7.QPSK调制解调实验----移动通信实验报告
- 格式:doc
- 大小:2.04 MB
- 文档页数:8
通信原理实验项目名称:QPSK的调制解调一、实验任务任意输入长度为64比特的二进制信息,采用QPSK系统传输。
码元速率为1Bps,载波频率为10Hz,采样频率为40 Hz,利用Matlab画出:(1)调制后的信号波形;(2)经信道传输后的信号波形(假设加性高斯白噪声,其功率为信号功率1/10);(3)(3)任意解调方法解调后的信号波形。
二、流程图三、完整程序Fd=1; %码元速率Fc=10; %载波频率Fs=40; %采样频率N=Fs/Fd;df=10;x=[ 1 1 0 1 1 0];%任意输入64比特的二进制信息M=2; %进制数SNRpBit=10;%加性高斯白噪声,其功率为信号功率的1/10,即信噪比为10 SNR=SNRpBit/log2(M); %转换为码元速率seed=[12345 54321];numPlot=length(x);figure(1)%画出输入二进制序列subplot(211);stem([0:numPlot-1],x(1:numPlot),'bx');title('输入波形’)%调制y=dmod(x,Fc,Fd,Fs,'fsk',M,df);numModPlot=numPlot*Fs;t=[0:numModPlot-1]./Fs;subplot(212);%画出调制后的信号plot(t,y(1:length(t)),'b-');axis([min(t) max(t) -1.5 1.5]);title('调制后的信号')%在已调信号中加入高斯白噪声randn('state',seed(2));y=awgn(y,SNR-10*log10(0.5)-10*log10(N),'measured',[],'dB');%相干解调figure(2)subplot(211);plot(t,y(1:length(t)),'b-');%画出经过信道的实际信号axis([min(t) max(t) -1.5 1.5]);title('加入高斯白噪声后的已调信号')%带输出波形的相干M元频移键控解调subplot(212);stem([0:numPlot-1],x(1:numPlot),'bx');hold on;stem([0:numPlot-1],z1(1:numPlot),'ro');hold off;axis([0 numPlot -0.5 1.5]);title('相干解调后的信号')四、波形。
中南大学移动通信实验报告课题名称:移动通信实验报告学院:信息科学与工程学院班级:学号:姓名:指导老师:目录1.GSM基站实验部分1.1移动台开机入网及关机实验1.2移动台主叫实验1.3移动台被叫实验2.移动通信系统实验2.1信源编码实验2.2分组码+交织与解分组码+解交织实验2.3扰码与解扰2.4 QPSK调制解调实验2.5信道复用实验2.6信道均衡实验3.实验总结GSM基站实验部分1.1移动台开机入网及关机实验一、实验目的了解移动台(手机)的入网过程。
了解移动台(手机)开关机的信令传递过程。
了解移动台(手机)的位置更新过程二、实验仪器GSM基站实验系统手机一部三、实验原理1、移动台开机搜索网络的过程当移动终端MS开机或者从盲区进入覆盖区时,手机将寻找PLMN(公共陆地移动网络)允许的所有频点,搜寻最强的BCCH载频,接收到FCCH信道信息,锁定到一个正确载频频率上。
紧接着,MS开始解码SCH信道上与同步有关的信息。
这时,MS也可以接收BCCH信道上有关小区信息的系统消息了。
MS比较系统消息中所携带的本小区的LAI和手机中所存储的LAI。
如果两者相同,则触发IMSI附着过程。
否则,则触发正常位置更新。
本实验主要进行IMSI附着的信令过程,及其MSC/VLR数据库中对于此MS记录的改变情况。
而正常的位置更新过程将在移动性管理实验中介绍。
GSM网络中位置更新程序包括三类:IMSI附着、正常位置更新、周期性位置更新。
从信令角度上看,周期性位置更新的信令过程同IMSI附着相似,目的是周期性向网络报告MS的可达性。
有了周期性的位置更新,当移动台开机进入盲区的时候,MS就不会向网络进行周期性的位置更新,网络就将此MS标记为隐含关机状态,这时如果有其他的MS呼叫此MS,MSC/VLR就不会对此MS进行呼叫,而是直接告诉主呼的MSC/VLR,被叫MS不在服务区。
