福州市2011年中考数学试题附答案
- 格式:doc
- 大小:918.50 KB
- 文档页数:16
1二○一一年福州市初中毕业会考、高级中等学校招生考试数 学 试 卷(全卷共4页,三大题,22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.毕业学校 姓名 考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.6的相反数是 A.6−B.16C.6±2.福州地铁将于2014年12月试通车,规划总长约180000 米,用科学记数法表示这个总长为 A.60.1810⨯米B.61.810⨯米C.51.810⨯米D.41810⨯米3.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是4.图1是我们学过的反比例函数图象,它的函数解析式可能是 A.2y x =B.4y x=C.3y x=−D.12y x =5.下列四个角中,最有可能与70o 角互补的角是6.不等式组11112x x +≥−⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是图1BACDABDC122−ADBC27.一元二次方程(2)0x x −=根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 8.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是 A.0B.13C.23D.19.如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C , 若120AOB ∠=,则大圆半径R 与小圆半径r 之间满足A.RB.3R r =C.2R r =D.R =10.如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是 A.2 B.3C.4D.5二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:225x −= .12.已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中 飞来一块陨石落在地球上,则落在陆地上的概率是 .13.如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠= 度. 14.化简1(1)(1)1m m −++的结果是 .15.以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如图5.如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a图2图3BCD图4A O 图560三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:0|−4|+2011 (2)化简:2(3)(2)a a a ++− 17.(每小题8分,共16分)(1)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =. 求证AB ED =.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵? 18.(满分10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据 数学内容所占课时比例,绘制如下统计图表(图7-1~图7-3),请根据图表提供的信息,回 答下列问题:(1)图7-1中“统计与概率”所在扇形的圆心角为 度; (2)图7-2、7-3中的a = ,b = ;(3)在60课时的总复习中,19.(满分12分)如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x (2)将线段AB 绕点B 逆时针旋转90o ,得到线段BC ,请在答题卡 指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+,A图6BCDE图7-145%5%实践与综合应用统计与概率数与代数 空间与图形 40%67a44数与式函数数与代数(内容)图7-2课时数方程(组)与不等式(组)图7-3方程(组)与不等式(组)课时数则y 随x 的增大而 (填“增大”或“减小”).20.(满分12分)如图9,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =求:(1)tan C ;(2)图中两部分阴影面积的和. 21.(满分12分) 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.22.(满分14分)已知,如图11,二次函数223y ax ax a =+−(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :y x =对称.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.B A BCDEF 图10-1 O图10-2 备用图 备用图2011年福建省福州市中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、(2011•福州)6的相反数是()A、﹣6B、错误!未找到引用源。
二○一一年福州市初中毕业会考、高级中等学校招生考试数 学(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2010福建福州,1,4分)6的相反数是( )A .6-B .16C .6±D .【答案】A 2. (2010福建福州,2,4分)福州地铁将于2014年12月试通车,规划总长约180000 米,用科学记数法表示这个总长为( )A .60.1810⨯米B .61.810⨯米C .51.810⨯米D .41810⨯米【答案】C3. (2010福建福州,3,4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )【答案】A4. (2010福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y =C .3y =-D .12y x =【答案】B图1ABDC5. (2010福建福州,5,4分)下列四个角中,最有可能与70o 角互补的角是( )【答案】D6. (2010福建福州,6,4分)不等式组11112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是( )【答案】D7. (2010福建福州,7,4分)一元二次方程(2)0x x -=根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 【答案】A8. (2010福建福州,8,4分)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A .0B .13C .23D . 1【答案】B9. (2010福建福州,9,4分)如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C ,若120AOB ∠=,则大圆半径R 与小圆半径r 之间满足( ) A.RB .3R r =C .2R r = D.R =【答案】CBACD1202-ADBC图210. (2010福建福州,10,4分)如图3,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D . 5【答案】C二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11. (2010福建福州,11,4分)分解因式:225x -= . 