郑州大学随机信号处理大作业
- 格式:pdf
- 大小:719.74 KB
- 文档页数:20
随机信号分析大作业2016.12.6希尔伯特变换及其应用一、背景及意义在通信系统中,经常需要对一个信号进行正交分解,即分解为同相分量和正交分量。
由于希尔伯特变换可以提供90度的相位变化而不影响频谱分量的幅度,即对信号进行希尔伯特变换就相当于对该信号进行正交移相,使它成为自身的正交对。
因此,希尔伯特在通信领域获得了广泛应用。
对HHT采样频率、终止准则、曲线拟合、边界处理以及模态混叠等问题进行了分析,并基于HHT的时间特征尺度概念,提出了一种新的边界处理方法:边界局部特征尺度延拓法,较好地改善了边界效应对EMD分解的影响。
将HHT用于电力系统的信号处理,并根据HHT的信号突变检测性能,提出了一种超高压输电线路的EMD故障测距方法。
仿真实验表明,该方法能很好地实现故障定位及测距。
物理意义:希尔伯特可看成一种滤波,其本质上是对所有输入信号的90度相移器;对于稳定的实因果信号,其傅立叶变换的实部和虚部满足希尔伯特变换关系,同时其对数幅度谱和相位谱之间也满足此关系,前提是该信号为最小相位信号。
工程意义:对于自由度为一维的条信号,比如PAM,其等效基带信号是实的,这意味着对应的基带频谱是共轭对称的,即一半的频谱是冗余的,那么就可以将频谱滤除一半再进行传输,这就形成了所谓的单边带调制(SSB)。
而理论上,一个信号和其Hilbert 变化后的值相加,就可以得到所谓解析信号,该信号只保留原信号的正频谱。
而单边带调制虽然节省传输频率,但为了进行边带滤波,必须进行复杂的频谱成形,发送和接收的复杂度都比较高,相干载波的相位误差所造成的影响大。
所以,选择PAM信号进行频谱滤除的滤波器具有一定的滚降,即保留部分PAM信号中的冗余频谱,这样就成为VSB调制。
二、希尔伯特变换的发展现状近年来,随着现代信号的向前发展,人们从不同的研究领域和应用角度出发,提出了拓展经典Hilbert变换,提出了分数阶Hilbert变换,拓展了它的应用范围。
大连民族学院《随机信号分析》大作业9.3.2随机变量及其数字特征运算的MATLAB实现班级:学号:姓名:指导老师:二零一五年一月《随机信号分析》大作业摘要编制一通用程序,实现产生两个任意指定区间[a,b]和[c,d]上的均匀分布的随机变量。
分别计算这两个随机变量的均值和方差以及两个随机变量的协方差和相关系数,并根据计算结果分析这两个随机变量的相关性(两个随机数的长度要相等)。
关键词:均值;方差;协方差;相关系数目录摘要 (II)第1章要求 (1)1.1预习内容 (1)1.2任务 (1)1.3思考题 (1)第2章随机变量及其数字特征运算 (2)2.1连续型随机变量的数学期望(均值) (2)2.1.1连续型随机变量的数学期望 (2)2.1.2数学期望的性质 (2)2.2随机变量的方差 (2)2.2.1定义 (2)2.2.2性质 (3)2.3协方差和相关系数 (3)2.3.1定义 (3)2.3.2协方差的性质 (3)2.3.3相关系数的性质 (3)第3章程序实现及代码 (4)3.1任务 (4)3.1.1 代码 (4)3.1.2 结果 (5)3.1.3 结果分析 (6)3.2思考题 (7)3.2.1 代码 (7)3.2.2 结果 (8)参考文献 (11)B 卷 (12)第1章要求1.1 预习内容计算随机变量数字特性的部分MATLAB函数见表9.2,这些函数的调用方法及使用举例参见9.1节的相关内容。
1.2 任务编制一通用程序,实现产生两个任意指定区间[a,b]和[c,d]上的均匀分布的随机变量。
分别计算这两个随机变量的均值和方差以及两个随机变量的协方差和相关系数,并根据计算结果分析这两个随机变量的相关性(两个随机数的长度要相等)。
1.3 思考题利用MATLAB的在线帮助功能,自学与指数分布有关的MATLAB函数的使用方法。
编制一通用程序,实现产生任意指定参数λ1和λ2的两个指数分布随机变量(随机元素为30个)。
《随机信号处理》上机实验仿真报告学院:电子工程与光电技术学院指导老师:顾红日期:2014年11月10日题目1:<问题>线性调频脉冲信号,时宽10us ,带宽543MHz ,对该信号进行匹配滤波后,即脉压处理,处理增益为多少?脉压后的脉冲宽度为多少?并用图说明脉压后的脉冲宽度,内差点看3dB 带宽,以该带宽说明距离分辨率与带宽的对应关系。
建议补充:比较矩形视频脉冲信号、矩形包络单个中频脉冲信号、线性调频矩形脉冲信号匹配滤波,说明脉压后的脉冲3dB 宽度变化,与原脉冲的宽度比较得出压缩比即增益。
另外,通过仿真加噪声0dB 信噪比来看脉压后信噪比有没有提升。
<理论分析>:(1)线性调频信号(LFM )是雷达中常用的信号,其数学表达式为:212()2()()c j f t kt t s t rect eTπ+= 式中c f 为载波频率,t rect T ⎛⎫⎪⎝⎭为矩形信号: 11()0,t t rect TT elsewise⎧ , ≤⎪=⎨⎪ ⎩当TB>1时,LFM 信号特征表达式如下:(2)在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器。