从而避免了不必要的寻呼过程,节省了资源。
3、IMSI附着的信令过程介绍图4-2-1是MS进行IMSI附着的信令过程。
qpsk实验报告QPSK实验报告摘要:本实验旨在通过对QPSK(Quadrature Phase Shift Keying)调制技术的研究和实验,探讨其在数字通信领域的应用。
实验过程中,我们首先对QPSK调制技木进行了理论分析,然后搭建了相应的实验平台,进行了信号调制和解调的实验。
最后,通过对实验数据的分析和比对,得出了一些结论和体会。
一、实验目的1. 了解QPSK调制技术的原理和特点;2. 掌握QPSK调制和解调的基本方法;3. 通过实验验证QPSK调制技术的有效性和可靠性。
二、实验原理QPSK调制技术是一种常用的数字调制技术,它将数字信号分成实部和虚部,分别用两路正交的载波进行调制,从而实现了信号的传输。
QPSK调制技术具有带宽利用率高、抗噪声干扰能力强等优点,因此在数字通信领域得到了广泛的应用。
三、实验步骤1. 搭建QPSK调制实验平台,包括信号发生器、正交调制器、载波发生器等设备;2. 设计并生成需要传输的数字信号;3. 进行QPSK调制,将数字信号转换成QPSK信号;4. 传输QPSK信号,并进行解调;5. 对解调后的信号进行分析和比对。
四、实验结果与分析经过实验,我们成功地实现了QPSK调制和解调,并得到了相应的实验数据。
通过对实验数据的分析和比对,我们发现QPSK调制技术在传输效率和抗干扰能力方面表现出色,验证了其在数字通信领域的有效性和可靠性。
五、结论与展望本实验通过对QPSK调制技术的研究和实验,使我们更加深入地了解了数字调制技术在通信领域的应用。
同时,也为我们今后在数字通信领域的研究和实践提供了一定的指导和借鉴。
希望通过不断地学习和实践,能够更好地掌握和应用数字调制技术,为通信技术的发展做出更大的贡献。
竭诚为您提供优质文档/双击可除qpsk实验报告篇一:7.QpsK调制解调实验-移动通信实验报告计算机与信息工程学院验证性实验报告一、实验目的1.了解QpsK技术在移动通信系统中的应用2.掌握QpsK 调制解调数据传输过程;3.了解QpsK的载波恢复和位定时恢复的基本方法4.掌握QpsK解调数据传输过程;1.掌握升余弦成形滤波原理二、预备知识1.数字信号传输的工作方式与工作过程2.QpsK的基本工作原理3.升余弦成形滤波软件4.QpsK解调的基本工作原理5.载波同步和位同步的基本方法三、实验仪器1、移动通信实验箱一台;2、台式计算机一台;3、示波器一台;四、实验原理QpsK调制解调的实现原理框图如图。
J图4.2.8QpsK调制解调原理框图A点为发送数据;b串/并变换发送数据长度为128bit,经过交织器输出的数据为一路串行数据,需要进行串/并变换,产生两路并行数据各为64bit。
c差分编码:为了防止相位模糊现象,采用差分编码,并进行QpsK 映射。
差分编码的公式:InQnan?1bn?1??anbnQpsK映射采用如下方式:图4.2.9QpsK映射图D滤波与调制模块方波会在时间上扩展,造成码间干扰,导致接收机在检测一个码元时发生错误的概率增大。
所以在调制系统中需要对信号进行滤波,以减少失真和符号间干扰(IsI)。
每一支路在进行调制之前进行nyquist成形滤波使QpsK信号的功率谱限制在分配的带宽内。
在这里,选择具有均方升余弦滚降特性的滤波器。
具有升余滚降特性的h(ω)可表示为:?Ts?T?h(w)??s[1?sin(??Tsw)]?2??0,抽样作卷积。
将滤波器的冲击响应函数列表,33个样值。
取不同的窗函数,滤波器的频谱特性不同。
这里选择哈明窗作为窗函数,这样可以避免产生吉布斯现象。
取滚降系数α=0.5,抽样步长Ts=Tc/10,每个码元采样10个点,阶数n=33。
图4.2.10为滤波器特性的仿真示意。
实验一QPSK 调制实验一、实验目的1、掌握QPSK 的调制解调原理。
2、掌握QPSK 的软件仿真方法。
3、掌握QPSK 的硬件设计方法。
二、预习要求1、掌握QPSK 的编解码原理和方法。
2、熟悉matlab 的应用和仿真方法。
3、熟悉DSP 和FPGA 的开发方法。
三、实验原理1、QPSK 调制的工作原理多相相移键控(MPSK ),特别是四相相移键控(QPSK )是目前移动通信、微波通信和卫星通信中最常用的载波传输方式。
