八年级数学下册勾股定理习题(附答案)(含答案)
- 格式:doc
- 大小:580.50 KB
- 文档页数:17
DCBA勾股定理评估试卷(1)
一、选择题(每小题3分,共30分)
1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).
(A)30 (B)28 (C)56 (D)不能确定
2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长
(A)4 cm (B)8 cm (C)10 cm (D)12 cm
3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
(A)25 (B)14 (C)7 (D)7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
(A)13 (B)8 (C)25 (D)64
5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
715242520715202425157252024257202415(A)(B)(C)(D)
6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形 (D) 等腰三角形.
7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )
(A) 25 (B) 12.5 (C) 9 (D) 8.5
8. 三角形的三边长为abcba2)(22,则这个三角形是( )
(A) 等边三角形 (B) 钝角三角形
(C) 直角三角形 (D) 锐角三角形.
9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金( ).
(A)50a元 (B)600a元 (C)1200a元 (D)1500a元
10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ). (A)12 (B)7 (C)5 (D)13
5米 3米
(第10题) (第11题) (第14题)
二、填空题(每小题3分,24分)
11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
12. 在直角三角形ABC中,斜边AB=2,则222ABACBC=______.
13. 直角三角形的三边长为连续偶数,则其周长为 .
14. 如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.
(第15题) (第16题)
(第17题)
15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.
16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.
17. 如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是______.
18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2. E A
B C D
A
B D
C E
A B C
D
第18题图 7cm
三、解答题(每小题8分,共40分)
19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。 A B
C D L
第21题图 CADB
23. 如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
CA1B1AB
四、综合探索(共26分)
24.(12分)如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
25.(14分)△ABC中,BCa,ACb,ABc,若∠C=90°,如图(1),根据勾股定A
B C
D
第24题图 理,则222cba,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22ba与2c的关系,并证明你的结论.
参考答案
一、选择题(每小题3分,共30分)
1.(D);2.(C);3.(D);4.(B);5.(C);
6.(C);7.(B);8.(C);9.(B);10.(D);
二、填空题(每小题3分,24分)
11.7;12.8;13.24;14.258; 15. 13;
16.4;17.19;18.49;
三、解答题
19.20;
20. 设BD=x,则AB=8-x
由勾股定理,可以得到AB2=BD2+AD2,也就是(8-x)2=x2+42.
所以x=3,所以AB=AC=5,BC=6
21.作A点关于CD的对称点A′,连结B A′,与CD交于点E,则E点即为所求.总费用150万元.
22.116m2;
23. 0.8米;
四、综合探索
24.4小时,2.5小时.
25. 解:若△ABC是锐角三角形,则有a2+b2>c2
若△ABC是钝角三角形,∠C为钝角,则有a2+b2 当△ABC是锐角三角形时, 证明:过点A作AD⊥CB,垂足为D。设CD为x,则有DB=a-x 根据勾股定理得 b2-x2=c2―(a―x) 2 即 b2-x2=c2―a2+2ax―x 2 ∴a2+b2=c2+2ax ∵a>0,x>0 ∴2ax>0 ∴a2+b2>c2 当△ABC是钝角三角形时, 证明:过点B作BDAC,交AC的延长线于点D. 设CD为x,则有DB2=a2-x2 根据勾股定理得 (b+x)2+a2―x 2=c2 即 b2+2bx+x2+a2―x 2=c2 ∴a2+b2+2bx=c2 ∵b>0,x>0 ∴2bx>0 ∴a2+b2 探索勾股定理测试卷 姓名_________ (满分:100分 时间:45分钟) 成绩_______________ 选择题(每题6分) 1、等腰三角形底边上的高为8,周长为32,则三角形的面积为______________ A 56 B 48 C 40 D 321 2、如果Rt△的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是____________ A 2n B n+1 C n2-1 D n2+1 3、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为________ A 6cm2 B 8cm2 C 10cm2 D 12cm2 4、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距_________ A 25海里 B 30海里 C 35海里 D 40海里 填空题(每题6分) 5、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________ 6、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。 7、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为___________。 8、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高____________米。 A B C D 7cm D B C A A B E F D C 北 南 A 东