线性调频信号叠加上噪声其表达式为:2()j kt t t S rect e Tπ=()(,10)t S t awgn S =白噪声条件下,匹配滤波器的脉冲响应:*()()o h t ks t t =-<仿真程序>:B=543e6; %带宽(这里设置带宽为学号后三位),程序段①从这行开始 fs=10*B; %采样频率 ts=1/fs;T=10e-6; %脉宽10μs N=T/ts; %采样点数 t=linspace(-T/2,T/2,N); K=B/T;a=1; %这里调频信号幅值假设为1 %% 线性调频信号si=a*exp(j*pi*K*t.^2); figure(1)plot(t*1e6,si);xlabel('t/μs');ylabel('si');title('线性调频信号时域波形图');grid on; sfft=fft(si);f=(0:length(sfft)-1)*fs/length(sfft)-fs/2;%f=linspace(-fs/2,fs/2,N); figure(2)plot(f*1e-6,fftshift(abs(sfft)));xlabel('f/MHz');ylabel('sfft');title('线性调频信号频域波形图');grid on; axis([-300,300,-inf,inf]); %程序段①到这行结束 %% 叠加高斯白噪声 ni=rand(1,N);disp('输入信噪比为:');SNRi=10*log10(a^2/var(ni)/2) xi=ni+si; figure(3)plot(t*1e6,real(xi));xlabel('t/us');ylabel('xi');title('叠加噪声后实际信号时域波形图'); x1fft=fft(xi); %输入信号频谱f=(0:length(x1fft)-1)*fs/length(x1fft)-fs/2; figure(4)plot(f*1e-6,fftshift(abs(x1fft)));xlabel('f/MHz');ylabel('x1fft');title('叠加噪声后实际信号频谱图');grid on; %% 匹配滤波器ht=exp(-j*pi*K*t.^2);x2=conv(ht,xi);L=2*N-1;ti=linspace(-T,T,L);ti=ti*B; %换算为B的倍数X2=abs(x2)/max(abs(x2));figure(5)plot(ti,20*log10(X2+1e-6));xlabel('t/B');ylabel('匹配滤波幅度');title('匹配滤波结果图');grid on; axis([-3,3,-4,inf]);%% 计算信噪比X22=abs(x2);%实际信号n2=conv(ht,ni);%噪声n22=abs(n2);s2=conv(ht,si);%信号s22=abs(s2);SNRo=(max(s22)^2)/(var(n2))/2;disp('输出信噪比为:');SNRo=10*log10(SNRo)disp('信噪比增益为:');disp(SNRo-SNRi)%% 匹配滤波器的幅频特性hw=fft(ht);f2=(0:length(hw)-1)*fs/length(hw)-fs/2;f2=f2/B;hw1=abs(hw);hw1=hw1./max(hw1);plot(f2,fftshift(20*log(hw1+1e-6)));xlabel('f/B');ylabel('幅度');title('匹配滤波器的幅频特性图');%% 匹配滤波器处理后的信号Sot=conv(si,ht);subplot(211)L=2*N-1;t1=linspace(-T,T,L);Z=abs(Sot);Z=Z/max(Z);Z=20*log10(Z+1e-6);Z1=abs(sinc(B.*t1));Z1=20*log10(Z1+1e-6);t1=t1*B;plot(t1,Z,t1,Z1,'r.');axis([-15,15,-50,inf]);grid on;legend('emulational','sinc');xlabel('Time in sec \times\itB');ylabel('Amplitude,dB');title('匹配滤波器处理后信号');subplot(212)N0=3*fs/B;t2=-N0*ts:ts:N0*ts; t2=B*t2;plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.'); axis([-inf,inf,-50,inf]);grid on;set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]); xlabel('Time in sec \times\itB'); ylabel('Amplitude,dB');title('匹配滤波器处理后信号(放大)'); %% 输出频谱 xfft=fft(x2);f3=(0:length(xfft)-1)*fs/length(xfft)-fs/2; xfft1=abs(xfft);xfft1=xfft1./max(xfft1); figure(7)plot(f3/B,fftshift(20*log(xfft1+1e-6)));xlabel('f/B');ylabel('幅度');title('输出信号频谱图');<仿真结果与分析>:对于一个理想的脉冲压缩系统,要求发射信号具有非线性的相位谱,并使其包络接近矩形;其中)(t S 就是信号s(t)的复包络。
随机信号大作业随机信号大作业第一章上机题:设有随机初相信号X(t)=5cos(t+),其中相位是在区间(0,2)上均匀分布的随机变量。
(1)试用Matlab编程产生其三个样本函数。
(2)产生t=0时的10000个样本,并画出直方图估计P(x)画出图形。
解:(1)由Matlab产生的三个样本函数如下图所示:程序源代码:clcclearm=unifrnd(0,2*pi,1,10);fork=1:3t=1:0.1:10;X=5*cos(t+m(k));plo t(t,X);holdonendxlabel('t');ylabel('X(t)');gridon;axistight;(2)产生t=0时的10000个样本,并画出直方图估计P(x)的概率密度并画出图形。
源程序代码:clear;clc;=2*pi*rand(10000,1);x=5*cos();figure(2),hist(x,20);holdon;第二章上机题:利用Matlab程序设计一正弦型信号加高斯白噪声的复合信号。