四相相移键控(QPSK )信号的正弦载波有4个可能的离散相位状态,每个载波相位携带2个二进制符号,其信号表达式为:)cos()(i c i t A t S θω+= i =1,2,3,4 0≤t ≤TsTs 为四进制符号间隔,{i θ:i=1,2,3,4}为正弦波载波的相位,有四种可能状态。
如以下矢量图所示:如图为QPSK 的相位图,QPSK 的相位为(-3π/4,-π/4,π/4,3π/4)。
对于QPSK :)sin cos cos (sin )sin()(i c i c i c i t t A t A t S θωθωθω+=+= 0≤t ≤Ts由于21cos ±=i θ 21s i n ±=i θ所以:)cos )(sin )((2)(t t Q t t I A t S c c i ωω+=21cos )(±==i t I θ21s i n )(±==i t Q θQPSK 正交调制器方框图如图所示:I图QPSK 正交调制器方框图在kTs ≤t ≤(k+1) Ts(Ts=2Tb)的区间,QPSK 产生器的输出为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=-+-=--+=+++=+=----11),43cos(11),4cos(11),43cos(11),4cos()(1111n n c n n c n n c n n c a a t A a a t A a a t A a a t A t s πωπωπωπω2、QPSK 的相干解调的基本工作原理 QPSK 的相干解调方框图如图所示:图QPSK 的相干解调方框图当调制信号为I =1,Q =1时,由调制原理,调制输出信号为t t t S c c i ωωcos sin )(+=,在没有噪声和延时的理想状态时,解调器的输入t t t S t r c c i ωωcos sin )()(+==,则I 检测器的输出为:t t t t t t r c c c c c ωωωωωsin cos sin sin sin )(+=t t t t c c c c ωωωω2sin 212cos 21212sin 21)2cos 1(21+-=+-=则Q 检测器的输出为:t t t t t t r c c c c c ωωωωωcos cos cos sin cos )(+=t t t t c c c c ωωωω2sin 212cos 21212sin 21)2cos 1(21++=++=用截止频率小于2c ω的低通滤波器对I 检测器的输出滤波后得到1/2,即为逻辑1;对Q 检测器的输出滤波后得到1/2,即为逻辑1。
0QPSK调制解调实验报告一、实验目的1.掌握0QPSK调制解调原理。
2.理解0QPSK的优缺点。
二、实验内容1.观察0QPSK调制过程各信号波形。
2.观察0QPSK解调过程各信号波形。
三、预备知识1.0QPSK调制解调的基本原理。
2. 0QPSK调制解调模块的工作原理及电路说明。
四、实验器材1. 移动通信原理实验箱。
2.20M数字双踪示波器。
五、实验原理0QPSK调制解调原理0QPSK又叫四相相移键控,它通QPSK的不同之处是在正交支路引入了一个码元(Ts)的延时,这使得两个支路的数据错开了一个码元时间,不会同时发生变化,而不像QPSK那样产生±π的相位跳变,而仅能产生±π/2的相位跳变,如图4-1所示。
从图4-1星座图和相位转移图中看出对于1QPSK,±π相位的跳变消除了,所以1QPSK 信号的带限不会导致信号包络经过零点。
0QPSK包络的变化小多了,因此对1QPSK的硬限幅或非线性放大不会再产生严重的频带扩展,0QPSK即使在非线性放大后仍能保持其带限的性质。
0QPSK的调制方法和QPSK一样。
图4-1 QPSK和0QPSK的星座图和相位转移图1)六、实验步骤1.A 方式的0QPSK 调制实验(1)将“调制类型选择”拨码开关拨为00001000、0001,则调制类型选择为A 方式的0QPSK 调制。
(2)分别观察并说明NRZ 码经串并转换得到的‘DI ’、‘DQ ’两路的一个周期的数据波形。
CH1:NRZCH2:DI CH1:NRZ CH2:DQ(3)双踪观察并分析说明‘DI ’与‘I 路成形’信号波形;‘DQ ’与‘Q 路成形’信号波形;CH1:DI CH2: I路成形CH1:DQ CH2: Q路成形(4)双踪观察并分析说明‘I路成形’信号波形与‘I路调制’同相调制信号波形;‘Q路成形’信号与‘Q路调制’正交调制信号波形。
