直流伺服电机控制系统设计
- 格式:doc
- 大小:33.50 KB
- 文档页数:1
基于单片机的直流伺服电机脉冲宽度调制控制系统的设计直流伺服电机脉冲宽度调制(PWM)控制系统是一种常见的控制电机速度和位置的方法。
在这篇文章中,我们将详细介绍基于单片机的直流伺服电机PWM控制系统的设计。
1.引言:直流伺服电机是一种常见的用于机器人、工业自动化和航空航天等领域的电机,它具有速度和位置控制的能力。
脉冲宽度调制技术是一种常用的控制直流电机速度和位置的方法,通过在一定周期内改变PWM信号的脉冲宽度,可以控制电机的转速和转向。
2.系统结构:(1)电源模块:用于提供电机驱动需要的直流电源。
(2)运动控制模块:用于控制电机的转速和转向,并生成PWM信号。
(3)PWM发生器:用于生成PWM信号的方波信号。
(4)驱动器:用于将PWM信号转换成电机驱动信号。
(5)电机:用于产生机械运动。
3.PWM信号生成:PWM信号的生成是整个系统的关键步骤,它决定了电机的转速和转向。
(1)选择合适的单片机:选择具有PWM输出功能的单片机作为控制芯片,常用的有AVR、PIC等系列。
(2)设定PWM周期:根据电机的需求,设定合适的PWM周期,通常周期在几十毫秒到几百毫秒之间。
(3)设定PWM占空比:根据转速和转向的需求,设定合适的PWM占空比,通常占空比在0%到100%之间。
(4)编程生成PWM信号:利用单片机的PWM输出功能,编程生成设定好的PWM信号。
4.电机驱动:电机驱动模块负责将PWM信号转换成电机驱动信号。
通常采用H桥驱动器来实现,H桥驱动器可以控制电机的正转和反转。
(1)选择合适的H桥驱动器:根据电机的电流和电压需求,选择合适的H桥驱动器。
(2)连接H桥驱动器:将控制信号连接到H桥驱动器的控制端口,将电机的电源和地线连接到驱动器的电源和地线端口。
(3)编程控制H桥驱动器:利用单片机的IO口,编程产生控制信号,控制H桥驱动器的输出。
5.运动控制:运动控制模块负责接收用户输入的速度和位置指令,并将其转换成合适的PWM信号。
电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。
数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。
单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。
本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。
对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。
同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。
关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。
2.单片机控制系统硬件组成.................................... 错误!未定义书签。
微控制器................................................ 错误!未定义书签。
DAC0808转换器.......................................... 错误!未定义书签。
运算放大器............................................... 错误!未定义书签。
按键输入和显示模块....................................... 错误!未定义书签。
描述直流伺服电机的三环控制系统结构下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!直流伺服电机是一种能够精确控制旋转角度和速度的电机,广泛应用于工业生产和自动化设备中。
成绩运动控制系统课程设计题目: 基于单片机的直流伺服电机PWM控制系统院系名称: 电气工程学院专业班级: xxx 学生姓名: xxx 学号: xxxx 指导教师: 石庆生评语:摘要单片机是应控制领域应用的要求而出现的,随着单片机的迅速发展,起应用领域越来越广。
尽管目前已经发展众多种类的单片机,但是应用较广、也是最成熟的还是最早有Intel开发的MCS-51系列单片机(51系列单片机)。
51系列单片机应用系统已经成为目前主流的单片机应用系统。
直流电机脉冲宽度调制(Pulse Width Modulation—简称PWM)调速产生于20世纪70年代中期,最早用于自动跟踪天文望远镜,自动记录仪表等的驱动,后来用于晶体管器件水平的提高及电路技术的发展,PWM技术得到了高速发展,各式各样的脉宽调速控制器,脉宽调速模块也应运而生,许多单片机也都有了PWM输出功能。
而MCS—51系列单片机作为应用最广泛的单片机之一,却没有PWM 输出功能,本课设采用配合软件的方法实现了MCS—51单片机的PWM输出调速功能,这对精度要求不高的场合时非常实用的。