【答案】(5)(5)x x -+12. (2010福建福州,12,4分)已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是 . 【答案】31013. (2010福建福州,13,4分)如图4,直角梯形ABCD 中,AD ∥BC ,90C ∠=o ,则A B C ∠+∠+∠= 度.【答案】27014. (2010福建福州,14,4分)化简1(1)(1)1m m -++的结果是 .【答案】m15. (2010福建福州,15,4分)以数轴上的原点O 为圆心,3为半径的扇形中,圆心角90AOB ∠=,另一个扇形是以点P 为圆心,5为半径,圆心角60CPD ∠=,点P 在数轴上表示实数a ,如图5.如果两个扇形的圆弧部分(AB 和CD )相交,那么实数a 的取值范围是图3BCD图4A【答案】. 42a -≤≤-三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) (2010福建福州,16(1),7分)计算:0|-4|+2011【答案】解:原式414=+-1=(2) (2010福建福州,16(2),7分)化简:2(3)(2)a a a ++- 【答案】解:原式22692a a a a =+++-89a =+17. (1) (2010福建福州,17(1),8分)如图6,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC DC =.求证AB ED =.【答案】(1)证明:∵AB BD ⊥,ED BD ⊥∴90ABC D ∠=∠= 在ABC ∆和EDC ∆中 ABC DBC DC ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩O 图560A图6B CDE∴ABC ∆≌EDC ∆ ∴AB ED =(2) (2010福建福州,17(2),8分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵? 【答案】(2)解:设励东中学植树x 棵.依题意,得 (23)834x x +-= 解得279x =∴2322793555x -=⨯-=答:励东中学植树279棵,海石中学植树555棵.18. (2010福建福州,18,10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图7-1~图7-3),请根据图表提供的信息,回答下列问题:(1)图7-1中“统计与概率”所在扇形的圆心角为 度; (2)图7-2、7-3中的a = ,b = ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?【答案】(1)36; (2)60;14(3)解:依题意,得45%6027⨯=答:唐老师应安排27课时复习“数与代数”内容. 19. (2010福建福州,19,12分)图7-1 45%5%实践与综合应用统计与概率数与代数 空间与图形 40%67a44数与式函数数与代数(内容)图7-2 课时数方程(组)与不等式(组)图7-3方程(组) 与不等式(组)课时数如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围; (2)将线段AB 绕点B 逆时针旋转90o ,得到线段BC ,请在答题卡 指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+, 则y 随x 的增大而 (填“增大”或“减小”).【答案】(1)设直线AB 的函数解析式为y kx b =+ 依题意,得(10)A ,,(02)B ,∴{020k b b=+=+解得{22k b =-=∴直线AB 的函数解析式为22y x =-+ 当02y ≤≤时,自变量x 的取值范围是01x ≤≤.(2)线段BC 即为所求 增大20. (2010福建福州,20,12分)如图9,在ABC ∆中,90A ∠=o ,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,连接OD .已知2BD =,3AD =. 求:(1)tan C ;(2)图中两部分阴影面积的和.【答案】解:(1)连接OE∵AB 、AC 分别切O 于D 、E 两点 ∴90ADO AEO ∠=∠= 又∵90A ∠=o∴四边形ADOE 是矩形 ∵OD OE =∴四边形ADOE 是正方形 ∴OD ∥AC ,3OD AD == ∴BOD C ∠=∠∴在Rt BOD ∆中,2tan BD BOD ∠== ∴2tan 3C = (2)如图,设⊙O 与BC 交于M 、N 两点.由(1)得,四边形ADOE 是正方形∴90DOE ∠=∴90COE BOD ∠+∠=∵在Rt EOC ∆中,2tan C =,3OE = ∴92EC = ∴29113444O DOM EON DOE S S S S +===π⨯=π扇形扇形扇形B图9B∴()39944BOD COE DOM EON S S S S S ∆∆=+-+=-π阴影扇形扇形 ∴图中两部分阴影面积的和为399-π21. (2010福建福州,21,12分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.【答案】(1)证明:①∵四边形ABCD 是矩形∴AD ∥BC∴CAD ACB ∠=∠,AEF CFE ∠=∠ ∵EF 垂直平分AC ,垂足为O∴OA OC =∴AOE ∆≌COF ∆ ∴OE OF =∴四边形AFCE 为平行四边形 又∵EF AC ⊥∴四边形AFCE 为菱形②设菱形的边长AF CF xcm ==,则(8)BF x cm =- 在Rt ABF ∆中,4AB cm =由勾股定理得2224(8)x x +-=,解得5x = ∴5AF cm =(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA = ∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒 ∴5PC t =,124QA t =-ABC DEF图10-1O图10-2备用图∴5124t t =-,解得43t = ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P 、Q 在互相平行的对应边上. 分三种情况:i)如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b += ii)如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =, 即12b a -=,得12a b += iii)如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b += 综上所述,a 与b 满足的数量关系式是12a b +=(0)ab ≠22. (2010福建福州,22,14分)已知,如图11,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l:y 对称.(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN NM MK ++和的最小值.图1图2图3Q【答案】解:(1)依题意,得2230ax ax a +-=(0)a ≠解得13x =-,21x =∵B 点在A 点右侧∴A 点坐标为(30)-,,B 点坐标为(10), ∵直线l:y x当3x =-时,(3)0y -=∴点A 在直线l 上(2)∵点H 、B 关于过A 点的直线l :y =对称∴4AH AB ==过顶点H 作HC AB ⊥交AB 于C 点则122AC AB ==,HC =∴顶点(H -把(H - 代入二次函数解析式,解得a =∴二次函数解析式为2y = (3)直线AH 的解析式为y + 直线BK 的解析式为y 由y y ⎧⎪=+⎨⎪=-⎩ 解得{x y ==即K ,则4BK = ∵点H 、B 关于直线AK 对称∴HN MN +的最小值是MB ,过K 作KD x ⊥轴于D 点。
