七年级数学一元一次方程解决问题练习与答案
- 格式:docx
- 大小:25.95 KB
- 文档页数:3
第14讲 用一元一次方程解决问题课程标准学习目标①引导学生学会分析实际问题中的数量关系,将其转化为一元一次方程.②培养学生运用一元一次方程解决实际问题的能力,包括设未知数、列方程、解方程、检验答案等步骤.③让学生体会方程思想在解决实际问题中的重要性,感受数学与生活的紧密联系.1.掌握用一元一次方程解决问题的基本方法和步骤.2.能够准确找出实际问题中的等量关系,建立一元一次方程模型并求解.3.培养学生解决实际问题的兴趣和信心,提高应用数学的意识.知识点一、用一元一次方程解决实际问题的一般步骤1.审:审清题意(注意关键词),找出题中的等量关系,理清题中的已知量与未知量;2.设:设未知数,并用含未知数的代数式表示其他未知量;①设直接未知数:一般情况下,题中问什么就设什么;②设间接未知数:特殊情况下,设直接未知数难以列出方程时,可设另一个相关的量为未知数;③设辅助未知数:在某些问题中,为了便于列方程,可以设辅助未知数.3.列:根据题中相等关系,列出一元一次方程;4.解:解所列出的一元一次方程;5.验:检验所得的解是不是所列方程的解、是否符合实际意义(这一步可在草稿纸上完成);6.答:写出答案,包括单位.知识点二、常见列方程解决问题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一、同地不同时出发:前者走的路程=追者走的路程;第二、同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.5.利润问题(1)利润利润率=100%进价´(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损,打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1 127.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.题型01比例分配问题1.甲、乙、丙三位同学向灾区捐款.已知他们捐款金额之比为7:5:8,且共捐款200元,则甲同学所捐款金额为元.2.甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,使三个瓶中水量的比为3:2:1,那么乙瓶需倒出水升.3.超市原有某品牌纯牛奶和酸牛奶共80箱,其数量之比为9:7,现新进一批纯牛奶和酸牛奶,箱数之比为2:5,将新进牛奶分别放置于超市A,B两个空置区域(A区域放纯牛奶,B 区域放酸牛奶),在搬运过程中工作人员不小心将2箱酸牛奶放到了A区域,结果导致A,B 两区域的牛奶箱数之比为3:7,求目前超市中纯牛奶、酸牛奶各有多少箱.4.甲、乙两个瓶子里共有药片260片,如果将甲瓶药片的18装入乙瓶里,那么这时两瓶里药片的片数之比为76:.原来两个瓶子里分别有多少片药片?题型02 配套问题5.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x 名工人生产螺母,由题意可知下面所列的方程正确的是( )A .212002000(22)x x ´=-B .21200(22)2000x x ´-=C .220001200(22)x x ´=-D .22000(22)1200x x´-=6.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?7.某车间有60个工人,生产甲,乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型03 调配问题8.在甲处工作的有132人,在乙处工作的有108人,如要使乙处工作的人数是甲处工作人数的12,应从乙处调多少人到甲处?若设应从乙处调x 人到甲处,则下列方程中正确的是( )A .()11321082x x +=-B .()11321082x x -=-C .11321082x x ´+=-D .()11321082x x +=-9.在植树节活动中,A 班有30人,B 班有21人,现从B 班调一部分人去A 班,使A 班人数为B 班人数的2倍,那么应从B 班调出 人.10.受连日暴雨影响,某地甲、乙两个村庄突发泥石流灾害,急需从市中心东、西两个储备仓库调运救灾物资,已知两个储备仓库均有救灾物资15吨,其中A 村需要18吨,B 村需要12吨,从东仓库运往A 、B 两村的运费分别为60元/吨和20元/吨,从西仓库运往A 、B 两村的运费分别为40元/吨和30元/吨.(1)若从东仓库运往A 村10吨,则从西仓库运往B 村的物资为 吨;(2)设从东仓库调运x 吨救灾物资去A 村,完成表格中的填空;运往A 村的物资/吨运往B 村的物资/吨东仓库x西仓库(3)调运结束后结算时发现,支付给东、西两个仓库的运费相差220元.求从东仓库运往A 村物资是多少吨?题型04 环形跑道问题11.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是( )米/分.A .120B .160C .180D .20012.已知甲沿周长为300米的环形跑道按逆时针方向跑步,速度为a 米/秒,与此同时在甲后面100米的乙也沿该环形跑道按逆时针方向跑步,速度为3米/秒.(1)若a =1,求甲、乙两人第一次相遇所用的时间;(2)若a >3,甲、乙两人第一次相遇所用的时间为80秒,试求a 的值.13.学校运动场环形跑道周长400m ,李老师的跑步速度是小明的35,他们从同一起点沿跑道的同一方向出发,5分钟后小明第一次与李老师相遇.求:(1)小明和李老师跑步的速度各是多少?(2)如果李老师与小明第一次相遇后立即转身沿相反方向跑,那么再过几分钟后小明第二次与李老师相遇?题型05 航行问题14.某轮船在静水中的速度为20km /h ,水流速度为4km /h ,该船从甲码头顺流航行到乙码头,再返回甲码头,共用时5h (不计停留时间),设甲、乙两码头之间的距离为km x ,则可列方程为()A .2045x x +=B . (204)(204)5x x ++-=C .5204x x +=D . 5204204x x +=+-15.轮船往返A B 、两港之间,逆水航行需要3小时,顺水航行需要2小时,水流速度为3千米/时,则船在静水中的速度是 千米/时.16.甲、乙两船分别从A ,B 码头同时出发相向而行,两船在静水中的速度都是km/h a ,水流速度是km/h b .已知甲船从A 码头到B 码头顺流而行,用了2h ;乙船从B 码头到A 码头逆流而行,用了2.5小时.(1)A ,B 两码头相距______km ;(用含有a ,b 的式子表示)(2)1.5h 后甲船比乙船多航行多少千米?(用含有b 的式子表示)(3)若两船相距50km ,且5b =时,甲船行驶的时间是多少小时?题型06 火车过桥问题17.已知某铁路桥长1500米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是60秒.则这列火车长为( )A .100mB .200mC .300mD .400m18.一列匀速前进的火车,从它进入320m 长的隧道到完全通过隧道需要18s ,隧道顶部一盏固定的灯在火车上照了10s ,则这列火车的长为 m .19.我县境内的某段铁路桥长2200m ,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s ,整列高铁在桥上的时间是25s ,试求此列高铁的车速和车长.题型07 销售问题20.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x 元,列出如下方程:0.8200.610x x -=+.小明同学列此方程的依据是( )A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变21.某种商品的进价为100元,出售标价为150元,由于该商品积压,商店准备打折销售,为保证获得20%利润率,则要打 折.22.某商场购进了A 、B 两种商品,其中A 种商品每件的进价比B 种商品每件的进价多20元,购进A 种商品3件与购进B 种商品4件的进价相同.(1)求A 、B 两种商品每件的进价分别是多少元?(2)该商场购进了A 、B 两种商品共100件,所用资金为6900元,出售时,A 种商品按标价出售每件的利润率为25%,B 种商品按标价出售每件可获利15元.若按标价出售A 、B 两种商品,则全部售完商场共可获利多少元?(3)在(2)的条件下,A 商品按标价全部出售,B 商品按标价先出售一部分后,余下的再按标价九折出售,A ,B 两种商品全部售出,总获利比全部按标价售出获利少了150元,则B 商品按标价售出多少件?题型08 银行利率问题23.2016年,王先生到银行存了一笔三年期的定期存款,年利率是2.75%,若到期后取出,得到本息和(本金+利息)为33852元.若设王先生存入的本金为x 元,则下面所列方程正确的是( )A .3 2.75%33825x x +´=B . 2.75%33825x x ´+=C .3 2.75%33825x ´=D .()3 2.75%33825x x +=24.