(1)分析复合信号的功率谱密度,幅度分布的特性;(2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性;(3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。
解:设正弦信号的频率为10HZ,抽样频率为100HZx=sin(2*pi*fc*t)正弦曲线图:程序块代码:clearall;fs=100;fc=10;n=201;t=0:1/fs:2;x=sin(2*pi*fc*t);y=awgn(x,10);m=50;i=-0.49:1/fs:0.49;forj=1:mR(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);Ry(49+j)=R(j);Ry(51-j)=R(j);endsubplot(5,2,1);plot(t,x,'r');title('正弦信号曲线');ylabel('x');xlabel('t/20pi');grid;(1)正弦信号加上高斯白噪声产生复合信号y:y=awgn(x,10)对复合信号进行傅里叶变换得到傅里叶变换:Y(jw)=fft(y)复合信号的功率谱密度函数为:G(w)=Y(jw).*conj(Y(jw)/length(Y(jw)))复合信号的曲线图,频谱图和功率谱图:程序块代码:plot(t,y,'r');title('复合信号曲线');ylabel('y');xlabel('t/20pi');grid;程序块代码:FY=fft(y);FY1=fftshift(FY);f=(0:200)*fs/n-fs/2;plot(f,abs(FY1),'r');title('复合信号频谱图');ylabel('F(jw)');xlabel('w');grid;程序块代码:P=FY1.*conj(FY1)/length(FY1);plot(f,P,'r');title('复合信号功率谱密度图');ylabel('G(w)');xlabel('w');grid;(2)正弦曲线的复合信号通过RC积分电路后得到信号为:通过卷积计算可以得到y2即:y2=conv2(y,b*pi^-b*t)y2的幅度分布特性可以通过傅里叶变换得到Y2(jw)=fft(y2)y2的功率谱密度G2(w)=Y2(jw).*conj(Y2(jw)/length(Y2(jw)))复合信号通过RC积分电路后的曲线频谱图和功率谱图:程序块代码:b=10;y2=conv2(y,b*pi^-b*t);Fy2=fftshift(fft(y2));f=(0:400)*fs/n-fs/2;plot(f,abs(Fy2),'r');title('复合信号通过RC系统后频谱图');ylabel('Fy2(jw)');xlabel('w');grid;程序代码:P2=Fy2.*conj(Fy2)/length(Fy2);plot(f,P2,'r');title('复合信号通过RC系统后功率密度图');ylabel('Gy2(w)');xlabel('w');grid;(3)复合信号y通过理想滤波器电路后得到信号y3通过卷积计算可以得到y3即:y3=conv2(y,sin(10*t)/(pi*t))y3的幅度分布特性可以通过傅里叶变换得到Y3(jw)=fft(y3),y3的功率谱密度G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))复合信号通过理想滤波器后的频谱图和功率密度图:程序块代码:y3=conv2(y,sin(10*t)/(pi*t));Fy3=fftshift(fft(y3));f3=(0:200)*fs/n-fs/2;plot(f3,abs(Fy3),'r');title('复合信号通过理想滤波器频谱图');ylabel('Fy3(jw)');xlabel('w');grid;程序块代码:P3=Fy3.*conj(Fy3)/length(Fy3);plot(f3,P3,'r');title('理想信号通过理想滤波器功率密度图');ylabel('Gy3(w)');xlabel('w');grid;。
随机信号⼤作业随机信号⼤作业02111465 冯英旺1.⽤matlab编程产⽣随机初相信号X(t)=5cos(t+a)(其中a是区间(0,2π)上均匀分布的随机变量)的三个样本函数。
解:程序如下:a=unifrnd(0,2*pi,1,10);t=0:0.1:10;for j=1:3x=5*cos(t+a(j));plot(t,x);hold onendxlabel('t');ylabel('x(t)');gridon;axis tight;运⾏结果:2.利⽤matlab程序设计⼀正弦型信号加⾼斯⽩噪声的复合信号。
分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。
解:设正弦信号为x=sin(2*pi*10*t)先画出复合信号曲线程序如下:clear all;fs=100;fc=10;n=201;t=0:1/fs:2;x=sin(2*pi*fc*t);y=awgn(x,10);plot(t,y,'r');title('复合信号曲线');ylabel('y');xlabel('t/20pi');grid;通过理想低通系统后的曲线和频谱图,程序如下:y1=conv2(y,sin(10*t)/(pi*t)); plot(t,y1,'r');title('通过低通系统复合信号曲线');ylabel('y1');xlabel('t/20pi');grid;Fy=fftshift(fft(y1));f1=(0:200)*fs/n-fs/2;plot(f1,abs(Fy),'r');title('复合信号通过理想低通系统频谱图'); ylabel('Fy(jw)');xlabel('w');grid;功率谱,源程序如下:P=Fy.*conj(Fy)/length(Fy);plot(f1,P,'r');title('复合信号通过理想低通系统功率谱'); ylabel('Gy(w)');xlabel('w');grid;3.利⽤matlab程序分别设计⼀正弦型信号,⾼斯⽩噪声信号。