2011年福建省福州市中考数学试卷—解析版一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1、(2011•福州)6的相反数是()A、﹣6B、C、±6D、考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2011•福州)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为()A、0.18×106米B、1.8×106米C、1.8×105米D、18×104米考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()A、B、C、D、考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.4、(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是()A、y=x2B、C、D、考点:反比例函数的图象;正比例函数的图象;二次函数的图象。
福建省9市2011年中考数学专题7:统计与概率精品试题分类解析汇编一、选择题1.(福建福州4分)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是A、0B、13C、23D、1【答案】B。
【考点】列表法或树状图法,概率。
【分析】画树状图:图中可知,共有6种等可能情况,积是正数的有2种情况,故概率为2163。
故选B。
2.(福建泉州3分)下列事件为必然事件的是A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖【答案】C。
【考点】随机事件。
【分析】根据事件的分类的定义及分类对四个选项进行逐一分析即可:A、打开电视机,它正在播广告是随机事件,故本选项错误;B、抛掷一枚硬币,正面朝上是随机事件,故本选项错误;C、因为一枚普通的正方体骰子只有1~6个点数,所以掷得的点数小于7是必然事件,故本选项正确;D、某彩票的中奖机会是1%,买1张中奖或不中奖是随机事件,故本选项错误。
故选C。
3.(福建漳州3分)下列事件中,属于必然事件的是A.打开电视机,它正在播广告B.打开数学书,恰好翻到第50页C.抛掷一枚均匀的硬币,恰好正面朝上D.一天有24小时【答案】D 。
【考点】必然事件。
【分析】根据必然事件的定义:一定发生的事件,即可判断:A 、是随机事件,故选项错误;B 、是随机事件,故选项错误;C 、是随机事件,故选项错误;D 、是必然事件,故选项正确。
故选D 。
4.(福建漳州3分)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是A .79,85B .80,79C .85,80D .85,85【答案】C 。
【考点】众数,中位数。
【分析】众数是一组数据中出现次数最多的数据,数据85出现了两次最多为众数;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
2008年无锡市初中毕业暨高级中等学校招生考试数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有12小题,15空, 每空2分,共30分.请把结果直接填在题中的横线上.) 1.6-的相反数是 ,16的算术平方根是 . 2.分解因式:22b b -=.3.设一元二次方程2730x x -+=的两个实数根分别为1x 和2x , 则12x x +=,12x x =.4.截至5月30日12时止,全国共接受国内外社会各界捐赠的抗 震救灾款物合计约3990000万元,这个数据用科学记数法可表示为 万元. 5.函数21y x =-中自变量x 的取值范围是 ; 函数24y x =-x 的取值范围是.6.若反比例函数ky x=的图象经过点(12--,),则k 的值为.7.一射击运动员一次射击练习的成绩是(单位:环):7,10,9,9, 10,这位运动员这次射击成绩的平均数是 环. 8.五边形的内角和为 . 9.如图,OB OC =,80B ∠=,则AOD ∠=.10.如图,CD AB ⊥于E ,若60B ∠=,则A ∠=.11.已知平面上四点(00)A ,,(100)B ,,(106)C ,,(06)D ,, 直线32y mx m =-+将四边形ABCD 分成面积相等的两部分,则m 的值为 .12.已知:如图,边长为a 的正ABC △内有一边长为b 的内接正 DEF △,则AEF △的内切圆半径为 .二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)13.计算22()ab ab的结果为( ) A.b B .aC.1D.1b14.不等式112x ->的解集是( ) (第9题)(第10题)(第12题)A.12x >-B.2x >- C.2x <- D.12x <-15.下面四个图案中,是轴对称图形但不是旋转对称图形的是( )A . B.C .D .16.如图,OAB △绕点O 逆时针旋转80到OCD △的位置, 已知45AOB ∠=,则AOD ∠等于( ) A.55 B.45 C.40 D.3517.下列事件中的必然事件是( ) A.2008年奥运会在北京举行B.一打开电视机就看到奥运圣火传递的画面 C.2008年奥运会开幕式当天,北京的天气晴朗D.全世界均在白天看到北京奥运会开幕式的实况直播18.如图,E F G H ,,,分别为正方形ABCD 的边AB ,BC ,CD ,DA 上的点,且13AE BF CG DH AB ====,则图中阴影部分的面积 与正方形ABCD 的面积之比为( )A.25B.49C.12D.35三、认真答一答(本大题共有8小题,共64分,解答需写出必要的文字说明、演算步骤或证明过程.) 19.解答下列各题(本题有3小题,第(1),(2)小题每题5分,第(3)小题3分,共13分.) (101232tan 60(12)--+-+.(2)先化简,再求值:244(2)24x x x x -++-,其中x =(3)如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形)(第16题)(第18题)20.(本小题满分6分)如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试说明:ABF EAD △∽△.21.(本小题满分7分)如图,四边形ABCD 中,AB CD ∥,AC 平分BAD ∠,CE AD ∥交AB 于E . (1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断ABC △的形状,并说明理由.22.(本小题满分6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.23.(本小题满分6分)小明所在学校初三学生综合素质评定分A B C D ,,,四个等第,为了了解评定情况,小明随机调查了初注:等第A,B,C,D分别代表优秀、良好、合格、不合格.(1)请在下面给出的图中画出这30名学生综合素质评定等第的频数条形统计图,并计算其中等第达到良好以上(含良好)的频率.(2)已知初三学生学号是从3001开始,按由小到大顺序排列的连续整数,请你计算这30名学生学号的中位数,并运用中位数的知识来估计这次初三学生评定等第达到良好以上(含良好)的人数.24.(本小题满分8分)已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40”,那么满足这一条件,且彼此不全等的三角形共有个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.25.(本小题满分9分)在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m 和乙种板材120002m 的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m 或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所图1问:这400间板房最多能安置多少灾民?26.