李先生到银行存了一笔三年期的定期存款,年利率是4.25%,到期后取出得到本息和(本金+利息)共33825元,设王先生存入的本金为x 元,则所列方程为 .25.小明的爸爸于2021年1月1号在银行存入了2年期的定期储蓄1万元,2022年年底到期后,按如图所示的程序,小明爸爸取出的本息和(本金与利息的和)为1.05万元,该银行2年期定期储蓄的年利率是 .(结果用百分数表示)26.越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.第一次第二次第三次手续费/元0 1.8 1.2(1)小新使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小新这两次提现分别需支付手续费多少元?(2)小管使用微信至今,用自己的微信账户共提现三次,若小管第三次提现金额恰好等于前两次提现金额的差,提现手续费如表,求小管第一次提现的金额.题型09 比赛积分问题27.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A .2B .3C .4D .528.在2022年女足亚洲杯决赛中,中国女足以3:2逆转韩国女足,时隔16年再夺亚洲杯冠军!某学校掀起一股足球热,举行了班级联赛,九(1)班开局11场保持不败,共积25分,按照比赛规则,胜一场积3分,平一场积1分,负一场积0分,求该班获胜的场数.题型10 数字问题29.小王编了一道数学谜题:42233´-=W W ,若等号左、右两边的“W ”内表示同一个数字,若设这个数字为x ,则所列方程是( )A .4223103x x ´-=+B .()4223103x x +-=+C .()420233x x +-=D .()42023103x x +-=+30.一个两位数,个位上的数字为3,交换这个两位数个位和十位的数字后,得到新的两位数比原来的两位数小45,则这个两位数是 .31.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是 .题型11 规律问题32.如图,将正整数1至1000按一定规律排列,整体平移表中带阴影的三个方框,平移后被方框遮住的三个数的和可能是( )A .1002B .1004C .1006D .100833.有一列数,按一定的规律排列成:1-,3,9-,27,81-,….若其中某三个相邻数的和是567-,则这三个数中第一个数是 .34.将连续的奇数1、3、5、7…排成如图所示的数阵:(1)如图,十字框中五个数的和与框正中心的数17有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于295吗?若能,请写出这五个数;若不能,请说明理由.题型12分段计费问题35.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x公里,应付给司机21元,则x=.36.大润发和通用两家超市相同商品的标价相同,在2024新年即将到来之际,两大超市分别推出如下促销活动:大润发超市:全场均按八五折优惠;通用超市:购物不超过200元,不给予优惠;超过了200元而不超过500元一律打八八折;超过500元时,其中的500元优惠12%,超过500元的部分打八折;(1)当购物总额是多少时,大润发、通用两家超市实际付款相同?(2)某顾客在通用超市购物实际付款490元,试问该顾客的选择划算吗?试说明理由.37.已知甲地到乙地的单程汽车票价为75元/人,春运期间,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打六折;非学生10人以下(含10人)没有优惠:团购:超过10人,其中10人按原价售票,超出部分每张票打八折.(1)若有8名学生乘客买票,则总票款为______元;(2)若20名非学生乘客采用团购方式买票,则总票款为______元;(3)一辆汽车共有50名乘客,其中非学生乘客若达到团购人数则按团购方式买票,已知该车乘客总票款为3000元,问:车上有学生乘客、非学生乘客各多少人?38.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过40立方米时,按2元/立方米计费;月用水量超过40立方米时,其中的40立方米仍按2元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x 不超过40时,应收水费为 (用x 的代数式表示);当x 超过40时,应收水费为 (用x 的代数式表示化简后的结果);(2)小明家四月份用水26立方米,五月份用水52立方米,请帮小明计算一下他家这两个月一共应交多少元水费?(3)小明家六月份交水费150元,请帮小明计算一下他家这个月用水量多少立方米?39.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=40.《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x 人,根据题意,可列方程为( )A .54573x x -=+B .54573x x +=-C .54573x x -=-D .54573x x +=+41.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x 天完成,则符合题意的方程是( )A .222214530x -+=B .222213045x ++=C .222214530x ++=D .2213045x x -+=42.如图,在两个完全相同的大长方形中各放入五个完全一样的白色小长方形,得到图(1)与图(2).若AB m =,则图(1)与图(2)阴影部分周长的差是( )A.m B.54m C.65m D.76m43.如图,沿着边长为90米的正方形,按A B C D A®®®®××××××方向,甲从A以63米/分的速度,乙从B以72米/分的速度同时行走,当乙第一次追上甲时是在正方形的某个顶点处,则这个顶点是()A.顶点A B.顶点B C.顶点C D.顶点D44.在数轴上,点A、点B 表示的数分别是8-,16.点P 以2个单位/秒的速度从A 出发沿数轴向右运动,同时点Q 以3个单位/秒的速度从点B 出发沿数轴在B、A之间往返运动.当点P 到达点B 时,点Q 表示的数是.45.如下表,乐乐将7-,5-,3-,1-,1,3,5,7,9分别填入九宫格内.使每行、每列、每条对角线上的三个数之和相等,现在a、b、c、d分别标上其中的一个数,则a b c d-+-的值为.a95-3-1bd c346.一个奇怪的动物庄园里住着猫和狗,狗比猫多180只,有15的狗错认为自己是猫;有15的猫错认为自己是狗.在所有的猫和狗中,有825认为自己是猫,那么狗有只.47.如图所示“L”形图形的面积为29cm,如果4cmb=,那么a=cm.48.轮船沿江从A港顺流行驶到B港,比从B港原路返回A港少用1小时,若船自身速度为20千米/小时,水速为2千米/时,则A港和B港相距千米.a=,49.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,10+=,080a bab<.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.t>时电子蚂蚁P表示的数是______,Q表示的数是______(用含t的式子表①运动t秒()0示);②设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?50.为了丰富学生的课余生活、拓展学生的视野,学校小卖部准备购进甲、乙两类中学生书刊.若购买400本甲和300本乙共需要6400元.其中甲、乙两类书刊的进价和售价如下表:甲乙m-进价(元/本)m2售价(元/本)2013(1)求甲、乙两类书刊的进价各是多少元?(2)第一次小卖部购进的甲、乙两类书刊共800本,全部售完后总利润(利润=售价-进价)为5750元,求小卖部甲、乙两类书刊分别购进多少本?(3)第二次小卖部购进了与上次一样多的甲、乙两类书刊,由于两类书刊进价都比上次优惠了10%,小卖部准备对甲书刊进行打折出售,让利于学生,乙书刊价格不变,全部售完后总利润比上次还多赚10元,求甲书刊打了几折?51.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?52.7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在哥哥和妹妹的年龄各是多少岁?53.为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.1.70【分析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐款7x 元,则乙捐款5x 元,丙捐款为8x 元,根据他们共捐款200元列出方程,求解即可.【详解】解:设甲捐款7x 元,则乙捐款5x 元,丙捐款为8x 元,根据题意得758200x x x ++=,解得10x =,所以甲捐款770x =元,答:甲捐款70元.