第四章常用概率分布
- 格式:ppt
- 大小:1.67 MB
- 文档页数:48
第四章 常用概率分布五、正态分布的应用正态分布的应用1. 确定医学参考值范围n参考值范围(reference range):指特定的“正常”人群的解 剖、生理、生化指标及组织代谢产物含量等数据中大多数 个体的取值所在的范围。
正态分布的应用 n制定参考值范围的步骤:1. 选择足够数量的正常人作为调查对象。
2. 样本含量足够大。
3. 确定取单侧还是取双侧正常值范围。
4. 选择适当的百分界限。
5. 选择适当的计算方法。
n估计医学参考值范围的方法:1. 正态近似法:适用于正态分布或近似正态分布的资料。
2. 百分位数法:适用于偏态分布资料。
过高异常 过高异常过低异常 过低异常例1 某地调查120名健康女性血红蛋白,直方图显示,其分 布近似于正态分布,得均数为117.4g/L ,标准差为10.2g/L , 试估计该地正常女性血红蛋白的95%医学参考值范围。
分析:正常人的血红蛋白过高过低均为异常,要制定双侧正 常值范围。
该指标的95%医学参考值范围为97.41~137.39(g/L )1.96117.4 1.9610.297.41~137.39X S ±=±´=例 1A 某年某市调查了200例正常成人血铅含量(μg/100g) 如下,试估计该市成人血铅含量的95%医学参考值范围。
分析:血铅的分布为偏峰分布,且血铅含量只以 过高为异常,要用百分位数法制定单侧上限。
( ) ( ) 95 5.%3820095%18938.7/100 7L x iP L n x f g gf m =+-å=+´-=正态分布的应用2. 质量控制图n控制图基本原理:如果某一波动仅仅由个体差异或随机测 量误差所致,那么观察结果服从正态分布。
2. 质量控制图控制图共有7条水平线,中心线位于总体均数μ处,警戒限位于处,控制限位于 处,此外还有2条位于 处。
如果总体均数和总体标准差未知,也可用样本估计值代 替,这时,7条水平线分别位于 、 、 和 处。
第四章 常用概率分布[教学要求]了解:质量控制的意义、原理和方法 熟悉:三个常用概率分布的特征。
掌握:掌握三个常用概率分布的概念;二项分布及Poisson 分布的概率函数与累计概率、正态分布的分布函数的计算方法;医学参考值的计算。
[重点难点]第一节 二项分布一、二项分布的概念与特征基本概念:如果每个观察对象阳性结果的发生概率均为,阴性结果的发生概率均为(1-π);而且各个观察对象的结果是相互独立的,那么,重复观察n 个人,发生阳性结果的人数X 的概率分布为二项分布,记作B (n ,π)。
二项分布的概率函数:Xn X X n C X P --=)1()(ππ二项分布的特征:二项分布图的形态取决于与n ,高峰在=n 处。
当接近0.5时,图形是对称的;离0.5愈远,对称性愈差,但随着n 的增大,分布趋于对称。
二项分布的总体均数为 πμn = 方差为 )1(2ππσ-=n 标准差为 )1(ππσ-=n 如果将出现阳性结果的频率记为 nX p =则p 的总体均数为 πμ=p 标准差为二、二项分布的应用二项分布出现阳性的次数至多为k 次的概率为np )1(ππσ-=∑∑==-==≤kX kX XX eX P k X P 0!)()(λλ出现阳性的次数至少为k 次的概率为第二节 Poisson 分布的概念与特征一、Poisson 分布的概念与特征基本概念:Poisson 分布可以看作是每个观察对象阳性结果的发生概率很小,而观察例数n 很大时的二项分布。
除二项分布的三个基本条件以外,Poisson 分布还要求 接近于0。
有些情况和n 都难以确定,只能以观察单位(时间、空间、面积等)内某种稀有事件的发生数X 来近似。
Poisson 分布的概率函数:式中,πλn =为Poisson 分布的总体均数,X 为观察单位内某稀有事件的发生次数,e 为自然对数的底,λ为常数,约等于2.71828。
Poisson 分布的特征Poisson 分布当总体均数λ值小于5时为偏峰,λ愈小分布愈偏,随着λ增大,分布趋向对称。
第四章 几种重要的分布在这一章,我们要介绍几种重要的分布 首先介绍离散型随机变量的分布§4.1 常用的离散型随机变量的分布一、退化分布在所有分布中,最简单的分布是退化分布,即一个随机变量X 以概率1取一常数,即 ()1P X a == 则称X 服从a 处的退化分布。
,0E X E a a D X D a ====二、0-1分布前面我们学习了贝努力试验。
对于贝努力试验,只有两个结果:成功或失败(A 和A ),如抛一枚银币(正、反);检查一件产品(合格、不合格);一次射击(命中、不命中),都可看做一个贝努力试验。
在一次试验中,设成功的概率为p ,()PA p =,()1P A p q =-=,不同的p 表示不同的贝努力试验。
如检查一批产品中,)P (合格品=0.9,()P 不合格品=0.1。
用来描述贝努力试验的随机变量分布为0-1分布,0,1代表将试验的两个结果定义为0,1.即随机变量X 只可能取0,1两个值,它的分布律为1()(1)(0,1)i iP X i p p i -==-= (0)(1)P X p ==- (1)P X p == 称XE X p = (1)D X p p =-三、二项分布由n 个相同的独立的贝努力试验组成的随机试验称为n 重贝努力试验。
如抛硬币3次,检查7个产品,打100次靶等都属于多重贝努力试验。
1.定义:在n 重贝努力试验中,每次试验事件A 发生的概率都为(01)p p ≤≤,设X 为n 次试验中事件A 发生的次数,则X 的可能取值为0,1,2,,n L()(1),0,1,,k k n k nP X k C p p k n -==-=L不难验证(1)()0P X k =≥ (2)0()1nk P X k ===∑称随机变量X 服从参数为n 和p 的二项分布,记作~(,)X B np()PX k =的值恰好是二项式n (p x +q )展开式中第1k +项kx 的系数。