(本小题满分9分)已知抛物线22y ax x c =-+与它的对称轴相交于点(14)A -,,与y 轴交于C ,与x 轴正半轴交于B . (1)求这条抛物线的函数关系式; (2)设直线AC 交x 轴于D P ,是线段AD 上一动点(P 点异于A D ,),过P 作PE x ∥轴交直线AB 于E ,过E 作EF x ⊥轴于F ,求当四边形OPEF 的面积等于72时点P 的坐标.四、实践与探索(本大题共2小题,满分18分) 27.(本小题满分10分)如图,已知点A 从(10),出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形OABC ,使点B C ,在第一象限内,且60AOC ∠=;以(03)P ,为圆心,PC 为半径作圆.设点A 运动了t 秒,求:(1)点C 的坐标(用含t 的代数式表示);(2)当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.28.(本小题满分8分)一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)2008年无锡市初中毕业高级中等学校招生考试数学试题参考答案及评分说明一、细心填一填 1.6,42.(2)b b -3.7,34.63.9910⨯5.1x ≠,2x ≥6.2 7.9 8.540 9.20 10.30 11.1212.3()6a b - 二、精心选一选 13.B 14.C 15.D 16.D 17.A 18.A三、认真答一答19.(1)解:原式31=- ·················· (4分)4=. ···································· (5分)(2)解:原式22(2)11(2)(2)(2)(4)2(2)22x x x x x x -=+=-+=--.············································································································· (4分) 当x =11(54)22=-=. ··························································· (5分) (3)如图所示(答案不唯一) ···································································· (3分) 20.解法一:矩形ABCD 中,AB CD ∥,90D ∠=, ······························· (2分)BAF AED ∴∠=∠. ················································································ (4分) BF AE ⊥,90AFB ∴∠=,AFB D ∴∠=∠. ········································· (5分)图1第19题(3)ABF EAD ∴△∽△. ·············································································· (6分)解法二:矩形ABCD 中,90BAD D ∠=∠=. ········································· (2分)90BAF EAD ∴∠+∠=,90EAD AED ∠+∠=,BAF AED ∴∠=∠. ·········· (4分)(下同)21.(1)AB CD ∥,即AE CD ∥,又CE AD ∥,∴四边形AECD 是平行四边形. ············································································································· (2分) AC 平分BAD ∠,CAE CAD ∴∠=∠, ···················································· (3分) 又AD CE ∥,ACE CAD ∴∠=∠,ACE CAE ∴∠=∠,AE CE ∴=,∴四边形AECD 是菱形. ·········································································· (4分) (2)证法一:E 是AB 中点,AE BE ∴=. 又AE CE =,BE CE ∴=,B BCE ∴∠=∠, ··········································· (5分)180B BCA BAC ∠+∠+∠=,································································ (6分) 22180BCE ACE ∴∠+∠=,90BCE ACE ∴∠+∠=.即90ACB ∠=,ABC ∴△是直角三角形. ··················································· (7分) 证法二:连DE ,则DE AC ⊥,且平分AC , ·············································· (5分) 设DE 交AC 于F .E 是AB 的中点,EF BC ∴∥. ····························································· (6分) BC AC ∴⊥,ABC ∴△是直角三角形. ······················································ (7分) 22.解:列表如下:或列树状图:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,7 8 9 10 11 121 2 3 4 5 6 6 7 8 9 10 111 2 3 4 5 6 5 6 7 8 9 101 2 3 4 5 6456点数之和 小晶 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6123点数之和 小晶 2 3 4 5 6 7 3 4 5 6 7 84 5 6 7 8 9小红小红故P (和为6)536=,P (和为7)636=. P (和为6)P <(和为7),∴小红获胜的概率大.评分说明:列表正确或画对树状图得3分,两个概率每求对一个得1分,比较后得出结论再得1分. 23.解:(1)评定等第为A 的有8人,等第为B 的有14人,等第为C 的有7人,等第为D 的有1人,频数条形统计图如图所示. ∴等第达到良好以上的有22人,其频率为22113015=. (2)这30个学生学号的中位数是3117,故初三年级约有学生(31173001)21233-⨯+=人, 11233170.915⨯≈, ∴故该校初三年级综合素质评定达到良好以上的人数估计有171人.评分说明:第(1)小题画图正确得2分,频率算对得1分;第(2)小题中位数算对得1分,估计出学生总数得1分,最后得出结论得1分. 24.解:(1)如图1; ·········· (3分) (2)如图2; ······················ (6分)(3)4. ····························· (8分)25.解:(1)设安排x 人生产甲种板材, 则生产乙种板材的人数为(140)x -人.由题意,得24000120003020(140)x x =-, ····························································· (2分) 解得:80x =.