故答案为:70.2.3升或513【分析】根据题意和题目中的数据,可以计算出最后三个瓶中水的升数,再根据题意可以确定最少的为甲瓶中的水,然后分两种情况,列出相应的方程,再求解即可.【详解】解:(10+4)÷(3+2+1)=14÷6=73(升),则最后三个瓶中的水分别为:73=73´(升),722=433´(升),771=33´(升),∵甲、乙两瓶中分别有水4升和10升,现要从这两瓶中各倒一些水到空的丙瓶中,∴最后甲瓶中一定有水73升,则乙瓶中有水7升或243升,设乙瓶倒出水x 升,则10﹣x =7或10﹣x =243,解得x =3或1=53x ,即乙瓶需倒出水3升或153升,故答案为:3升或153.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程,注意要分类讨论,不要漏解.3.目前超市中纯牛奶、酸牛奶各有85箱,135箱【分析】此题考查了一元一次方程的应用,设新进的纯牛奶为2x 箱,酸牛奶为5x 箱,A ,B 两区域的牛奶箱数之比为3:7,据此列出比例式,得到方程并解方程,进一步即可求出答案.【详解】解:设新进的纯牛奶为2x 箱,酸牛奶为5x 箱,则根据题意可得:(22):(52)3:7x x +-=,则7(22)3(52)x x +=-解得20x =.目前纯牛奶有9220808597´+´=+(箱)目前酸牛奶有57520801397´+´=+(箱)答:目前超市中纯牛奶、酸牛奶各有85箱,135箱.4.原来两个瓶子里分别有160和100片药片.【分析】本题考查比例和百分比,先计算出最后药片的分数,根据总药品的数量求出每份的数量,从而计算出最后甲瓶中药片的数量,根据导入得比例即可求出甲瓶原有的数量,即可求得答案.【详解】解:两瓶里药片的片数之比为76:,说明甲是7份,乙是6份,甲乙一共6713+=份,一共有260片药,一共13分,∴每份药为2601320¸=片,∴最后甲瓶子有720140´=片,∴甲原来的药片数量为:71401608¸=片,∴乙瓶子原来有260160100-=片.答:甲瓶原来有160片药片,乙瓶原来有100片药片.5.B【分析】题目已经设出分配x 名工人生产螺母,则(22-x )人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【详解】解:设分配x 名工人生产螺母,则(22-x )人生产螺钉,由题意得2000x=2×1200(22-x ),故B 答案正确,故选:B .【点睛】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.生产大齿轮20人,生产小齿轮48人【分析】设生产大齿轮的人数为x 人,则生产小齿轮的人数为(68x -) 人,再由2个大齿轮与3个小齿轮配成一套列出比例式,求出x 的值即可.【详解】设生产大齿轮的人数为x 人,则生产小齿轮的人数为(68x -) 人,因为平均每人每天可加工大齿轮16个或小齿轮10个,所以x 人生产大齿轮的个数为16x 个,(68x -)人生产小齿轮的个数为10×()68x -个又两个大齿轮与三个小齿轮酿成一套,可得:3162x ´=´10×()68x -,解得:20x =,68682048x -=-=(人),答:生产大齿轮的人数为20人,生产小齿轮的人数为48人.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【分析】本题考查一元一次方程的应用和理解题意的能力.设应分配x 人生产甲种零件,则()60x -人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.【详解】解:设分配x 人生产甲种零件,则共生产甲零件24x 个和乙零件()1260x -,依题意得方程:()22412603x x =×-,解得15x =,601545-=(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.8.D【分析】用含x 的式子表示出调动后甲处和乙处的人数,再根据等量关系列方程即可.【详解】解:设应从乙处调x 人到甲处,则甲处现有的工作人数为()132x +人,乙处现有的。
【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。
初一数学一元一次方程应用题复习练习及答案列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率 ,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为: 。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?甲处乙处原有人数2718现有人数27+18-相等关系2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析 设应调往甲处人,题目中涉及的有关数量及其关系可以用下表表示:甲处乙处原有人数2718增加人数20-现有人数27+18+20-等量关系+23某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。
【典型例题】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。
二、比赛计分问题【典型例题】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了多少道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
一元一次方程的应用题(利润问题)1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?12.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为元;(2)定价的85%出售时销售单价是元,出售8件该产品所能获得的利润是元;(3)按定价每件减价35元出售时销售单价是元,出售12件该产品所获利润是元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?一元一次方程应用题(利润问题)参考答案1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.考点:二元一次不定方程的应用;一元一次方程的应用。
一元一次方程的应用练习题运用一元一次方程解决实际问题一元一次方程是初中数学中的一种基本的代数方程,它可以用来解决很多实际问题。
在本文中,我们将通过一些具体的练习题来展示一元一次方程的应用,并探讨如何使用它来解决实际问题。
问题一:小明和小红一起去超市购物,他们共花费了45元。
如果小明付了35元,那么小红付了多少元?解答:设小红付的钱数为x元。
根据题意,可以得到一元一次方程35 + x = 45。
我们可以通过解这个方程来找到小红付的钱数。
解方程35 + x = 45得到 x = 45 - 35,化简得到x = 10。
所以小红付了10元。
问题二:甲乙两个工人同时开始修建一段公路,甲工人每天能完成2km,乙工人每天能完成3km。
如果他们共同修建了8天,公路的总长度是多少?解答:设公路的总长度为x km。
根据题意,可以得到一元一次方程2x + 3x = 8,表示甲乙两人修建公路的总长度等于8。
解方程2x + 3x = 8得到5x = 8,化简得到x = 8 / 5。
所以公路的总长度为8 / 5 km。
问题三:苹果店正在举行促销活动,每个顾客购买3个苹果可以享受9折优惠,小明购买了n个苹果,他付了18元,请问n的值是多少?解答:设小明购买的苹果数量为n个。
根据题意,可以得到一元一次方程3n * 0.9 = 18,表示小明购买苹果付的钱数等于18。
解方程3n * 0.9 = 18得到2.7n = 18,化简得到n = 18 / 2.7。
所以n的值是18 / 2.7。
以上是几个应用一元一次方程解决实际问题的例子。
通过解题过程可以看出,在遇到具体问题时,我们可以设定一个未知数,并通过一元一次方程来建立数学模型,进而解决问题。
一元一次方程在实际生活中的应用非常广泛,通过掌握这种解题方法,我们可以更好地理解和应用数学知识。
值得注意的是,在解题过程中,我们需要始终保持逻辑的严谨性,并确认我们所得出的解是否符合实际情况。
初一数学上册:一元一次方程解决应用题【利润问题】知识点关键点:进价,售价,标价,利润,利润率,折扣单件利润=标价-进价;销售总额=售价×销售数量;成本=进价×购买数量;总利润=销售总额-成本;利润=成本价×利润率;定价=成本价+利润;售价=定价×折扣。
专项练习【例一】某名牌西装进价是1000元,标价是1500元,某商场要以利润率不低于5%的价格销售,问售货员可以打几折出售此商品?解:设售货员可打x折出售此商品,根据题意得:(1500·x/10-1000)/1000=5%解之得:x=7答:打7折出售该商品。
【例二】某商品的进价是250元,按标价的9折销售时,利润率为15.2%,商品的标价是多少?解:设商品的标价是x元,根据题意得:(90%x-250)/250=15.2%解之得:x=320答:商品的标价是320元【例三】脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?解:设此商品利润率为x%,根据题意得:(12000-10000)/10000=x%解之得:x=20答:此商品的利润率为20%。
