相关分析和一元线性回归分析SPSS报告
- 格式:doc
- 大小:586.00 KB
- 文档页数:14
相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。
本文将介绍如何使用SPSS进行相关分析和回归分析。
相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。
在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“相关”子菜单。
3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。
4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。
5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。
回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。
在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“回归”子菜单。
3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。
4.选择回归模型的方法(如线性回归、多项式回归等)。
5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。
6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。
在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。
回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。
值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。
例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。
总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。
通过上述步骤,用户可以轻松地完成数据分析和结果呈现。
然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。
实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。
一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。
二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。
(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。
以分析变量X对于变量Y的影响程度。
三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。
2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。
四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。
用下面的数据做相关分析和一元线性回归分析:
选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。
一、相关分析
1.作散点图
普通高等学校毕业生数和高等学校发表科技论文数量的相关图
从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。
2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系
数
把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:
Correlations
普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)
普通高等学校毕业生数(万人)Pearson Correlation1.998**
Sig. (2-tailed).000
N1414
高等学校发表科技论文数量(篇)Pearson Correlation.998**1 Sig. (2-tailed).000
N1414
**. Correlation is significant at the 0.01 level (2-tailed).
两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。
3.求两变量之间的相关性
选择相关系数中的全部,点击确定:
Correlations
(万人)(篇)
Kendall's tau_b(万人)Correlation Coefficient 1.000 1.000**
Sig. (2-tailed)..
N1414
(篇)Correlation Coefficient 1.000** 1.000
Sig. (2-tailed)..
N1414
Spearman's rho(万人)Correlation Coefficient 1.000 1.000**
Sig. (2-tailed)..
N1414
(篇)Correlation Coefficient 1.000** 1.000
Sig. (2-tailed)..
N1414
**. Correlation is significant at the 0.01 level (2-tailed).
注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。
两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。
4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数
将所求变量移至变量,将控制变量移至控制中,选中显示实际显著性水平,点击确定:
Correlations
普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)
注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p值0,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。
二、一元线性回归
从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。
1.建立回归方程
Variables Entered/Removed b
Model Variables
Entered
Variables
Removed Method
1(篇)a.Enter
a. All requested variables entered.
b. Dependent Variable: (万人)
此图显示的是回归分析方法引入变量的方式。
Model Summary
Model R R Square Adjusted R
Square
Std. Error of the
Estimate
1.998a.996.99611.707
a. Predictors: (Constant), (篇)
此图是回归方程的拟合优度检验。
注解:上图是回归方程的拟合优度检验。
第二列:两变量(被解释变量和解释变量)的相关系数R=0.998.
第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数=0.996是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合优度越高,被解释变量可以被模型解释的部分越
多。
第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数=0.996。
这主要适用于多个解释变量的时候。
第五列:回归方程的估计标准误差=11.707.
ANOVA b
Model Sum of Squares df Mean Square F Sig.
1Regression448318.6641448318.6643271.335.000a Residual1644.53512137.045
Total449963.19913
a. Predictors: (Constant), (篇)
b. Dependent Variable: (万人)
第二列:被解释变量(毕业人数)的总离差平方和=449963.199,被分解为两部分:回归平方和=448318.664;剩余平方和=1644.535.
F检验统计量的值=3271.335,对应概率的P值=0.000,小于显著性水平0.05,应拒绝回归方程显著性检验的原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线
Coefficients a
Model Unstandardized Coefficients
Standardized
Coefficients
t Sig.
B Std. Error Beta
1(Constant)-316.25914.029-22.543.000 (篇).001.000.99857.196.000 a. Dependent Variable: (万人)
注解:回归方程的回归系数和常数项的估计值,以及回归系数的显著性检验。
第二列:常数项估计值=-316.259;回归系数估计值=0.001.
第三列:回归系数的标准误差=0.000
第四列:标准化回归系数=0.998.
第五、六列:回归系数T检验的t统计量值=57.196,对应的概率P 值=0.000,小于显著性水平0.05,拒绝原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的。
于是,回归方程为:
=-316.259+0.001x
2.回归方程的进一步分析
(1)在统计量中选中误差条图的表征,水平百分之95.
点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:
选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵和单侧检验概率值:
Descriptive Statistics
Mean Std. Deviation N
(万人)465.92186.04414
(篇)932780.57221459.01914
Correlations
(万人)(篇)
Pearson Correlation(万人) 1.000.998
(篇).998 1.000
Sig. (1-tailed)(万人)..000
(篇).000.
N(万人)1414
(篇)1414
(2)残差分析
选中统计量中的个案诊断,所有个案,点击继续,然后确定:
Residuals Statistics a
Minimum Maximum Mean Std. Deviation N Predicted Value137.72707.16465.92185.70414 Std. Predicted Value-1.767 1.299.000 1.00014
3.153 6.536
4.320.99514 Standard Error of Predicted
Value
Adjusted Predicted Value139.53713.78466.40185.62014 Residual-26.27619.112.00011.24714 Std. Residual-2.245 1.633.000.96114 Stud. Residual-2.511 1.696-.018 1.04814 Deleted Residual-32.89620.618-.47313.40314 Stud. Deleted Residual-3.491 1.862-.073 1.25914 Mahal. Distance.015 3.123.929.89014 Cook's Distance.000.795.100.20514 Centered Leverage Value.001.240.071.06814 a. Dependent Variable: (万人)
从上表可以看出,第8例的残差和标准化残差最大。