经检验,80x =是方程的根,且符合题意. ····························· (3分)答:应安排80人生产甲种板材,60人生产乙种板材. ····································· (4分) (2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,. ···················································· (6分)解得300m ≥. ······················································································· (7分)又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ························· (8分)∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名. ·················································· (9分)26.解:(1)由题意,知点(14)A -,是抛物线的顶点, 21242aa c -⎧-=⎪∴⎨⎪-=-+⎩,,···················································································· (2分) 1a ∴=,3c =-,∴抛物线的函数关系式为223y x x =--. ·························· (3分)2cm 1cm40° 2cm1cm 40° 图1图2(2)由(1)知,点C 的坐标是(03)-,.设直线AC 的函数关系式为y kx b =+,则34b k b =-⎧⎨-=+⎩,,3b ∴=-,1k =-,3y x ∴=--. ········································ (4分)由2230y x x =--=,得11x =-,23x =,∴点B 的坐标是(30),. 设直线AB 的函数关系式是y mx n =+,则304m n m n +=⎧⎨+=-⎩,.解得2m =,6n =-.∴直线AB 的函数关系式是26y x =-. ······················································· (5分) 设P 点坐标为()P P x y ,,则3P P y x =--.PE x ∥轴,E ∴点的纵坐标也是3P x --.设E 点坐标为()E E x y ,,点E 在直线AB 上,326P E x x ∴--=-,32PE x x -∴=. ·························· (6分) EF x ⊥轴,F ∴点的坐标为302P x -⎛⎫⎪⎝⎭,,332P E P x PE x x -∴=-=,32Px OF -=,(3)3P P EF x x =---=+, 333117()(3)22222P P POPEF x x S PE OF EF x --⎛⎫∴=+=++= ⎪⎝⎭四边形,·············· (7分) 22320P P x x +-=,2P x ∴=-,12P x =,当0y =时,3x =-, 而321-<-<,1312-<<, P ∴点坐标为1722⎛⎫- ⎪⎝⎭,和(21)--,. ··························································· (9分) 四、实践与探索27.解:(1)过C 作CD x ⊥轴于D , 1OA t =+,1OC t ∴=+,1cos 602t OD OC +∴==,3(1)sin 602t DC OC +==, ∴点C 的坐标为1)22t t ⎛⎫++ ⎪ ⎪⎝⎭,. ············ (2分)新世纪教育网 精品资料 版权所有@新世纪教育网(2)①当P 与OC 相切时(如图1),切点为C ,此时PC OC ⊥,cos30OC OP ∴=,313t ∴+=,1t ∴=-. ················· (4分) ②当P 与OA ,即与x 轴相切时(如图2),则切点为O ,PC OP =,过P 作PE OC ⊥于E ,则12OE OC =, ····················································· (5分) 133cos3022tOP +∴==,1t ∴=. ··············································· (7分) ③当P 与AB 所在直线相切时(如图3),设切点为F ,PF 交OC 于G,则PF OC ⊥,FG CD ∴==, 3(1)sin 30t PC PF OP +∴==+. ························································ (8分) 过C 作CH y ⊥轴于H ,则222PH CH PC +=,22213(1)33(1)322t t t ⎫⎛+++⎛⎫∴+=⎪ ⎪⎪ ⎝⎭⎝⎭⎝⎭, 化简,得2(1)183(1)270t t +-++=, 解得19366t +=9310t =-<, 1t ∴=.∴所求t的值是12-,1和1. ··································· (10分) 28.解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为1302312=<,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求.················· (3分)(图案设计不唯一)(2)将原正方形分割成如图2中的3个矩形,使得BE DG CG ==.将每个装置安装在这些矩形的对角线交点处,设AE x =,则30ED x =-,15DH =.由BE DG =,得22223015(30)x x +=+-,图1 y A FCB P OGH新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
某某省2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(某某某某3分)a2•a3等于A、3a2B、a5C、a6D、a8【答案】B。
【考点】同底数幂的乘法。
【分析】根据同底数幂的乘法法则进行计算即可:原式=a2•a3=a2+3=a5,故选B。
2.(某某某某3分)若a、b是正数,a-b=l,a b=2,则a+b=A、-3B、3C、±3D、9【答案】B。
【考点】完全平方公式,代数式变形求值。
【分析】∵(a+b)2=a2+2a b+b2=(a-b)2+4a b=12+4×2=9,∴a+b=±3,又∵a、b是正数,∴a+b>0,∴a+b=3。
故选B。
2.(某某某某3分)下列运算正确的是A.a3·a2= a5B.2a-a=2 C.a+b=ab D.(a3)2=a9【答案】A。
【考点】同底数幂的乘法,合并同类项,幂的乘方。
【分析】根据同底数幂的乘法,合并同类项,幂的乘方法则,对各选项计算后利用排除法求解:A、a3•a2=a3+2=a5,故本选项正确;B、应为2a-a=a,故本选项错误;C、a与b不是同类项,不能合并,故本选项错误;D、应为(a3)2=a3×2=a6,故本选项错误。
故选A。
3.(某某某某3分)下列计算结果正确的是A.a·a=a2B.(3a)2=6a2C.(a+1)2=a2+1 D.a+a=a2【答案】A。
【考点】同底数幂的乘法,幂的乘方与积的乘方,完全平方公式,合并同类项。
【分析】根据同底数幂的乘法,幂的乘方与积的乘方,完全平方公式,合并同类项法则对各选项分析判断后利用排除法: A 、a •a =a 2,正确;B 、应为(3a )2=9a 2,故本选项错误;C 、应为(a +1)2=a 2+2a +1,故本选项错误;D 、应为a +a =2a ,故本选项错误。