【例四】商场对某一商品作调价,按原价的8折出售,此时商品的利润率是10%,已知商品标价为1375元,求进价。
解这一题如果还要套用"利润率=(商品售价-商品进价)/商品进价",那么方程的分母上就会出现未知数,变成分式方程,为避免出现这种情况,我们可以把关系式改为"利润率×商品进价=商品售价-商品进价"。
解:设进价为x元,根据题意得:10%x=1375×80%-x解之得:x=1000答:商品进价1000元。
【例五】一商场将每台VCD先按进价提高40%标出销售价,然后再以八五折优惠价出售,结果还赚了228元,那么每台VCD进价多少元?本题只能利用"商品利润=商品售价-商品进价"这一关系式,利润为228元,售价为进价,提高40%后以八五折出售,即(1+40%)·85%x。
一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
苏科版七年级数学上册《4.3用一元一次方程解决问题》专项练习题-带答案学校:___________班级:___________姓名:___________考号:___________基础过关全练知识点1用一元一次方程解决问题的步骤1.【教材变式·P115T10】某景区的门票分为两种:A种门票60元/张,B 种门票12元/张.某旅行社为一个旅行团代购部分门票,若旅行社购买A,B两种门票共15张,总费用为516元,求旅行社为这个旅行团代购A 种门票和B种门票各多少张.2.【新情境·志愿者服务】【新独家原创】某大学的志愿者负责冬奥会某馆的对外联络和文化展示服务工作,负责对外联络服务工作的有17人,负责文化展示服务工作的有10人,现在另调20人去两服务处支援,使得在对外联络服务工作的人数比在文化展示服务工作的人数的2倍多5,问:应调往对外联络、文化展示两服务处各多少人?知识点2 用一元一次方程解决实际问题3.(2022江苏宿迁沭阳月考)某小组的m 个人计划做n 个中国结,如果每人做6个,那么比计划多做9个,如果每人做4个,那么比计划少做7个.有下列四个等式:①6m +9=4m -7;②6m -9=4m +7;③n+96=n−74;④n−96=n+74,其中正确的是( )A.①②B.②④C.②③D.③④4.一个两位数,个位上的数字比十位上的数字的2倍多1,如果个位上的数字与十位上的数字交换位置,得到一个新的两位数,新的两位数比原来两位数的2倍少1,则原两位数为 .5.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.每件衬衫降价多少元时,销售完这批衬衫正好达到盈利40%的预期目标?6.【主题教育·爱国主义教育】(2023江苏苏州相城期末)某中学组织部分师生去北京展览馆参观“奋进新时代”主题成就展.若单租45座客车若干辆,则全部坐满;若单租60座的客车,则少租一辆,且余15个座位.求该校前去参观的师生总人数.能力提升全练7.【主题教育·生命安全与健康】(2022贵州铜仁中考,7,★★☆)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为()A.14B.15C.16D.178.(2022四川乐山中考,15,★★☆)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形” ABCD的周长为26,则正方形d的边长为.9.(2021陕西中考,19,★★☆)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件标价降低30元销售11件的销售额相等.求这种服装每件的标价.10.(2020山西中考,17,★★☆)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.11.(2022江苏苏州期末,24,★★★)如图,已知点A、B、C是数轴上三点,O 为原点.点C对应的数为6,A、B两点对应的数分别为a、b,且满足(a+10)2+|b-2|=0.(1)求a、b的值;(2)动点P、Q分别同时从A、C出发,以每秒6个单位和3个单位的速CQ,设度沿数轴正方向运动,M为AP的中点,N在线段CQ上,且CN=13运动时间为t秒(t>0).①求点M、N对应的数(用含t的式子表示);②当t为何值时,OM=2BN?素养探究全练12.【运算能力】已知数轴上点A,B表示的数分别为-1,3,动点P表示的数为x.(1)若点P到A,B的距离和为6,求出x的值;(2)是否存在点P,使得PA-PB=3?若存在,求出x的值;若不存在,说明理由;(3)若点M,N分别从点A,B同时出发,沿数轴正方向分别以3个单位长度/秒,2个单位长度/秒的速度运动,多长时间后,M、N两点相距1个单位长度?答案全解全析基础过关全练1.解析设旅行社为这个旅行团代购A种门票x张,则代购B种门票(15-x)张,依题意得60x+12(15-x)=516,解得x=7,则15-x=8.答:旅行社为这个旅行团代购A种门票7张,B种门票8张.2.解析设调往对外联络服务处x人,则调往文化展示服务处(20-x)人依题意得17+x-2[10+(20-x)]=5,解得x=16∴20-x=20-16=4.答:调往对外联络服务处16人,调往文化展示服务处4人.3.C某小组m个人计划做n个中国结,根据中国结的个数一定,如果每人做6个,那么比计划多做9个,如果每人做4个,那么比计划少做7个,则可列方程为6m-9=4m+7,故②正确,①错误;根据某小组的人数一定,则可列方程n+96=n−74,故③正确,④错误.4.37解析设原两位数的十位上的数字为x,则个位上的数字为2x+1.根据题意,得2(10x+2x+1)-1=10(2x+1)+x,解这个方程,得x=3,所以2x+1=7.故原来的两位数为37.5.解析设每件衬衫降价x元时,销售完这批衬衫正好达到盈利40%的预期目标.根据题意,得120×400+(120-x)×(500-400)-80×500=80×500×40%解这个方程,得x=40.答:每件衬衫降价40元时,销售完这批衬衫正好达到盈利40%的预期目标.6.解析设单租45座客车x辆,则该校前去参观的师生总人数为45x 根据题意得45x=60(x-1)-15解得x=5∴45x=45×5=225.答:该校前去参观的师生总人数为225.能力提升全练7.B设小红答对的个数为x,由题意得5x-(20-x)=70,解得x=15.即小红答对的个数为15.8.5解析设正方形b的边长为x,则正方形a的边长为2x,正方形c的边长为3x,正方形d的边长为5x,依题意得(3x+5x+5x)×2=26,解得x=1,所以5x=5×1=5,即正方形d的边长为5.9.解析设这种服装每件的标价是x元根据题意,得10×0.8x=11(x-30),解得x=110.答:这种服装每件的标价为110元.10.解析设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元根据题意,得80%×(1+50%)x-128=568,解得x=580.答:该电饭煲的进价为580元.11.解析(1)∵(a+10)2+|b-2|=0∴a+10=0,b-2=0,∴a=-10,b=2.(2)①∵动点P 、Q 分别同时从A 、C 出发,以每秒6个单位和3个单位的速度运动,运动时间为t 秒∴AP=6t,CQ=3t∵M 为AP 的中点,N 在线段CQ 上,且CN=13CQ ∴AM=12AP=3t,CN=13CQ=t ∵点A 表示的数是-10,点C 表示的数是6∴M 表示的数是-10+3t,N 表示的数是6+t.②∵OM=|-10+3t|,BN=BC+CN=6-2+t=4+t,OM=2BN∴|-10+3t|=2(4+t)=8+2t当点M 在点O 右侧时,OM=-10+3t由-10+3t=8+2t,得t=18当点M 在点O 左侧时,OM=-(-10+3t)由-(-10+3t)=8+2t,得t=25 故当t=18或t=25时,OM=2BN. 素养探究全练12.解析 (1)当点P 在点A 的左侧时,PA=-1-x,PB=3-x则-1-x+3-x=6,解得x=-2;当点P 在点B 的右侧时,PA=x+1,PB=x-3则x+1+x-3=6,解得x=4.综上所述,当点P 到A,B 的距离和为6时,x=-2或4.(2)存在.∵AB=3-(-1)=4∴当PA-PB=3时,点P在线段AB上∴PA=x+1,PB=3-x由题意得(x+1)-(3-x)=3解得x=2.5.(3)设出发t秒后,M,N两点相距1个单位长度.由题意得,点M的坐标为3t-1,点N的坐标为2t+3当点M在点N的左侧时,(2t+3)-(3t-1)=1解得t=3;当点M在点N的右侧时,(3t-1)-(2t+3)=1解得t=5.综上所述,出发3秒或5秒后,M,N两点相距1个单位长度.。