随机信号分析原理大作业报告专业:水声工程姓名: xxx学号:xxxxxxxxxx题目要求:给定一个白噪声信号,它的均值和方差自定。
1.设计一个线性滤波器,使该滤波器的输出为一个窄带信号。
并给出该窄带信号在不同的3个典型中心频率和带宽时的波形。
2.对该滤波器输出的上述窄带信号,用莱斯表示法对其进行建模,画出)(t a和)(t b的波形。
3.计算上述3种窄带信号对应的瞬时频率和瞬时相位,并进行包络检测。
)整个频率区间,即图6 滤波器2输出信号的时域波形附件一滤波器1输出信号仿真程序clear allclose allclc%产生高斯白噪声N=25000; %序列长度my_var = 2;noise = sqrt(my_var)*randn(1,N);%均值为0,方差为2 figure(1)plot(noise)title('均值为0方差为2的高斯白噪声')grid onfs = 25000;%采样频率f0 = 1000;%中心频率%滤波器f_pass = [900 1100];omega_pass = 2*f_pass/fs;b = fir1(192,omega_pass);figure(2)freqz(b,1,1024)%滤波器幅度和相位图像grid on%噪声通过窄带滤波器filter_outpu = filter(b,1,noise);figure(3)plot(filter_outpu)title('窄带信号在时域的波形')grid on%做fft变换Nfft = fs;fft_x = fft(filter_outpu,Nfft);ff = 0:fs/Nfft:fs-fs/Nfft;figure(4)plot(ff,20*log10(abs(fft_x)))%窄带信号的频谱title('窄带信号的频谱')xlabel('频率 Hz')ylabel('幅度 dB')grid on%窄带信号在时域的波形X_t = filter_outpu;t = 0:1/fs:1-1/fs;figure(5)plot(t,X_t)title('窄带信号在时域的波形')xlabel('t / s')grid on%莱斯表示法h_X = hilbert(X_t,Nfft) ;%希尔伯特变换omega0 = 2*pi*f0;A_t = X_t.*cos(omega0*t)+h_X.*sin(omega0*t);B_t = -1*X_t.*sin(omega0*t)+h_X.*cos(omega0*t); figure(6)subplot(2,1,1);plot(t,A_t)grid onhold onsubplot(2,1,2);plot(t,B_t)grid on%瞬时频率瞬时相位theta_t = atan(h_X./X_t); xh1=unwrap(angle(h_X)); omega_t=fs*diff(xh1)/(2*pi); figure(7)plot(omega_t);title('瞬时频率')omega_t = diff(theta_t); figure(8)plot(t,theta_t)title('瞬时相位')grid on%包络检测am = abs(h_X);figure(9)plot(t,X_t,t,am,'r') %包络title('窄带信号的包络')grid on。
数字信号处理教程之大作业郭航(2014212596)1)解:参考书p3862)解:参考书p3961.数字滤波器通带截止频率π/5rad 通带最大衰减3dB 阻带截止频率3*π/5rad 阻带最小衰减20dB2.频率预畸变(T=2)047121.37638192tan tan6232910.32491969tan tan1032s 102p p===Ω===Ωπωπωs793.159398.0456.23854.23*8187.0*331*9512.0*3311111211231231231311221131231131213121a 3132221112.031105.031123112131112121)(1.0))(()()())(()()()()(2,,,)2()(--s )(21s 2)21122(312521)(+-----------=----=---==-=-=+=+===-==⇒-=-==-====⇒--+=-=+-+=+-+=++=--------------∑∑∑z z z z z z z z z z e zez e z e k z e A nT nT a t t tt Nk t s k a k kk a T T T k s Kk z H sT e en u nT h n h e e t u t u e e t u e A t h s s A A s s s A s H s s s s s s H 则有:部分分式形式:3.设计其系统函数(p355-(7.5.24))593154531.125392584.1997697634.1) 6232910.32491969 047121.37638192lg(2/)110110(lg )lg(2/)110110(lg 3.021.01.0==⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡ΩΩ--≥p s R A s s N所以 N=2 查表7.4得14142136.11)(2a ++=s s s H4.