故选A 。
4.(某某某某4分)下列运算正确的是A .2222a a a +=B .339()a a =C .248a a a ⋅=D .632a a a ÷=【答案】B 。
2008年北京 2004年雅典 1988年汉城 1980年莫斯二0一一年福州市初中毕业会考、高级中等学校招生考试数学试卷考生须知:1.本科目试卷全卷共6页,三大题,共22小题;满分为150分,考试时间120分钟. 2.答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.一、选择题(共10小题,每题4分,满分40分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正................确答案.... 1.下列判断中,你认为正确的是( ) A .0的倒数是0B.2π是分数122.2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达 到51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是( ) A. 5.18×1010 B. 51.8×109 C. 0.518×1011 D. 518×108 3.下面四个几何体中,左视图是四边形的几何体共有( )A. 1个B. 2个C. 3个D. 4个4.下列函数的图象,经过原点的是( )A.x x y 352-=B.12-=x yC.xy 2= D.73+-=x y5.下列图案中是轴对称图形的是( )A .B .C .D .6(第10题)(第14题)则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨 C .极差是3吨 D .平均数是5.3吨7.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =6,DF =4,则菱形ABCD 的边长为( )C.5D.78.Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B+ 9.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做, 完成剩下的全部工程,设工程总量为单位1, 工程进度满足如图所示的函数关系, 那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( ) A.12天B.14天C.16天D.18天10.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( ) A. 2.5ABB. 3ABC. 3.5ABD. 4AB4分,满分20分)11.函数y =x 的取值范围是 . 12.分解因式:244x y xy y -+= .13.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是 .14.如图所示,圆锥的母线长OA =8,底面的半径r =2,若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是 .15. 如上图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是 . 三、解答题(满分90分)(第9题)ABCDEFO (第6题)(第13题)(第15题)AB C16.(每小题7分,共14分) (1)计算:21()4sin 302-︒-2009(1)+-+0(2)π-;(2)已知x 2-5x =3,求()()()212111x x x ---++的值.17.(每题7分,共14分)(1) 如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.(2) 在如图的方格纸中,每个小正方形的边长都为l.(1)画出将△A 1B 1C 1,沿直线DE 方向向上平移5格得到的△A 2B 2C 2;(2)要使△A 2B 2C 2与△CC 1C 2重合,则△A 2B 2C 2绕点C 2顺时针方向旋转,至少要旋转多少度?(直接写出答案)18.(满分12分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =2x --上的概率.19.(满分11分)如图, Rt △ABC 中,∠ABC=90°,以AB 为直径的⊙O 交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若tanC=25,DE=2,求AD 的长.由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a 元/度;每天22:00至8:00为为“谷电”期,电价为b 元/度.下表为某厂4、5月份的用电量和电费的情况统计表:(1)若4月份“谷电”的用电量占当月总电量的3,5月份“谷电”的用电量占当月总用电量的41,求a 、b 的值. (2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?21.(满分14分)已知:如图,四边形ABCD 是等腰梯形,其中AD ∥BC ,AD =2,BC =4,AB =DC =2,点M 从点B 开始,以每秒1个单位的速度向点C 运动;点N 从点D 开始,沿D —A —B 方向,以每秒1个单位的速度向点B 运动.若点M 、N 同时开始运动,其中一点到达终点,另一点也停止运动,运动时间为t (t >0).过点N 作NP ⊥BC 与P ,交BD 于点Q .(1)点D 到BC 的距离为 ; (2)求出t 为何值时,QM ∥AB ;(3)设△BMQ 的面积为S ,求S 与t 的函数关系式;(4)求出t 为何值时,△BMQ 为直角三角形.A B C D M N P Q如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D2 (4,)3.(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动. 设S=PQ2(cm2)①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取54时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.(第22题)二0一一年福州市初中毕业会考、高级中等学校招生考试数学试卷参考答案和评分标准评分标准说明:1. 标准答案只列出试题的一种或几种解法. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要步骤即可. 如果考生的解法与标准答案中的解法不同,可参照标准答案中的评分标准相应评分.2. 第一、二大题若无特别说明,每小题评分只有满分或零分.3. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅. 如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半.4. 标准答案中的解答右端所注分数,表示考生正确做到这一步应得的累加分数.5. 评分过程中,只给整数分数.二、填空题:(共5小题,每题4分,满分20分.) 11、112x x ≥-≠且 12、2(2)y x - 13、y=x314、82 15、670 三、解答题:(满分90分)16.(每小题7分,满分14分) (1) 原式 = 4 – 2 – 1 + 1 ……………6分 = 2……………7分(2) 原式=x 2-5x+1……………5分 = 3+1 = 4……………7分17.(每小题7分,满分14分)(1)略 (合理就行)---------------------7分 (2)解:(1)图形正确 ……………3分结论 ……………4分(2)至少旋转90.…………7分18.