人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案一、解答题1.列方程解应用题甲乙两车分别从相距605km 的A 、B 两地出发,甲车的速度为60km/h ,乙车的速度为50km/h ,两车同时出发,相向而行.求经过多少小时两车相遇后相距55km ?2.如图,某小区矩形绿地的长宽分别为35m 15m ,.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽;3.如图,已知A B ,为数轴上的两个点,点A 表示的数是30-,点B 表示的数是10.(1)写出线段AB 的中点C 对应的数;(2)若点D 在数轴上,且30BD =,写出点D 对应的数;(3)若一只蚂蚁从点A 出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B 出发,在数轴上每秒向右前进1个单位长度,它们在点E 处相遇,求点E 对应的数.4.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?5.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?6.每年农历五月初五是中国民间的传统节日——端午节.今年端午节,某地甲、乙两家超市为吸引更多的顾客,开展促销活动,对某种质量和售价相同的粽子分别推出了不同的优惠方案,甲超市的方案是:购买该种粽子超过80元后,超出80元的部分按九折收费;乙超市的方案是:购买该种粽子超过120元后,超出120元的部分按八折收费.请根据顾客购买粽子的金额,帮顾客判断到哪家超市购买粽子更划算?7.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?8.有一篮苹果,平均分给几个小朋友,每人3个,则多2个;每人4个则少3个.问:有几个小朋友,几个苹果?9.“丰收1号”油菜籽的平均每公顷产量为2 400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3 750kg.这个村去年和今年种植油菜的面积各是多少公顷?10.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?11.昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?12.把一些图书分给某班学生阅读,如果没人分3本,则余20本,如果每人分4本,则还缺25本。
用方程解决问题(1)1.将360分成三个数,使这三个数的比为l︰2︰3,求分成的三个数.2.将面积为160m2的土地分成两部分,使两部分的面积之比为3︰5,求各部分的面积.3.为创建卫生城市,市容部门组织30位工作人员到甲、乙、丙三个社区检查工作,要使分配到甲、乙、丙三个社区的人数之比为2︰3︰5,应怎样分配?4.某学生把98分成两个数,使第一个数加上5等于第二个数减去5,求分成的两个数分别是多少?5.某商场春节期间销售彩电、微波炉、DVD共228台,其中销售彩电与DVD的数量之比为3︰2,销售的微波炉比彩电少20台,春节期间销售DVD多少台?6.在日历中:(1)圈出一竖列上相邻的三个数,它们的和能为60吗?75呢?21呢?(2)圈出2×2的正方形,若这4个数的和为76,这4天分别是几号?(3)圈出3×3的正方形,若这9个数的和为90,这9天分别是几号?(4)爷爷生日那天的上、下、左、右4个日期的和为80,爷爷的生日是几号?7.某校七年级的美术、声乐和体育三个特长班共有115人,其中美术班与声乐班的人数之比为4︰3,美术班与体育班的人数之比为8︰9,每个特长班各有多少人?8.在一个多边形的各边上标上数,它们依次为2,4,6,8,…,并且后面一边上标的数比前面一边上标的数大2.现已知某相邻三边上所标的数之和为24.(1)这三边上所标的数分别是多少?(2)是否存在这样的相邻三边上所标的数之和为32?为什么?9.将连续自然数1至2004按图中的方式排成一个长方形阵列,用一个正方形框出16个数.(1)图中框出的这16个数的和是;(2)在图中,要使一个正方形框出的16个数之和分别等于2000,2004,可能吗?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.参考答案1.60,120,180 2.60,100 3.6,9,15 4.44,54 5.62 6.(1)①能圈出一竖列上相邻的三个数的和为60②不能圈出一竖列上相邻的三个数的和为75③不能圈出一竖列上相邻的三个数的和为21(2)15,16,22,23(3)这9天分别是2号、3号、4号、9号、10号、11号、16号、17号、18号(4)20 7.45 8.(1)8,6,10(2)设中间一边上标的数为x,则(x-2)+x+(x+2)=32,x=323,不合题意9.(1)352 (2)框出的16个数的和可能为2000,其中最小数为113,最大数为137,而框出的16个数的和不可能为2004用方程解决问题(2)1.某人买甲、乙两种笔记本共20本,付款40.8元.甲种笔记本的单价为2.2元,乙种笔记本的单价为1.8元,两种笔记本各买了多少本?2.有一批重39 t的货物,准备用载重量分别为6 t和7.5 t的卡车一次运走.已知载重量为6 t的卡车比载重量为7.5 t的卡车多2辆,两种卡车各要多少辆?3.小王去超市购物,买了什锦糖和荔枝共7 kg,付款92.4元.已知每千克什锦糖16.8元,每千克荔枝8.4元,小王买了什锦糖和荔枝各多少千克?4.甲仓库有化肥100 t,乙仓库有化肥88 t,从这两个仓库一共运出50 t化肥后,这两个仓库的剩余化肥的数量相等,从这两个仓库各运出了多少吨化肥?5.某小组原来的女生人数是全组人数的13,后来又加入了4个女生,于是女生人数占全组人数的一半,该小组原来有多少人?6.某服装加工车间有54人,每人每天可加工上衣8件或加工裤子10条,应怎样分配加工上衣的人数和加工裤子的人数,才能使每天加工的衣裤配套?7.乒乓球集训队一队有42人,二队有19人,能否从一队调若干人到二队,使得一队的人数是二队人数的两倍?8.现有水果1000kg,入库时测得含水量为96%,一个月后因水果中水分损耗,测得含水量为95%,这批水果的总重量损失了多少?9.小刚的叔叔到他家做客,小刚问叔叔多大年纪了,叔叔说:“我像你这么大时,你才4 岁.你到我这么大时,我已经37岁了.”你知道小刚和叔叔现在各多少岁了吗?参考答案1.甲种笔记本买了12本,甲种笔记本买了8本2.设载重量为7.5 t的卡车有2辆,载重量为6 t的卡车有4辆3.小王买了什锦糖4千克,荔枝3千克.4.从甲仓库运出化肥31 t,从甲仓库运出化肥19 t.5.该小组原来有12人,6.安排30人加工上衣,安排24人加工裤子.7.不能8.这批水果的总重量损失了200kg9.小刚现在15岁,叔叔现在26岁.用方程解决问题(3)1.把一批课外书分给若干个小组,若每个小组分8本,则多3本;若每个小组分l0本,则少9本.有多少个小组?有多少本课外书?2.若干辆汽车装运一批货物,若每辆车装3.5 t,则有2 t货物不能运走;若每辆车装4 t,则这批货物全部运完后,还可以装运1 t其他货物.有多少辆汽车?这批货物有多少吨?3.某工人在规定时间内加工一批零件,若每天加工44个,则比规定任务少加工20个;若每天加工50个,则可以超额10个.求规定时间和这批零件的个数.4.给一块农田施肥,若每亩施肥6 kg,则缺少17 kg化肥;若每亩施肥5 kg,则余下3 kg 化肥.这块农田有几亩?化肥有多少千克?5.七年级美术班举办了一次美术作品展览,展出的美术作品若平均每人3张,则多24张;若平均每人4张,则少26张.一共展出了多少张美术作品?6.学校安排学生住宿,若每间宿舍住8人,则有12人没有地方住;若每间宿舍住9人,则空出2间宿舍.共有多少间宿舍?多少名住宿生?7.幼儿园有一批卡通书,若3个小朋友合看一本,则多2本;若2个小朋友合看一本,则有9个小朋友没有书看.一共有多少个小朋友?8.甲、乙两人生产同一种零件,月初两人的计划生产量之比为4︰5,月底甲的实际生产量超过计划的15%,乙的实际生产量超过计划的12%,两人实际生产的零件总数为1632个,甲、乙两人原计划各生产多少个零件?9.一位工人接到加工一批零件的任务,必须在规定时间内完成.若每小时加工10个,则可以超额完成3个;若每小时加工11个,则可以提前1 h完成.求要加工的零件个数和规定的时间.参考答案1.有6个小组,51本课外书2.有6辆汽车,有23吨货3.规定时间为5天,这批零件的个数为240个4.这块农田有20亩,化肥103千克5.一共展出了174张美术作品6.有30间宿舍,252名住宿生7.一共有39个小朋友8.甲原计划生产640个零件,乙原计划生产800个零件9.规定8h完成,加工77个零件用方程解决问题(4)1.一辆汽车与一辆拖拉机从相距232 km的A、B两地同时出发,相向而行,4 h后相遇.已知汽车每小时走的路程比拖拉机的2倍多4 km,求拖拉机的速度.2.甲、乙两站相距274 km,一列慢车从甲站开往乙站.慢车出发1 h后,一列快车从乙站开往甲站,快车开出1.5 h后,两车在途中相遇.已知快车每小时比慢车多行20 km,求快车的速度.3.一艘轮船航行于甲、乙两地之间,顺水要7 h,逆水要9 h,已知水流的速度为3 km/h,求甲、乙两地之间的距离.4.小明从甲地到乙地,若每小时走4.5 km,则在规定时间内离乙地还有0.5 km;若每小时走5.5 km,则可比规定时间早1 h到达乙地.