求数字滤波器的系统函数4363449349.0463.15434211047121.37638192110*21.0c ==-Ω=ΩNA ss1903969022.0436*******.0*4142136.11903969022.04142136.1)()s (2222++=Ω+Ω+Ω==Ωs s s s H H cc c sa lp c16170849412.01903969022.0001903969022.0210210======e e e d d d根据 表7.9 得807481843.1)(3171882269.0/)(8958353866.0/)22(1053382101.0/)(2106764203.0/)22(1053382101.0/)(221022102220122102220122100=++==+-=-=-==+-==-==++=c e c e e R R c e c e e B R c e e B R c d c d d A R c d d A R c d c d d A21212211221103171882269.08958353866.011053382101.021********.010********.01)(--------+-++=++++=zz z z z B z B zA z A A z HT=2; %设置采样周期为2fs=1/T; %采样频率为周期倒数Wp=0.2*pi/T;Ws=0.6*pi/T; %设置归一化通带和阻带截止频率Ap=3;As=20; %设置通带最大和最小衰减[N,Wc]=buttord(Wp,Ws,Ap,As,'s'); %调用butter函数确定巴特沃斯滤波器阶数[B,A]=butter(N,Wc,'s'); %调用butter函数设计巴特沃斯滤波器W=linspace(0,pi,400*pi); %指定一段频率值hf=freqs(B,A,W); %计算模拟滤波器的幅频响应subplot(2,1,1);plot(W/pi,abs(hf)/abs(hf(1))); %绘出巴特沃斯模拟滤波器的幅频特性曲线grid on;title('巴特沃斯模拟滤波器');xlabel('Frequency/Hz');ylabel('Magnitude');[D,C]= bilinear (B,A,fs); %调用双线性变换法Hz=freqz(D,C,W); %返回频率响应subplot(2,1,2);plot(W/pi,abs(Hz)/abs(Hz(1))); %绘出巴特沃斯数字低通滤波器的幅频特性曲线grid on; title('巴特沃斯数字滤波器');xlabel('Frequency/Hz');ylabel('Magnitude');wp=0.2*pi;ws=0.6*pi;Rp=3;As=20;ripple=10^(-Rp/20);Attn=10^(-As/20);Fs=0.5;T=1/Fs;Omgp=(2/T)*tan(wp/2);Omgs=(2/T)*tan(ws/2);[n,Omgc]=buttord(Omgp,Omgs,Rp,As,'s')[ba1,aa1]=butter(n,Omgc,'s');[bd,ad]=bilinear(ba1,aa1,Fs)[sos,g]=tf2sos(bd,ad)[H,w]=freqz(bd,ad);dbH=20*log10((abs(H)+eps)/max(abs(H)));subplot(2,2,1),plot(w/pi,abs(H));ylabel('|H|');title('幅度响应');axis([0,1,0,1.1]);set(gca,'XTickMode','manual','XTick',[0,0.25,0.4,1]); set(gca,'YTickMode','manual','YTick',[0,Attn,ripple,1]); gridsubplot(2,2,2),plot(w/pi,angle(H)/pi);ylabel('\phi');title('相位响应');axis([0,1,-1,1]);set(gca,'XTickMode','manual','XTick',[0,0.25,0.4,1]); set(gca,'YTickMode','manual','YTick',[-1,0,1]);gridsubplot(2,2,3),plot(w/pi,dbH);title('幅度响应(dB)');ylabel('dB');xlabel('频率(\pi)');axis([0,1,-40,5]);set(gca,'XTickMode','manual','XTick',[0,0.25,0.4,1]); set(gca,'YTickMode','manual','YTick',[-50,-15,-1,0]); gridsubplot(2,2,4),zplane(bd,ad);axis([-1.1,1.1,-1.1,1.1]);title('零极图');n =2Omgc =0.4363bd =0.1053 0.2107 0.1053ad =1.0000 -0.8958 0.3172sos =1.00002.0000 1.0000 1.0000 -0.8958 0.3172g =0.1053。
郑州大学 电气工程学院实 验 报 告学生姓名 学号20090220 成绩 批阅人 专业 自动化 同组实验人 实验名称 离散时间序列的卷积 所属课程 信号分析与处理 实验室(房间号) 3207 实验时间11年12月 日 时-- 时 一 实验目的学会用MATLAB 实现对离散时间序列的卷积,掌握利用h(n)与输入x(n)卷积来求系统零状态响应的方法。
二 实验设备(名称,型号或规格,数量)或软件名称MATLAB 软件使用MATLAB 中求卷积函数的conv(),并对结果分析总结。
三 实验内容(接线图或实验程序等)和步骤实验内容:设线性时不变系统的单位脉冲响应为h(t)=)()9.0(t n ε,输入序列分别为()=n x )(t ε-)10(-t ε,求系统的输出y(n)。