(本题满分12分) (1)或……………8分(2)落在直线y =2x --上的点Q 有:(1,-3);(2,-4) ……………10分 ∴P=62=31……………12分19.(本题满分11分)(1)连接BD ,∵AB 为直径,∠ABC=90°,∴BE 切⊙O 于点B ,因为DE 切⊙O 于点D ,所以DE=BE ,∴∠EBD=∠EDB ,∵∠ADB=90°,∴∠EBD+∠C=90°,∠BDE=∠CDE=90°,∴∠C=∠EDC ,∴DE=CE ,∴12DE BC =.-----------------5分 (2) 因为DE=2,12DE BC =,所以BC=4,在Rt △ABC 中,tanC=BC AB ,所以AB=B C ²25=25,在Rt △ABC 中,AC=22BC AB +=224)52(+=6,又因为△ABD ∽△ACB ,所以AC AB AB AD =,即65252=AD ,所以AD=310.----------------------11分20. (本题满分11分) (1) 由题意,得32³12a +31³12b=6.4 8a +4b =6.4 43³16a+41³16b=8.8 12a +4b =8.8 解得 a =0.6 b =0.4 --------------6分 (2)设6月份“谷电”的用电量占当月总电量的比例为k . 由题意,得10<20(1-k)³0.6+20k³0.4<10.6解得0.35<k <0.5 ------------------10分 答:该厂6月份在平稳期的用电量占当月用电量的比例在35%到50%之间(不含35%和50%).----------------------11分 21.(满分14分)解:(1分(2)t=1.2s------------------5分(3)当02t ≤≤时,s=2)t t -------------------------------8分当24t ≤≤时,s=21)2t t ------------------------11分 (4)t=1.5s 或者t=12/7s-----------------14分22. (满分14分)解: (1)据题意知: A(0, -2), B(2, -2) ,D (4,—32),则 解得∴抛物线的解析式为: 231612--=x x y----------------------------4分 (2) ①由图象知: PB=2-2t, BQ= t, ∴S=PQ 2=PB 2+BQ 2=(2-2t)2 + t 2 ,即 S=5t 2-8t+4 (0≤t ≤1) --------------------6分 ②假设存在点R, 可构成以P 、B 、R 、Q 为顶点的平行四边形. ∵S=5t 2-8t+4 (0≤t ≤1), ∴当S=45时, 5t 2-8t+4=45,得 20t 2-32t+11=0, 解得 t =21 ,t =1011 (不合题意,舍去)-------------------------------7分 此时点 P 的坐标为(1,-2),Q 点的坐标为(2,—23)若R 点存在,分情况讨论: 【A 】假设R 在BQ 的右边, 这时QR PB, 则,R 的横坐标为3, R 的纵坐标为—23 即R (3, -23),代入231612--=x x y , 左右两边相等, ∴这时存在R(3, -23)满足题意.【B 】假设R 在BQ 的左边, 这时PRQB, 则:R 的横坐标为1, 纵坐标为-23即(1, -23) 代入231612--=x x y , 左右两边不相等, R 不在抛物线上.【C 】假设R 在PB 的下方, 这时PR QB, 则:R(1,—25)代入, 231612--=x x y 左右不相等, ∴R 不在抛物线上. 综上所述, 存点一点R(3, -23)满足题意. ---------------------11分(3)∵A 关于抛物线的对称轴的对称点为B,过B 、D 的直线与抛物线的对称轴的交点为所求M ,M 的坐标为(1,—38)---------------------------------------14分。
福建省2011年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1.(福建福州4分)不等式组11112xx+≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是A 、B 、C 、D 、【答案】D。
【考点】解一元一次不等式组,在数轴上表示不等式的解集。
【分析】先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
第一个不等式的解集是x≥﹣2,第二个不等式的解集是x<2,∴﹣2≤x<2。
不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。
在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
故选D。
2.(福建福州4分)一元二次方程x(x﹣2)=0根的情况是A、有两个不相等的实数根B、有两个相等的实数根C、只有一个实数根D、没有实数根【答案】A。
【考点】一元二次方程根的判别式或解一元二次方程。
【分析】原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根。
故选A。
本题也可直接求出方程的两个根作答。
3.(福建漳州3分)分式方程211=x+的解是A .-1B .0C .1D .32【答案】C 。
【考点】解分式方程。
【分析】首先去掉分母,然后解一元一次方程,最后检验即可求解:212111==x+x =x+⇒⇒,检验:当1x=时,11120x+=+=≠。
∴1x=是原方程的解。
故选C 。
4.(福建三明4分)不等式组的解集在数轴上表示如图所示,则该不等式组可能是A .⎩⎨⎧x <-3x≤-1B .⎩⎨⎧ x <-3 x≥-1C .⎩⎨⎧x >-3x≤-1D .⎩⎨⎧x >-3x≥-1【答案】B 。
2011福州中考数学一、题目分析2011福州中考数学试题包含了选择题和主观题,总共分为两个部分:理论知识和计算题。
本文将对这些题目进行详细分析和解答。
二、选择题选择题部分包含了多项式的加减、函数图像、平面几何和概率等知识点。
以下是其中几道题目的解答方法:1. 题目一已知函数 f(x) = 2x + 1 和 g(x) = ax + b,若 f(x) 与 g(x) 的图像重合,则 a 和 b 的值分别为多少?解答:两个函数的图像重合,意味着它们的函数值相等。
因此,我们可以将 f(x) 和 g(x) 相等,得到 2x + 1 = ax + b。
通过比较系数,我们可以得到 a = 2 和 b = 1。
2. 题目二点 A、B、C 分别在 y 轴上的正半轴、x 轴和 y 轴上,若 AB = BC,且 AB 与 BC 的斜率之积为 -2,求三角形 ABC 的面积。
解答:根据题意,可以得知点 A 的坐标为 (0, a),点 B 的坐标为 (b, 0),点 C 的坐标为 (0, -b)。
根据斜率的定义,可以得到斜率 AB = a / b,斜率 BC = -b / b = –1。
根据题目中所给的条件,我们可以得到 a / b × -1 = -2,化简得到 a = 2b。
由于三角形 ABC 是直角三角形,且其中一边的长度已知为 b,可以利用直角三角形的面积公式 S = 1 / 2 × AB × BC,代入所得到的值,即 S = 1 / 2 × b × b = b^2 / 2。
3. 题目三一个圆心在坐标原点的圆,与曲线 y = x^2 + 6 的图像交于两点,求这两点的坐标。
解答:已知圆的圆心在坐标原点,可以表示为 x^2 + y^2 =r^2,其中 r 表示圆的半径。
另外,给出了曲线 y = x^2 + 6。
将这两个方程联立求解,可以得到 x^2 + (x^2 + 6)^2 = r^2。