求甲、乙两地之间的距离和规定时间.5.一位邮递员骑自行车在规定时间内把特快专递送到某单位,若他每小时行15 km,则可以早到24 min;若他每小时行12 km,则要迟到15 min.规定的时间是多少?他去的单位有多远?6.某人游览水路风景区,乘坐摩托艇顺流而下,然后返回登艇处,水流的速度为2 km/h,摩托艇在静水中的速度是18 km/h,为了使游览时间不超过3 h,此人驶出多远就应回头?7.一个自行车车队进行训练,训练时所有队员都以35 km/h的速度前进.突然,1号队员以45 km/h的速度独自行进,行进10 km后掉转车头,仍以45 km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?8.甲、乙两人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700m处,然后继续前进,到目的地后都立即返回,第二次相遇在距B点400m处,求A、B两地的距离.参考答案1.拖拉机的速度为18 km/h 2.快车的速度为81 km/h3.甲、乙两地之间的距离为189 km4.规定时间为6 h,甲、乙两地之间的距离27.5 km5.规定的时间为3h,他去的单位有39 km6.此人驶出803km就应回头7.1号队员从离队开始到与队员重新会合,经过了0.25 h 8.1700 m用方程解决问题(5)1.一项工程,甲单独做需10天完成,乙单独做需6天完成,现由甲先做2天,乙再加入一起做,完成这项工程还需多少天?2.一项水利工程,甲队单独完成需要15天,乙队单独完成需要12天,若两队合作5天后,剩下的工程由甲队做,甲队还需多少天才能完成?3.完成一项工作,甲单独做需要3h,乙单独做需要5h,若两人合作这项工作的45,需要几小时?4.一块农田,若由甲拖拉机耕,20h可以耕完;若由乙拖拉机耕,15h可以耕完.现在,甲耕了13h后,让乙加入一起耕,还要几小时才能耕完?5.一件工作,甲单独做12h完成,乙单独做20h完成,现由乙单独做4h,剩下部分由甲、乙合作,还需几小时完成?6.一项工程,甲独做需12天完成,乙独做需24天完成,丙独做需6天完成,现在甲与丙合作2天后,丙因事离去,由甲、乙合作,甲、乙还需几天才能完成这项工程?7.甲、乙两人承包一项工程,共得报酬610元,已知甲做l0天,乙做13天,但因甲的技术比乙的技术好,因而预先就约定甲做4天的工资比乙做5天的工资还要多40元,甲、乙两人各分得多少元?8.一个农场有甲、乙两台打谷机,甲机的工作效率是乙机的2倍.若甲机打完全部谷子的2 3后,乙机继续打完,前后所需的时间比同时用两台打谷机打完全部谷子所需的时间多4天.若分别用甲、乙打谷机打谷,打完谷子各需几天?参考答案1.完成这项工程还要3 天2.甲队还需4天完成3.需要5h 4.还要3h才能耕完5.还需6 h完成6.甲、乙还要4天才能完成这项工程7.甲分得350元,乙分得260元8.甲打谷机打完谷子要6天,乙打谷机打完谷子要12天.用方程解决问题(6)1.某种服装现在的售价为56.1元,比原来的售价降低了15%,求原来的售价.2.某商品的进价为2400元,若按标价的9折销售,利润率为20%,该商品的标价是多少?3.某商品的标价为每件1100元,若按标价的80%出售,仍可获利10%,此商品的进价是多少元?4.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?5.某种家电标价2400元,现在按9折出售,并且送20元“打的”费,仍可获得7%的利润,求该家电的进价.6.一商场搞换季促销活动,若每件羽绒衫按标价的5折销售可赚50元,按标价的6折销售可赚80元.(1)每件羽绒衫的标价和成本各是多少元?(2)为保证盈利不低于20元,最多打几折?7.某服装个体户同时卖出两套服装,每套均卖168元,以原价为准,其中一套盈利20%,另一套亏本20%.在这次销售中,服装个体户是盈利还是亏本?盈利或亏本多少元?8.某商场的电视机原价为2500元,现在以8折销售,如果想使降价前后的销售额都为l0 万元,那么销售量应增加多少?9.据了解,个体服装销售只要高出进价的20%便可盈利,但老板们常以高出进价的50%~100%标价.若你准备买一件标价为180元的服装,应在什么范围内还价?参考答案1.原来的售价为66元2.该商品的标价是3200元3.此商品的进价是800元4.此商品的进价是700元,5.设该家电的进价为2000元6.(1)每件羽绒衫的标价为100元,成本是300元(2)为保证盈利不低于20元,最多打4折7.盈利的那套原价为140元,亏本的那套原价为210元,因为140+210=350>168×2,所以350—168×2=14(元).即服装个体户亏本14元8.销售量应增加10台9.应在108元与144元之间还价。
工程问题应用一元一次方程解决工程问题. 此类题目重要的一点是找到工作总量是什么:如果题目中有提到,则直接使用即可;如果题目中没有告诉工作总量,一般情况下用1表示工作总量.工程问题的基本关系式:工作总量=工作效率×工作时间.1.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【详解】设应先安排x人工作,根据题意得:48(2)1 4040x x++=解得:x=2,答:应先安排2人工作.2.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【详解】设甲队整治了x天,则乙队整治了天,由题意,得24x+16(20-x)=360,解得:x=5,∴乙队整治了20-5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.3.一件工作,甲单独完成需5小时,乙单独完成需3小时,先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?【详解】解:设由甲、乙两人合做1小时,再由乙单独完成剩余部分,还需x小时完成,由题意,得:(1153)×1+13x=1,解得:x=75,即剩余部分由乙单独完成剩余部分,还需75小时完成,则共需1+75=125小时完成任务,答:先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需125小时完成任务.4.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?【详解】设乙工程队再单独做此工程需x个月能完成,∵甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,∴甲每个月完成14,乙工程队每个月完成16,现在甲、乙两队先合作2个月, 则完成了112()46, 由乙x 个月可以完成16x , 根据等量关系甲完成的+乙完成的=整个工程,列出方程为:1112()1466x解得x=1.5.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060x x ++= 解得, x=10.答:先安排整理的人员有10人.6.一件工程,由甲、乙两个工程队共同合作完成,工期不得超过一个月,甲独做需要50天才能完成,乙独做需要45天才能完成,现甲乙合作20天后,甲队有任务调离,由乙队单独工作,问此工程是否能如期完工.(列方程计算) 【详解】设剩余工程乙独做需要x 天完成,根据题意可得:()11202014550x ++⨯=, 解得x=7,∵20+7<30∴此工程能如期完成.7.某项工作,甲单独做4天完成,乙单独做8天完成,现在甲先做一天,然后和乙共同完成余下的工作,问完成这项工作共需多少天?【详解】设完成这项工作共需x 天, 根据题意得:1148x x -+=, 解得x =3,答:完成这项工作共需3天.8.整理一批图书,由甲单独完成需要15小时,由乙单独完成需要20小时.现在先让甲整理1小时,之后甲乙两人合作整理完这批图书,那么乙工作多少小时?【详解】设乙工作x 个小时,根据题意得到甲、乙的工作效率分别是111520、,得: 111()1151520x ++= 解得:8x =.答:乙工作8小时.9.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?解:(1)11511=2.44612⎛⎫÷+=÷⎪⎝⎭(天).答:两个人合作需要2.4天完成. (2)设还需x天可以完成这项工作,根据题意,得11 64x x++=.解得=2x.答:还需2天可以完成这项工作.10.一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?试题解析:设乙还要x小时完成,根据题意得:1 12×9+18x=1,解得:x=2.答:乙还要2小时完成.11.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?解:设甲请了x天假,由题意知,11661 152010x-⎛⎫++=⎪⎝⎭.解得x=3.答:甲请了3天假.12.一项工程,需要在规定的天数内完成.现由甲先做3天,乙再参加合做,正好如期完成.若甲独做需8天完成,乙独做需12天完成,那么规定的天数为几天? 解:设规定的天数为x 天 依题意可得,11x -3812x +() =1,解得x=6 答:规定的天数为6天.13.