目录1、前言 (1)1.1单片机的发展史 (1)1.2本设计任务 (1)2、总体设计方案 (2)3、硬件电路设计 (2)3.1硬件组成 (2)3.2主要器件功能介绍 (3)3.2.1直流伺服电机简介 (3)3.2.2 PWM简介及调速原理 (4)3.2.3 传感器选择 (5)3.3电路组成 (6)3.3.1 晶振电路 (6)3.3.2 复位电路 (6)3.3.3 单相桥式整流电路 (7)3.3.4 调制电路 (7)4、系统软件设计 (8)4.1系统简介及原理 (8)4.2系统设计原理 (8)4.3程序流程图 (10)5、建模 (11)5.1控制框图 (11)5.2参数计算 (12)5.3PWM变换器环节的数学模型 (14)5.4仿真结果图 (14)总结 (16)参考文献 (17)附件1:汇编设计 (18)附件2: (20)1、前言1.1 单片机的发展史单片机作为微型计算机的一个重要分支,应用面很广,发展很快。
永磁直流伺服电机调速系统课程设计绪论一、引言在当今高科技飞速发展的时代,永磁直流伺服电机调速系统在各类设备中得到了广泛的应用。
作为一种将电能转换为机械能的高效、高性能电机,永磁直流伺服电机具有出色的调速性能和控制特性。
本课程设计旨在使学生掌握永磁直流伺服电机调速系统的基本原理、组成及设计方法,培养学生解决实际工程问题的能力。
二、永磁直流伺服电机调速系统概述1.永磁直流伺服电机的原理永磁直流伺服电机是基于永磁材料制成的电机,其工作原理是利用永磁体产生的磁场与电枢绕组产生的电流相互作用,从而实现电机的转矩输出。
2.永磁直流伺服电机的特点永磁直流伺服电机具有以下特点:(1)高效率:由于采用永磁材料,使得电机的磁损减小,从而提高了电机的整体效率。
(2)高精度:具有很好的位置控制性能和速度控制性能,能够实现精确的定位和速度调节。
(3)响应快:电机转矩响应速度快,有利于提高系统的动态性能。
(4)可靠性高:采用永磁材料,使得电机具有更高的可靠性和稳定性。
3.永磁直流伺服电机调速系统的组成永磁直流伺服电机调速系统主要由以下几部分组成:(1)永磁直流伺服电机:作为系统的执行元件,负责将电能转换为机械能。
(2)控制器:对电机进行控制,实现电机的速度、位置等参数的调节。
(3)驱动器:将控制器发出的信号转换为电机所需的驱动电流。
(4)传感器:用于实时检测电机的工作状态,将检测信号反馈给控制器。
三、课程设计目的和意义课程设计旨在使学生深入理解永磁直流伺服电机调速系统的原理和组成,掌握系统的设计方法和实际应用。
通过课程设计,培养学生分析问题、解决问题的能力,提高学生在实际工程中的创新能力。
四、课程设计内容和步骤1.设计要求根据实际工程需求,设计一款具有良好调速性能和控制特性的永磁直流伺服电机调速系统。
2.设计原理分析永磁直流伺服电机调速系统的工作原理,了解各部分的作用和相互关系。
3.设计流程(1)确定设计目标和技术参数。
(2)选择合适的永磁直流伺服电机。
永磁直流伺服电机调速系统课程设计绪论1. 引言永磁直流伺服电机调速系统是现代工业自动化控制领域中的重要组成部分。
随着科技的发展和工业自动化水平的提高,对精密控制和高效能的需求越来越迫切。
永磁直流伺服电机调速系统可以实现对电机的精确控制,具有响应速度快、控制精度高、负载适应能力强等优点,因此在工业生产中得到了广泛应用。
本课程设计将围绕永磁直流伺服电机调速系统展开,通过对系统的建模、参数设计、控制策略选择等方面的研究,旨在使学生深入了解和掌握永磁直流伺服电机调速系统的原理和应用。
2. 研究背景在工业生产过程中,对电机的调速要求越来越高。
传统的直流电机调速系统存在着调速范围窄、调速精度低、响应速度慢等问题。
而永磁直流伺服电机调速系统则具有调速范围宽、调速精度高、响应速度快等优点,因此在许多领域得到了广泛应用。
永磁直流伺服电机调速系统的研究涉及到电机控制、信号处理、控制策略等多个领域的知识。
通过对系统的建模和仿真分析,可以更好地理解系统的工作原理和特性,并优化系统的控制策略,提高系统的控制性能。
3. 课程设计目标本课程设计的主要目标是使学生掌握永磁直流伺服电机调速系统的原理和应用,具体包括以下几个方面的内容:•了解永磁直流伺服电机调速系统的基本原理和组成结构;•掌握永磁直流伺服电机的数学建模方法;•熟悉永磁直流伺服电机的参数设计和性能分析方法;•理解不同的控制策略,并能根据实际需求选择合适的控制策略;•能够进行永磁直流伺服电机调速系统的仿真和实验。
通过本课程设计的学习,学生将能够掌握永磁直流伺服电机调速系统的设计和调试技能,并能够应用于实际工程项目中。
4. 课程设计内容本课程设计主要包括以下几个内容:4.1 永磁直流伺服电机调速系统的基本原理和组成结构介绍永磁直流伺服电机调速系统的基本原理,包括电机的工作原理、系统的组成结构和工作流程等。
4.2 永磁直流伺服电机的数学建模方法介绍永磁直流伺服电机的数学建模方法,包括电机的动态方程、电机参数的确定和电机模型的建立等。