2011年福建省福州市中考数学试卷一、选择题1、(2011•福州)6的相反数是()A、﹣6B、C、±6D、2、(2011•福州)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为()A、0.18×106米B、1.8×106米C、1.8×105米D、18×104米3、(2011•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()A、B、C、D、4、(2011•福州)如图是我们学过的反比例函数图象,它的函数解析式可能是()A、y=x2B、C、D、5、(2011•福州)下列四个角中,最有可能与70°角互补的角是()A、B、C、D、6、(2011•福州)不等式组的解集在数轴上表示正确的是()A、B、C、D、7、(2011•福州)一元二次方程x(x﹣2)=0根的情况是()A、有两个不相等的实数根B、有两个相等的实数根C、只有一个实数根D、没有实数根8、(2011•福州)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A、0B、C、D、19、(2011•福州)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A、B、R=3r C、R=2r D、10、(2011•福州)如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A、2B、3C、4D、5二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置)11、(2011•衢州)分解因式:x2﹣25=.12、(2011•福州)已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是.(13、( 2011•福州)如图,直角梯形ABCD中,AD∥BC,∠C=90°,则∠A+∠B+∠C= 度.14、(2011•福州)化简的结果是.15、(2011•福州)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16、(2011•福州)(1)计算:;(2)化简:(a+3)2+a(2﹣a).17、(2011•福州)(1)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?18、(2011•福州)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2、3中的a=,b=;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?19、(2011•福州)如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而(填“增大”或“减小”).20、(2011•福州)如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.求:(1)tanC;(2)图中两部分阴影面积的和.21、(2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A 停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.22、(2011•福州)已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.答案1.考点:相反数。
专题:计算题。
分析:只有符号不同的两个数互为相反数,a的相反数是﹣a.解答:解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解答:解:∵180000=1.8×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.考点:简单几何体的三视图。
专题:应用题。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了.4.考点:反比例函数的图象;正比例函数的图象;二次函数的图象。
专题:推理填空题。
分析:根据图象知是双曲线,知是反比例函数,根据在一三象限,知k>0,即可选出答案.解答:解:根据图象可知:函数是反比例函数,且k>0,答案B的k=4>0,符合条件,故选B.点评:本题主要考查对反比例函数的图象,二次函数的图象,正比例函数的图象等知识点的理解和掌握,能熟练地掌握反比例的函数的图象是解此题的关键.5.考点:余角和补角。
专题:应用题。
分析:根据互补的性质,与70°角互补的角等于180°﹣70°=110°,是个钝角;看下4个答案,哪个符合即可;解答:解:根据互补的性质得,70°角的补角为:180°﹣70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.点评:本题考查了角互补的性质,明确互补的两角和是180°,并能熟练求已知一个角的补角.6.考点:在数轴上表示不等式的解集;解一元一次不等式组。
专题:数形结合。
分析:分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.解答:解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.点评:本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.78.考点:根的判别式;解一元二次方程-因式分解法。
专题:计算题。
分析:先把原方程变形为:x2﹣2x=0,然后计算△,得到△=4>0,根据△的含义即可判断方程根的情况.解答:解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.点评:本题考查了一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2﹣4ac:当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根.8.考点:列表法与树状图法。
专题:数形结合。
分析:列举出所有情况,看积是正数的情况数占总情况数的多少即可.解答:解:共有6种情况,积是正数的有2种情况,故概率为,故选B.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到积是正数的情况数是解决本题的关键.9.考点:切线的性质;含30度角的直角三角形;垂径定理。
分析:首先连接OC,根据切线的性质得到OC⊥OB,再根据等腰三角形的性质可得到∠COB=60°,从而进一步求出∠B=30°,再利用直角三角形中30°角所对的边等于斜边的一半,可得到R与r的关系.解答:解:连接OC,∵C为切点,∴OC⊥AB,∵OA=OB,∴∠COB=∠AOB=60°,∴∠B=30°,∴OC=OB,∴R=2r.故选C.点评:此题主要考查了切线的性质和直角三角形的性质,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.考点:三角形的面积。
专题:网格型。
分析:根据三角形ABC的面积为2,可知三角形的底边长为4,高为1,或者底边为2,高为2,可通过在正方形网格中画图得出结果.解答:解:C点所有的情况如图所示:故选C.点评:本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.11.考点:因式分解-运用公式法。
分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.常出的错误有:x2﹣25=(x﹣5)2,x2﹣25=x(x﹣5)(x+5),x2﹣25=(x﹣5)2=(x+5)(x﹣5),要克服.12.考点:几何概率。
专题:计算题。
分析:根据几何概率的求法:看陆地的面积占总面积的多少即为所求的概率.解答:解:根据题意可得:地球表面陆地面积与海洋面积的比约为3:7,即相当于将地球总面积分为10份,陆地占3份,所以落在陆地上的概率是.故答案为.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.13考点:直角梯形;平行线的性质。