某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体先安排多少人工作?(列方程解答)试题解析:解:设先安排x 人工作4小时,则依题意得:46(3)14848++=x x ; 解得x=3;答:应先安排3人工作.14.一件工程,甲、乙、丙单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天后,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程?解:设甲、丙两队还需x 天才能完成这工程, 列方程得:x 33+x ++101215=1, 解得:x =3.3.因为3+3.3=6.3<7,所以能在计划规定的时间内完成.故在各队工作效率都不变的情况下,能按计划完成此工程.15.一项工程,甲单独做要10天完成,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配?详解:因为甲单独完成需10天,乙单独完成需15天,故甲每天可完成工程的110,乙可完成工程的115,设甲先做5天后,两人再合作x天完成工程,则1 10×5+(110+115)x=1解得:x=3,故甲应得报酬为:1000×810=800元,乙应得报酬为:1000×315=200元.16.甲、乙两工程队合作完成一项工程,需要12天完成,工程费用共36000元,若甲、乙两工程队单独完成此项工程,乙工程队所用的时间是甲工程队的1.5倍,乙工程队每天的费用比甲工程队少800元.(1)问甲、乙两工程队单独完成此项工程各需多少天?(2)若让一个工程队单独完成这项工程,哪个工程队的费用较少?【详解】解:(1)设甲单独完成需要x天,则乙单独完成需要1.5x天,由题意得121211.5x x+=,解得20x天,。
一、解答题1.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b )元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a ;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b ,∴这7天要付(58a+115b )元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元). 答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 3.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.4【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a +-=,解得123a x -=; 20x a -=,解得2x a =. 由题意得,12203a a -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 4.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,3方程为1213132y y +-=-, 去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 6.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a,b满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A、B的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.9.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.10.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键11.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。
数轴上两点间距离 专题训练〖规律归纳〗数轴上点A 表示的数是a ,点B 表示的数是b ,则: ①到点A 与点B 的距离相等(即线段AB 的中点)的点表示的数是a+b 2;②若能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为:大数减小数; ③若不能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为|a −b |或|b −a | 例1.【思考】数轴上,点C 是线段AB 的中点,请填写下列表格: 【发现】通过表格可以得到,数轴上一条线段的中点表示的数是这两条线段端点表示的数的 ; 【表达】若数轴上A 、B 两点表示的数分别为m 、n ,则线段AB 的中点表示的数是 ;【应用】如图,数轴上点A 、C 、B 表示的数分别为﹣2x 、13x ﹣4、1,且点C 是线段AB 的中点,求x 的值.练习:如图,点A ,B 在数轴上表示的数分别为﹣2与+6,动点P 从点A 出发,沿A →B 以每秒2个 单位长度的速度向终点B 运动,同时,动点Q 从点B 出发,沿B →A 以每秒4个单位长度的速度向 终点A 运动,当一个点到达时,另一点也随之停止运动. (1)当Q 为AB 的中点时,求线段PQ 的长; (2)当Q 为PB 的中点时,求点P 表示的数.例2.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为﹣5,b ,4.某同学将 刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻 度5.4cm .(1)在图1的数轴上, AC = 个长度单位;数轴上的一个长度单位对应刻度尺上的 cm ; (2)求数轴上点B 所对应的数b ;(3)在图1的数轴上,点Q 是线段AB 上一点,满足AQ =2QB ,求点Q 所表示的数.练习:在数轴上,点A 代表的数是﹣12,点B 代表的数是2,AB 代表点A 与点B 之间的距离. (1)①AB = ;②若点P 为数轴上点A 与B 之间的一个点,且AP =6,则BP = ; ③若点P 为数轴上一点,且BP =2,则AP = .(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是35,求C 点表示的数.(3)若P 从点A 出发,Q 从原点出发,M 从点B 出发,且P 、Q 、M 同时向数轴负方向运动,P 点的运动速度是每秒6个单位长度,Q 点的运动速度是每秒8个单位长度,M 点的运动速度是每秒2个单位长度,当P 、Q 、M 同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?A 点表示的数B 点表示的数C 点表示的数2 6 ﹣1﹣5 ﹣31例3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?练习:如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?〖尝试反馈〗1.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.2.如图,已知数轴上点A,O,B对应的数分别为﹣2,0,6,点P是数轴上的一个动点.(1)设点P对应的数为x.①若点P到点A和点B的距离相等,则x的值是;②若点P在点A的左侧,则PA=,PB=(用含x的式子表示);(2)若点P以每秒1个单位长度的速度从点O向右运动,同时点A以每秒3个单位长度的速度向左运动,点B以每秒12个单位长度的速度向右运动,在运动过程中,点M和点N分别是AP 和OB的中点,设运动时间为t.求MN的长(用含t的式子表示);3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.5.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q 是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?6.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.7.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.8.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.参考答案例1.(1)4,﹣3,﹣1;(2)和的一半;(3)n+m 2;(4)由题意得,−2x+12=13x −4,解得:x =278.练习:(1)PQ =2﹣0=2,(2)设点Q 移动的时间为t 秒,则移动后点Q 所表示的数为6﹣4t ,移动后点P 所表示的数为﹣2+2t , 当Q 为PB 的中点时,有−2+2t+62=6−4t ,解得,t =45,此时.点P 为﹣2+2×45=﹣25.例2:(1)9;0.6.