实验程序:nx=-4:40;x=zeros(1,length(nx));x(1,5:14)=1;nh=0:40;h=(0.9).^nh;[y,ny]=conv_m(x,nx,h,nh);subplot(3,1,1);stem(nx,x,'filled');axis([-4,40,0,1]);titl e('x[n]');subplot(3,1,2);stem(nh,h,'filled');axis([-4,40,0,1]);titl e('h[n]');subplot(3,1,3);stem(ny,y,'filled');axis([-4,40,0,8]);titl e('y[n]');四实验数据记录实验结果:x[n]0.51h[n]05101520253035405y[n]改变参数以后的程序:nx=-4:40;x=zeros(1,length(nx)); x(1,5:24)=1; nh=0:40;h=(0.9).^nh;[y,ny]=conv_m(x,nx,h,nh);subplot(3,1,1);stem(nx,x,'filled');axis([-4,40,0,1]);titl e('x[n]');subplot(3,1,2);stem(nh,h,'filled');axis([-4,40,0,1]);titl e('h[n]');subplot(3,1,3);stem(ny,y,'filled');axis([-4,40,0,10]);tit le('y[n]');输出结果:x[n]00.51h[n]0510152025303540510y[n]五 实验结果分析从上图可以看出,输出序列的峰值在输入序列值从1变为0时出现。
课程:《随机振动与信号分析》作业题目:动力特性测试报告小组成员:专业方向:结构工程学院名称:土木工程学院指导老师:****** 教授2014 年7月目录第一章实验目的 (3)第二章实验原理 (3)第三章实验仪器及操作步骤 (7)3.1 实验仪器 (7)3.2 实验步骤 (9)第四章实验数据处理及分析..................................................... 错误!未定义书签。
4.1振动信号的预处理 ............................................................ 错误!未定义书签。
4.1.1快速傅里叶变换(FFT).................. 错误!未定义书签。
4.2.2消除趋势项 ............................. 错误!未定义书签。
4.2.3平滑处理 ............................... 错误!未定义书签。
4.2振动信号的频域分析........................................................ 错误!未定义书签。
4.2.1平均周期图方法 ......................... 错误!未定义书签。
4.2.2自功率谱密度函数 ....................... 错误!未定义书签。
4.2.3互功率谱密度函数 ....................... 错误!未定义书签。
4.2.4频响函数 ............................... 错误!未定义书签。
4.2.5相干函数 ............................... 错误!未定义书签。
4.3振动信号的模态分析 (20)第五章数据统计分析 ................................................................. 错误!未定义书签。
随机信号大作业
大作业建议如下:
1. 随机信号的统计分析:选择一个随机信号,对其进行统计分析。
可以计算平均值、
方差、自相关函数、互相关函数等指标,了解信号的基本统计特性。
2. 随机信号的功率谱密度估计:选择一个随机信号,通过频谱估计方法(如傅里叶变换、周期图法、自相关法等),对其功率谱密度进行估计。
比较不同方法的估计结果,并讨论其优缺点。
3. 高斯白噪声的产生及检测:了解高斯白噪声的定义及特性,编程实现高斯白噪声的
产生,并通过相关统计检验(如卡方检验、Kolmogorov-Smirnov检验),对生成的噪声进行检测。
4. 随机过程的模拟及识别:选择一种随机过程(如马尔可夫过程、线性时不变过程等),编程实现其模拟,并通过识别方法(如自回归模型、卡尔曼滤波器等),对实
际观察到的随机过程进行识别和模型拟合。
5. 随机信号的滤波:选择一个随机信号,设计一个滤波器,对信号进行滤波处理。
可
以比较不同滤波器设计方法(如IIR滤波器、FIR滤波器等)的效果并进行评估。
6. 随机信号的压缩与重构:选择一个随机信号,使用信号压缩算法(如小波变换、奇
异值分解等),对信号进行压缩,并通过信号重构方法,将压缩后的信号进行恢复。
比较不同压缩和重构方法的效果及开销。
以上是一些建议的大作业题目,你可以根据自己的兴趣和能力选择其中一个或结合多
个进行深入研究。
希望对你有帮助!。
计算机作业1题目要求设有AR(2)模型X(n)=-0.3X(n-1)-0.5X(n-2)+W(n),W(n)是零均值正态白噪声,方差为4。
(1)用MATLAB模拟产生X(n)的500观测点的样本函数,并绘出波形;(2)用产生的500个观测点估计X(n)的均值和方差;(3)画出理论的功率谱;(4)估计X(n)的相关函数和功率谱。
实验目的通过本实验,加深对信号均值,方差,相关函数和功率谱估计的理解。