CH1: I路成形CH2: I路调制CH1: Q路成形CH2: Q路调制(5)用示波器观察并说明‘I路成形’信号与‘Q路成形信号的X-Y波形。
课程名称移动通信原理
实验序号实验二
实验项目OQPSK调制解调实验实验地点
实验学时实验类型验证性专业班级
学号姓名
年月日
五、测试/调试及实验结果分析
图中从上到下四种颜色分别表示:测试点TP201测试输入的基带数据波形,测试点TP202测试发送的I路数据,在测试点TP203测试发送的Q路数据,测试点TP308测试的OQPSK调制波形。
可以得出输入的基带信号、I路信号和Q路信号一周期的码元序列如下:
基带:0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1
I路:0 1 0 0 0 1 1 1
Q路:0 1 1 1 0 0 0 1
I路数据是基带数据的奇数码元,Q路数据是基带数据的偶数码元,经验证数据无误。
但从图1的波形可以看到Q路信号没有发生错位偏移TS/2。
由上图,可以清晰看到OQPSK调制波形。
从波形可以看到正交支路信号偏移TS/2后,调制波形在每个TS/2信号只发生±/2的变化。
图中从上到下两种颜色分别表示:TP204测试接收的I路解调波形,TP205测试接收的Q路解调波形,I路的码元序列为:01000111
Q路解调不出波形。
解调后的I路和输入的I路一周期数据一致,但是Q路解调失败。
实验七 QPSK 调制与解调一、实验目的掌握QPSK 调制与解调的原理二、实验内容1. 观察PN 码波形。
2. 观察QPSK 调制的各种波形。
3. 观察QPSK 解调的各种波形。
三、实验仪器1. QPSK 调制与解调模块2. 60M 双踪示波器一台3. 连接线若干四、实验原理1.QPSK 调制QPSK 信号的产生方法可分为调相法和相位选择法。
用调相法产生QPSK 信号的组成方框图如图7-1(a)所示2.QPSK 解调由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图7-2 所示。
图7-2 QPSK 相干解调器五、实验内容记录3.NRZ 上BS 下BS/2上I-OUT下Q-OUT SIN 和COS4.用连接线连接I-OUT 与I-IN,Q-OUT 与Q-IN。
观察QPSK-OUT 的输出波形。
5.用连接线连接SIN 与SIN-IN、COS 与COS-IN、2BS 与2BS -IN 以及QPSK-OUT 与QPSK-IN,用示波器观察上I-1、下Q-1。
6.用示波器观察JI、JQ,与原始信号I-OUT 和Q-OUT 比较。
上JI下J-OUT 上JQ下Q-OUT7.用示波器观察JNRZ,与NRZ 进行比较。
六、实验思考题1.分析QPSK 的调制与解调原理。
答;串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。
设两个序列中的二进制数字分别为a 和b,每一对ab 称为一个双比特码元。
双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。
并/串变换器将上、下支路所得到的并行数据恢复成串行数据的。
七、实验小结。
实验三 DQPSK 调制解调实验一. 实验目的1、掌握DQPSK 调制解调原理。
2、理解DQPSK 的优缺点。
二. 实验内容1、观察DQPSK 调制过程各信号波形。
2、观察DQPSK 解调过程各信号波形。
三. 预备知识1、DQPSK 调制解调的基本原理。
2、DQPSK 调制解调模块的工作原理及电路说明。
四. 实验器材1、移动通信原理试验箱 一台2、60M 双踪数字示波器 一台五.实验原理1.DQPSK 调制原理DQPSK 又叫四相相对相移键控,通过QPSK 实验已知QPSK 具有固定的参考相位,它是以四进制码元本身的相位值来表示信息的。
而DQPSK 没有固定的参考相位,后一个四进制码元总是以它相邻的前一个四进制码元的终止相位为参考相位(或称为基准相位),因此,它是以前后两个码元的相位差值来表示信息的,如表5-1 所示(这里我们采用B 方式进行说明)。
由于DQPSK 传输信息的特有方式,使得解调时不存在相位模糊问题,这是因为不论提取的载波取什么起始相位,对相邻两个四进制码元来说都是相等的,那么相邻两个四进制码元的相位差肯定与起始相位无关,也就不存在由于相干解调载波起始相位不同而引起的相位模糊问题,所以,在使用中都采用相对的四相调制。