(2)点B 所对应的数b 为﹣2;(3)设点Q 所表示的数是x ,依题意有 x ﹣(﹣5)=2(﹣2﹣x ),解得x =﹣3.故点Q 所表示的数是﹣3. 练习:(1)①14.②BP =AB ﹣AP =14﹣6=8.③P 在数轴上点A 与B 之间时,AP =AB ﹣BP =14﹣2=12;当P 不在数轴上点A 与B 之间时,因为AB =14,所以P 只能在B 右侧,此时BP =2,AP =AB+BP =14+2=16.(2)假设C 为x ,当C 在A 左侧时,AC =﹣12﹣x ,BC =2﹣x ,AC+BC =35,解得x =−452; 当C 在B 右侧时,AC =x ﹣(﹣12),BC =x ﹣2,AC+BC =35,解得x =252.(3)设经过时间T 秒,则P 点坐标为﹣12﹣6T ,Q 点坐标为﹣8T ,M 点坐标为2﹣2T .当Q 在P 和M 的正中间,即Q 为PM 的中点时,2(﹣8T )=(﹣12﹣6T )+(2﹣2T ),解得T =54s .当P 在Q 和M 的正中间,即P 为QM 的中点时,2(﹣12﹣6T )=(﹣8T )+(2﹣2T ),解得T =﹣13<0,不合题意,舍掉.当PQ 重合时,即M 到P 、Q 距离相等时,此时MP =MQ , ∴﹣12﹣6T =﹣8T ,∴T =6s .因此,当T =54秒时,此时,M =﹣12,Q =﹣10,P =﹣392. 当T =6秒时,此时,M =﹣10,Q =﹣48,P =﹣48. 例3:(1)如图所示:(2)CD =3.5﹣1=2.5,BC =1﹣(﹣2)=3;(3)MN =|a ﹣b|;(4)①依题意有2t ﹣t =3,解得t =3.故t 为3秒时P ,Q 两点重合;②依题意有2t ﹣t =3﹣1,解得t =2;或2t ﹣t =3+1,解得t =4.故t 为2秒或4秒时P ,Q 两点之间的距离为1.故答案为:2.5,3;|a ﹣b|. 练习:(1)∵AB =6,BC =2,∴点A 对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)∵动点P 、Q 分别同时从A 、C 出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动, ∴点P 对应的数是﹣5+2t ,点Q 对应的数是3+t ;(3)①当点P 与点Q 在原点两侧时,若OP =OQ ,则5﹣2t =3+t ,解得:t =23;②当点P 与点Q 在同侧时,若OP =OQ ,则﹣5+2t =3+t ,解得:t =8,当t 为23或8时,OP =OQ . 〖尝试反馈〗1.(1)6,4.(2)5t ,3t .(3)由题意:(5﹣3)t =6,∴t =3. (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5,解得t =12或112, 2.(1)①−2+62=2,②根据数轴上两点之间距离的计算公式得:﹣2﹣x ,6﹣x ;(2)①移动后,点A 表示的数为﹣2﹣3t ,点B 表示的数为6+12t ,点P 表示的数为t , ∵点M 是AP 的中点,∴点M 在数轴上所表示的数为−2−3t+t2=−1−t ;∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+12t+02=3+6t ;∴MN =3+6t ﹣(﹣1﹣t )=4+7t .3.(1)根据题意得2t+t =28,解得t =283,∴AM =563>10,∴M 在O 右侧,且OM =563﹣10=263,∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在O 左边,则10﹣2t =7﹣t ,解得t =3.若点P 在O 右边,则2t ﹣10=7﹣t ,解得t =173. (3)∵N 是AP 的中点,∴AN =PN =12AP =t ,∴CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t , 2CN ﹣PC =2(28﹣t )﹣(28﹣2t )=28.4.(1)C 点对应的数为﹣5+4×6=19,(2)点D 对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.5.(1)点N所对应的数是1;(2)点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.6.(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.综上所述 m=8或﹣40.7.(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=23,符合题意.综上所述,t的值为23或4.8.(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=185,答:经过185或10秒,点P、点Q到点C的距离相等.。
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。
一元一次方程应用题
1.列一元一次方程解应用题的一般步骤
( 1)审题:弄清题意.(
( 2)找出等量关系:找出能够表示本题含义的相等关系.
( 3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案.
2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.高= S· h r2h ②长方体的体积 V=长×宽×高= abc 4.
3.等积变形问题
①圆柱体的体积公式V=底面积
×
数字问题一般可设个位数字
为
a,十位数字
为
b,百位数字
为
c.十位数可表示
为
10b+a,百位数可表示
为
100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.
5.市场经济问题
( 1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
( 5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8 折出售,即按原标价的 80%出售.
6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)
速度不速)不变的特点考虑相等关系.
抓住两码头间距离不变,水流速和船速(静7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量= 1
8.储蓄问题利润=每个期数内的利息本金
×
100% 利息=本金×利率×期数
经典练习
1.将一批工业最新动态信息输入管理储存网络,甲独做需6 小时,乙独做
需
4 小时,甲先
做
30 分钟,然后甲、
乙
一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15 岁和 9 岁,多少年后兄的年龄是弟的年龄的 2 倍?3.将一个装满水的内部长、宽、高分别
为300 毫米, 300 毫米和 80?毫米的长
方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1 ≈ 3.14).
4.有一火车以每分钟600 米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多 5 秒,又知第二铁桥的长度比第一铁桥长度的 2 倍短 50 米,试求各铁桥的长.
5.有某种三色冰淇淋50 克,咖啡色、红色和白色配料的比是2: 3: 5,?这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有 16 名工人,每人每天可加工甲种零件 5 个或乙种零件 4 个.在这16 名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工一个甲种零件可获利16 元,每加工一个乙种零件可获利24 元.若此车间一共获利 1440 元,?求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40 元,若每月用电量超过 a 千瓦时,则超过部分按基本电价的70% 收费.
(1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a.
(2)若该用户九月份的平均电费为0.36 元,则九月份共用电多少千瓦? ?应交电费是多少元?
8.某家电商场计划用 9 万元从生产厂家购进50 台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A 种每台 1500 元, B 种每台 2100 元, C 种每台
2500 元.
( 1)若家电商场同时购进两种不同型号的电视机共50 台,用去
9 万元,请你研究一下商场的进货方案.( 2)
若商场销售一台 A 种电视机可获利 150 元,销售一台 B 种电视机可获利200 元,?销售一台 C 种电视机可
获利250 元,
在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?。