苯酚(PCP)。
草酸(OA)可以与PCP脱氯过程中产生的亚铁离子强烈地络合,并减少沉淀在nZVI表面的亚铁(氢)氧化物的形成。
纳米零价铁的制备及应用研究进展
谢青青;姚楠
【期刊名称】《化工进展》
【年(卷),期】2017(036)006
【摘要】Nanoscale zero-valent iron catalytic materials have advantages of low cost,high reaction activity,high specific surface area and excellent adsorption properties. The excellent performances of these materials in various environmental pollutants(e.g. heavy metals,inorganic
anions,radioactive elements,halogenated organic
compounds,nitroaromatic compounds and endocrine-disrupting chemicals)remediation through different degradation mechanisms have made them be regarded as a new type of material that having broad application prospect. In this review,the typical preparation
methods,including physical method,chemical liquid phase reduction method,thermal decomposition method,carbothermal synthesis and polyol process,and novel green synthesis technology,of nanoscale zero-valent iron are introduced in detail. Moreover,the applications as well as the reaction mechanism and efficiency of nanoscale zero-valent iron in environmental pollution treatment and catalysis are summarized. In addition,some unresolved scientific problems including the oxidation and the agglomeration of nanoscale zero-valent iron are mentioned. It also suggests that the future research should be focused on the improvement
or development of new synthetic method to reduce the cost and to extend the application field of the nanoscale zero-valent iron materials.%纳米零价铁催化材料具有价格低廉、比表面积大、还原性强、吸附性和反应活性优异等优点,可通过不同机制降解各类环境污染物(如重金属、无机阴离子、放射性元素、卤代有机化合物、硝基芳香化合物、环境内分泌干扰物等),被视为一种有着广阔应用前景的新材料,是目前国内外研究的热点.本文详细介绍了纳米零价铁的典型制备方法(如物理法、化学液相还原法、热分解法、碳热法、多元醇法等)和新型绿色合成技术,同时总结了纳米零价铁在环境污染物处理和催化方面的最新应用进展,阐述了纳米零价铁在各类反应中的作用机理和效能,并提出了纳米零价铁催化材料在实际应用中尚需解决的团聚和氧化等问题,未来的研究目标应着重于改进或开发新制备方法以降低成本和拓宽纳米零价铁催化材料的应用范围.
【总页数】7页(P2208-2214)
【作者】谢青青;姚楠
【作者单位】浙江工业大学化学工程学院,工业催化研究所,绿色化学合成技术国家重点实验室培育基地,浙江杭州 310032;浙江工业大学化学工程学院,工业催化研究所,绿色化学合成技术国家重点实验室培育基地,浙江杭州 310032
【正文语种】中文
【中图分类】TB39
【相关文献】
1.纳米零价铁优化体系及其在环境中的应用研究进展 [J], 秦小凤;曹嘉真;汪小莉;张贤明;吕晓书
2.纳米零价铁的优化技术及应用研究进展 [J], 张瑞敏;朱保华;甘露
3.异化铁还原菌强化纳米零价铁在环境修复中的应用研究进展 [J], 马黎颖;和明敏;陈绍华
4.纳米零价铁的制备及应用研究进展 [J], 严子春;吴大冰;王峥嵘
5.纳米零价铁的制备、改性及在有机物污染中的应用研究进展 [J], 贺强强;杨洪;孙笑笑;张亚涛;邓立凡
因版权原因,仅展示原文概要,查看原文内容请购买。