在 2DPSK 调制实验中,是先将绝对码变换成相对码,然后用相对码对载波进行绝对相移,同样在DQPSK 调制实验中,将输入的双比特码经码型变换,将得到的相对双比特码进行QPSK 调制,DQPSK 原理框图如图5-1 所示。
图5-1 DQPSK 调制原理框图2.DQPSK 解调原理DQPSK 解调原理同QPSK 是一样的,仅需要在QPSK 解调器的并/串转换器之前加接一个差分译码器使相对码变为绝对码,便形成了DQPSK 解调器.串/并转换波形选择地址生成器Cos ωctSin ωct DQPSK信号波形选择地址生成器EEPROM EEPROMD/A 转换器乘法器乘法器加法器(运放)D/A 转换器CPLD CLK BS NRZ 时序电路低通滤波器时序电路低通滤波器I kQ kNRZ 差分编码六、实验步骤1.A方式的DQPSK调制实验(1)将“调制类型选择”拨码开关拨为00000100、0001,则调制类型选择为A方式的QPSK 调制。
QPSK调制解调实验报告一、实验目的1.把握QPSK调制解调原理。
2.明白得QPSK的优缺点。
二、实验内容1.观看QPSK调制进程各信号波形。
2.观看QPSK解调进程各信号波形。
三、预备知识1.QPSK调制解调的大体原理。
2. QPSK调制解调模块的工作原理及电路说明。
四、实验器材1. 移动通信原理实验箱。
2.20M数字双踪示波器。
五、实验原理1.QPSK调制原理QPSK又叫四相绝对相移调制,QPSK利用载波的四种不同相位来表征数字信息。
由于每一种载波相位代表两个比特信息,故每一个四进制码元又被称为双比特吗元。
咱们把组成双比特码元的前一信息比特用a代表,后一信息比特用b代表。
双比特码元中两个信息比特ab一般是依照格雷码排列的,它与载波相位的关系如表3-1所示,矢量关系如图3-1所示。
图(a)表示A方式的QPSK信号矢量图,图(b)表示B方式的QPSK信号矢量图。
用调相发产生QPSK调制原理框图如下图:解调原理由于QPSK能够看做诗两个正交2PSK信号的合成,故它能够采纳与2PSK信号类似的解调方式进行解调,即由两个2PSK信号相干解调器组成,其原理框图如下图:六.实验步骤方式的QPSK调制实验(1)将“调制类型选择”拨码开关拨为00010000、0001,那么调制类型选择为A方式的QPSK 调制。
(2)别离观看并说明NRZ码经串并转换取得的‘DI’、‘DQ’两路的一个周期的数据波形。
CH1:NRZ CH2:DI CH1:NRZ CH2:DQ(3)双踪观看并分析说明‘DI’与‘I路成型’信号波形;‘DQ’与‘Q路成型’信号波形;CH1:DI CH2:I路成形 CH1:DQ CH2:Q路成形(4)双踪观看并分析说明‘I路成形’信号波形与‘I路调制’同相调制信号波形;‘Q路成形’信号与‘Q路调制’正交调制信号波形。
CH1: I路成形 CH2: I路调制CH1: Q路成形 CH2: Q路调制(5)用示波器观看并说明‘I路成形’信号与‘Q路成形信号的X-Y波形。
计算机与信息工程学院验证性实验报告
一、实验目的
1.了解QPSK技术在移动通信系统中的应用
2.掌握QPSK调制解调数据传输过程;
3.了解QPSK的载波恢复和位定时恢复的基本方法
4.掌握QPSK解调数据传输过程;
1. 掌握升余弦成形滤波原理
二、预备知识
1. 数字信号传输的工作方式与工作过程
2. QPSK的基本工作原理
3. 升余弦成形滤波软件
4. QPSK解调的基本工作原理
5. 载波同步和位同步的基本方法
三、实验仪器
1、移动通信实验箱一台;
2、台式计算机一台;
3、示波器一台;
四、实验原理
QPSK调制解调的实现原理框图如图。
J
图4.2.8 QPSK 调制解调原理框图
A 点为发送数据;
B 串/并变换
发送数据长度为128bit ,经过交织器输出的数据为一路串行数据,需要进行串/并变换,产生两路并行数据各为64bit 。
C 差分编码:
为了防止相位模糊现象,采用差分编码,并进行QPSK 映射。
差分编码的公式:n n n n n n b a b a Q I =>--11 QPSK 映射采用如下方式:
图4.2.9 QPSK 映射图
D 滤波与调制模块
方波会在时间上扩展,造成码间干扰,导致接收机在检测一个码元时发生错误的概率增大。