实验程序代码(在matlab的环境下)%%%AR(2)模型%%产生样本函数wn=2.*randn(1,500);n=1:500;xn(1)=1;xn(2)=2;for i=3:500xn(i)=-0.3*xn(i-1)-0.5*xn(i-2)+wn(i);endfigure;plot(xn);title('离散信号样本函数原始波形');%%%估计x(n)的均值和方差m_xn=mean(xn);m_xnvar_xn=var(xn);var_xn%%%画出理论的功率谱figure;Rxx=xcorr(xn)/25000;Pww=fft(Rxx);f=(0:length(Pww)-1)*1000/length(Pww); plot(f,10*log10(abs(Pww)));title('信号理论功率谱');%%%画出估计的相关函数和功率谱figure;subplot(211);R=xcorr(xn);plot(R);title('信号估计相关函数');[P,w]=periodogram(xn,(hamming(500))'); subplot(212);plot(P);title('信号估计功率谱');实验结果1.离散信号原始样本函数波形2.估计xn的均值(m_xn)和方差(var_xn)m_xn = -0.0933var_xn =5.71413.信号的理论功率谱4.信号估计的相关函数和功率谱计算机作业2题目要求1、模拟一个均匀分布的白噪声通过一个低通滤波器,观测输出信号的概率密度。
第五章计算机仿真大作业采用计算机编程实现图1中的自适应均衡器:()h n ()s n ()x n ⊕()noise n ()y n 自适应均衡器()z n图1 信号传输的系统模型图1中()s n 为频率为10Hz 、采样频率为1000Hz 的正弦序列,假设该信号通过一个具有码间干扰特性的信道,其单位抽样响应为()[0.005,0.009,0.024,h n =--0.854,0.218,0.049,0.0323]--,经过上述信道的输出信号()x n 与高斯白噪声()noise n 叠加后作为自适应均衡器的输入信号()y n ,()z n 为自适应均衡器的输出信号。
其中图1中所示的自适应均衡器为一N=31阶FIR 滤波器,抽头系数为(),0,1,,1in i N ω=-其结构如图2所示: 1z -()y n 0ω1ω∑∑++()()d n s n =+-()z n ()e n 1z -1N ω-自适应算法图2自适应均衡器结构图按要求分析回答下列问题,并给出分析结果和波形图: 1.在一个图中用子图的形式(subplot )画出图1中: (1)()s n 信号;(2)()s n 经信道()h n 传输后的()x n 信号;(3)当()x n 加()noise n 的信噪比SNR(dB )为20dB 时均衡器的输入序列()y n 的波形图; 对上述波形进行对照分析和说明。
01002003004005006007008009001000-101正弦信号s(n)01002003004005006007008009001000-101x(n)序列1002003004005006007008009001000-101y(n)序列分析说明:s(n)通过具有码间干扰特性的信道h(n),由于信道存在一定的误差和码间干扰使系统的性能下降,x(n)的波形密度减小了,但整体波形没有发生变化。
加入噪声后,y (n )的幅值没有变化,但整个波形由于受到噪声干扰浮现“毛刺”现象,波形不在平滑。
1.设计方案如下①利用MATLAB中的wavread命令来读入语音信号,将它赋值给某一向量。
再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。
对于波形图与频谱图(包括滤波前后的对比图)都可以用MATLAB画出。
②由于音频信号是连续且长度未知,故可以采用N阶低通滤波器。
滤掉低频部分的噪音,剩下的就是原信号了。
③将去噪后的信号写成wav格式的文件可以使用wavwrite函数。
2. 步骤①录制一段歌曲,采用Matlab工具对此音频信号用FFT作谱分析。
②录制一段音频信号并命名为信xinhao1.wav存放在文件夹中。
③使用wavread函数读出此信号。
④用函数FFT进行傅里叶变换,得到波形图,幅值图,频谱图。
⑤加入一个随机高斯噪声,将原始信号与噪声叠加产生加噪之后的声音文件,得到xinhao2.wav文件。
⑥通过N阶低通滤波器对噪声语音滤波,在Matlab中,FIR 滤波器利用函数filter对信号进行滤波,得到xinhao3.wav文件。
首先通过MATLAB工具编程获取音频文件的原始信号波形,原信号幅值和原始信号频谱图如下:然后通过加一个高斯噪声对其分析可得加噪声后信号波形,加噪声后幅值和加噪声后信号频谱图如下:最后再通过N阶低通滤波器对噪声信号滤波,在Matlab中,FIR 滤波器利用函数filter对信号进行滤波,从而得到滤波后信号波形,滤波后幅值和滤波后信号频谱图:程序[x]=wavread('C:\Users\h\Desktop\xinhao1.wav');X=fft(x,2048);figure(1)fs=abs(X);plot(fs);xlabel('HZ');ylabel('|Y(d)|');subplot(2,2,1);plot(x);xlabel('HZ');ylabel('|Y(d)|');title('原始信号波形');subplot(2,2,2);plot(X);xlabel('HZ');ylabel('|Y(d)|');title('原始信号幅值');subplot(2,2,3);plot(fs);xlabel('HZ');ylabel('|Y(d)|');title('原始信号频谱');figure(2)N=length(x); %计算原始语音信号的长度y1=0.05*randn(N,1); %加上一个高斯随机噪声x1=x+y1;x2=fft(x1,2048);mt=abs(x1);plot(mt);xlabel('HZ');ylabel('|Y(d)|');subplot(2,2,1);plot(x1);xlabel('HZ');ylabel('|Y(d)|');title('加噪声后的波形');subplot(2,2,2);plot(x2);xlabel('HZ');ylabel('|Y(d)|');title('加噪声后的幅值');subplot(2,2,3);plot(mt);xlabel('HZ');ylabel('|Y(d)|');title('加噪声后的频谱');ht=43