所以在调制系统中需要对信号进行滤波,以减少失真和符号间干扰(ISI )。
每一支路在进行调制之前进行Nyquist 成形滤波使QPSK 信号的功率谱限制在分配的带宽内。
在这里,选择具有均方升余弦滚降特性的滤波器。
具有升余滚降特性的H (ω)可表示为:
⎪⎪⎩⎪
⎪⎨⎧-+=0
)]
sin(1[2)(w T T T w H s s s π,抽样作卷积。
将滤波器的冲击响应函数列表,33个样值。
取不同的窗函数,滤波器的频谱特性不同。
这里选择哈明窗作为窗函数,这样可以避免产生吉布斯现象。
取滚降系数α=0.5,抽样步长Ts=Tc/10,每个码元采样10个点,阶数N=33。
图4.2.10为滤波器特性的仿真示意。
图4.2.10 成形滤波器特性
滤波后信号调制到25kHz 的载波上,两路相加从而完成信号调制。
E 接收到的已调信号
为了实现正交解调,需要进行希尔伯特变换,获得两个分量I 和Q 。
cos sin sin cos n c n c n c n c I a t b t Q a t b t
ωωωω=+=-
F 能量判决与载波恢复
在接收端能量判决,当超过设定的门限值后,可判断接收到有效信号。
通过发送的训练序列来进行载波同步。
图4.2-11显示载波同步的过程,载波误差逐渐收敛。
图4.2.11 载波同步误差角度收敛图
在这里,我们简单的讨论一下同相正交解调的原理,来说明载波同步的方法。
设两个正交的滤波器的输出为()I t 和()Q t ,那么正交解调的过程用数学公式表示如下:
()()cos()()sin()()cos ()sin ()()sin()()cos()()sin ()cos c c c c A t I t t Q t t a t b t B t I t t Q t t a t b t ϖϕωϕϕϕ
ϖϕωϕϕϕ=⨯++⨯+=-=⨯+-⨯+=+ 4.2.2
若没有经过载波同步,本地载波与调制信号的载波会存在相位误差,这里设为ϕ,计算可知:
()()cos ()sin ()()cos ()sin b t B t A t a t A t B t ϕϕϕϕ
=-=+ 4.2.3
若载波已同步,即ϕ为0,那么()()b t B t =,()()a t A t =,从而得到解调的结果;
若0ϕ≠,我们可以在训练阶段,使发送的an 与bn 相同,即上式中的
()()a t b t =,则可得到()()
()()
B t A t tg B t A t ϕ-=
+这一重要的结果。
通过这个结果我们可以求出ϕ,调整载波相位,从而实现载波同步。
G 位定时
位定时也即码同步。
这里需要从每个码元的10个抽样点中选择合适的判决时刻。
位定时误差的提取时刻可依据基带信号过零点。
继载波同步训练序列之后,发送位定时训练序列(倒相序列)。
采用下面位定时误差提取法:
图4.2.12 位定时误差提取示意图
)]
2()2()[()(+--=n S n S n S n e b ,
如果)(n e b >0,则定时抽样脉冲向前调整;反之应向后调整。
H 信号同相正交解调 当发送序列为
{1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1},对应的解调后得到的波形图4.2-13。
图4.2.13 解调的结果
五、实验步骤
1. 启动实验箱,在主界面上选择实验“QPSK调制”,进入“QPSK调制”界面。
2. 点击“系统模型”按钮,弹出“QPSK调制原理框图”窗口,熟悉QPSK调制原
理;关闭该窗口。
3. 输入原始数据。
原始数据产生方式有两种:自动和手动。
选中“自动”方式时,
原始数据由系统自动生成;未选中“自动”方式时,将会出现数据输入窗口,根据窗口提示输入16进制原始数据,点击“返回”按钮完成输入。
4. 点击“初始化”按钮,调制过程开始;
5. 根据系统模型,在画面右上方选择需要观察的信号点对应的字母(如要观察发
送数据的波形,点击字母“A”),观察调制过程中信号点的波形;可通过页面下方按钮选择“放大”、“缩小”或“移动”观察波形。
6. 也可以选择通过示波器观察各信号点。
先将示波器的输入端与实验板上“观察
端M”(在实验箱最右边偏上的位置,为D/A转换器的输出口)连接,根据系统模型,在画面右上方选择需要观察的信号点对应的字母(如要观察发送数据的波形,点击字母“A”),在示波器上观察调制过程中信号点的波形。
教师签名:
年月日 .。