000;bits=16;wavwrite(x1,ht,bits,'C:\Users\wentao\h\xinhao2.wav');%将加噪声的信号保存figure(3)N=15;wc=0.3;[b,a]=butter(N,wc);x3=fft(x);fp=abs(x3);y2=filter(b,a,x);Y1=fft(y2);subplot(2,2,1);plot(y2);xlabel('HZ');ylabel('|Y(d)|');title('滤波后信号的波形');subplot(2,2,2);plot(Y1);xlabel('HZ');ylabel('|Y(d)|');title('滤波后信号的幅值');subplot(2,2,3);plot(fp);xlabel('HZ');ylabel('|Y(d)|');title('滤波后信号的频谱');wavwrite(y2,ht,bits,'C:\Users\h\Desktop\xinhao3.wav');%将滤波之后保存。
(完整版)随机信号处理考题答案填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F (+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
电科1102 3110504042 戴善瑞第二题:计算长度为N=10000的高斯随机噪声信号的均值、均方值、方差和均方差(也称标准差,即对方差开根号的值)N=10000; %数据长度y=randn(1,N); %产生一个均值为0,方差为1,长度为N的随机序列disp('平均值:');yMean=mean(y) %计算随机序列的均值disp('均方值:');y2p=y*y'/N %计算其均方值,这里利用了矩阵相乘的算法disp('均方根:');ysq=sqrt(y2p) %计算其均方根值disp('标准差:');ystd=std(y,1) %计算标准差,相当于ystd=sqrt(sum((y-yMean).^2)/(N-1))disp('方差:');yd=ystd.*ystd第三题:求一白噪声加正弦信号以及白噪声的自相关函数,并进行分析比较。
(显示出信号及相关函数的波形)clf;N=1000; Fs=500; %数据长度和采样频率n=0:N-1;t=n/Fs; %时间序列Lag=100; %延迟样点数?x=sin(2*pi*20*t)+0.6*randn(1,length(t)); %白噪声加正弦信号[c,lags]=xcorr(x,Lag,'unbiased'); %估计原始信号x的无偏自相关subplot(2,2,1),plot(t,x);xlabel('时间/s');ylabel('x(t)');title('带噪声周期信号');grid on;subplot(2,2,2),plot(lags/Fs,c); %绘x信号的自相关,lags/Fs为时间序列xlabel('时间/s');ylabel('Rx(t)');title('带噪声周期信号的自相关');grid on;x1=randn(1,length(x)); %产生一与x长度一致的随机信号x1[c,lags]=xcorr(x1,Lag,'unbiased'); %求随机信号x1的无偏自相关subplot(2,2,3),plot(t,x1); %绘制随机信号x1xlabel('时间/s');ylabel('x1(t)');title('噪声信号');grid on;subplot(2,2,4);plot(lags/Fs,c); %绘制随机信号x1的无偏自相关xlabel('时间/s');ylabel('Rx1(t)');title('噪声信号的自相关');grid on第四题:已知两个周期信号)2sin()(ft t x π=,)602sin(2.0)(0+=ft t y π,其中f=20Hz ,求互相关函数)(τxy R ,并将这2个周期信号以及互相关的图形显示出来。
随机信号处理大作业多种功率谱估计的算法实现及性能比较一、引言频谱分析是信号处理的基石,为我们提供了时域以外的另一种信号研究手段——频域,使得很多在时域看起来很复杂的问题,用频域来分析就变得十分简单。
对于随机信号而言,由于不存在傅里叶变换,我们通过对其功率谱的分析来研究其频域特性。
功率谱估计问题就是根据一组有限观测值来估计该过程谱的内容,对于平稳随机过程而言,所有的功率谱估计方法都是根据有限的观测值来逼近真实值,估计结果的好坏与估计方法密切相关。
功率谱估计的方法可分为古典法和现代法,古典法基于傅里叶变换,包括直接法和间接法,现代谱估计包括直接解Yule-Walker 方程法、Levinson-Durbin 快速递推法、Burg 算法、MUSIC 算法、本文将对上述功率谱估计的方法进行分析。
二、原理及过程1 、古典法这里采用古典法中的直接法(周期图法)进行功率谱估计,其具体步骤如下。
第一步:由获得的N 点数据构成的有限长序列直接求傅里叶变换,得频谱(1.1)第二步:取频谱幅度的平方,并处以N,以此作为对真实功率谱的估计,即(1.2)2、Yule-Walker 方程法①假定所研究的随机过程是由一白噪声序列激励一因果稳定的可逆线性系统的输出②由观测获得的数据记录估计的参数③由的参数估计的功率谱由上可知,可以将平稳随机信号的功率谱表示为2.1)其中, 是白噪声 的功率谱(为常数), 是系统 的频谱。
这样谱估计问题就转化为模型参数的估计问题,在 AR 、MA 和 ARMA 三种模型中,求 AR 模型 的参数是解线性方程,易于求解,并且 MA 模型和 ARMA 模型都可以用高阶的 AR 模型近似, 所以这里我们采用 AR 模型来进行功率谱估计。
阶 AR 模型的系统函数为(2.2)阶 AR 模型有 +1 个待定参数: , ,⋯, 和系统增益 G 。
(2.4)可表示成下面的矩阵形式:上式用到了自相关函数的偶对称性质,由这 个方程,可以求出 个参数 。